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Computer control of mechanical ventilators includes the operator-ventilator interface and the ventila-
tor-patient interface. New ventilation modes represent the evolution of engineering control schemes. The
various ventilation control strategies behind the modes have an underlying organization, and under-
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Introduction

Computers have played a major role in the evolution of the
mechanical ventilator. Microprocessor technology has revo-
lutionized ventilator-patient interaction by allowing advanced
ventilation modes. It has also made the graphical user inter-
face a standard feature of ventilator-operator interaction. This
report discusses both the ventilator-patient interface and ven-
tilator-operator interface and offers some predictions.

The 2002 RESPIRATORY CARE Journal Conference on me-
chanical ventilation had a great deal to say about ventilator-
patient interaction. In particular, the new ventilation modes
were described in detail.1 I don’t intend to rehash that infor-
mation. Rather, I intend to put it into perspective by intro-
ducing a new conceptual framework. Ventilation modes are
often described as unique and unrelated developments, but
they actually represent the evolution of engineering control
schemes. The various control strategies behind the modes
have an underlying organization. Understanding the hierar-
chy of control types will improve our appreciation for the
modes’ capabilities and give us some idea of what we could
and should expect for the future.

Computerized Output Control

A ventilator must have a control circuit to manipulate
pressure, volume, and flow. The control circuit measures
and directs the ventilator’s output. Early ventilators used
simple mechanical components for control systems. Today

Robert L Chatburn RRT FAARC is affiliated with the Respiratory Care
Department, University Hospitals of Cleveland, and with the Department
of Pediatrics, Case Western Reserve University, Cleveland, Ohio.

Robert L Chatburn RRT FAARC presented a version of this report at the
33rd RESPIRATORY CARE Journal Conference, Computers in Respiratory
Care, held October 3–5, 2003, in Banff, Alberta, Canada.

Correspondence: Robert L Chatburn RRT FAARC, Respiratory Care
Department, University Hospitals of Cleveland, 11100 Euclid Avenue,
Cleveland OH 44106. E-mail: robert.chatburn@uhhs.com.

RESPIRATORY CARE • MAY 2004 VOL 49 NO 5 507



microprocessors allow much more accurate and flexible
control of breathing variables, which has led to a wide
array of ventilation modes.

Open-Loop Control

To lay the groundwork for discussing how ventilators
operate I will review some basic control theory. The sim-
plest type of control is called open-loop. Its advantage is
low cost. Its weakness is that it is unable to cope with
disturbances in the system. About the only example of
open-loop control in mechanical ventilation was the early
jet ventilator. Though the operator could set the input driv-
ing pressure, the pressure and flow delivered to the patient
were highly variable and depended on the changing respi-
ratory system impedance. Figure 1A is a diagram of an
open-loop system. Shown are 3 subsystems connected in
series: a controller, an effector, and a plant. The plant is
the subsystem being controlled. Its output is the controlled
or output variable. The effector is the mechanism that
drives the plant to respond in a given way. Its output is the
variable that is manipulated to control the behavior of the
controlled system. We will refer to it as the manipulated
variable (it is called the control variable in relation to
mechanical ventilators). The effector, typically, is the prime
mover or the device that drives or powers the controlled
system. In a ventilator, the effector might be a piston pump
or an electronic flow control valve.

The control circuit or controller contains the logic used
to interpret or translate the input signal into a signal to
which the effector responds. Figure 1B shows the control-
ler and effector together within the ventilator. One of the
few examples of open-loop control of mechanical venti-
lation is the type of jet ventilator used experimentally in
the early 1980s.2,3 The operator could set a driving pres-
sure, and the controller would turn a valve on and off at a
set frequency and inspiratory-expiratory ratio. Gas was
metered to the patient, but the actual pressure and volume

delivered were dependent on the moment-to-moment
changes in the patient’s respiratory system impedance.

Thus, an open-loop control system cannot correct for
disturbances in the conditions affecting the controlled plant.
It “goes on its merry way,” oblivious of its surroundings.
Disturbances are influences on the system that make the
output unpredictable. During mechanical ventilation the
major disturbances are changes in the patient’s ventilatory
drive, respiratory system mechanics, and leaks.

Closed-Loop Control

All modern ventilators use closed-loop control to main-
tain consistent pressure and flow waveforms in the face of
changing environmental conditions. Closed-loop control is
accomplished by using the output as a feedback signal that
is compared to the operator-set input. The difference be-
tween the two is used to drive the system toward the
desired output. For example, pressure-controlled modes
use airway pressure as the feedback signal to control gas
flow from the ventilator. Manufacturers typically do not
use flow at the airway opening as a feedback signal, be-
cause they do not trust the flow sensors available for that
purpose. Instead, they measure flow inside the ventilator,
near the main flow-control valve.

Closed-loop control (also called feedback control) uses
a sensor to measure the output of the effector. This signal
is passed to a comparator (represented by the circles in
Fig. 2) that essentially applies a simple equation: error �
input – output. If the error in the effector output is large
enough, an error signal is sent to the controller. The con-
troller then adjusts the effector so its output is closer to the
desired input (ie, makes the error smaller). The advantage
of closed-loop control is that the output is continuously
and automatically adjusted so that disturbances are not a
problem. The greater complexity of that system makes it
more expensive to build and maintain.

A feedback signal can be electrical (eg, from an elec-
tronic pressure transducer) or mechanical (eg, pressure
regulators and continuous positive airway pressure valves).
In mechanical devices a spring provides the input setting,
and the position of the diaphragm (a measure of the gas
pressure) is the feedback signal. When the force caused by
the pressure exceeds the spring load, the diaphragm de-
flects and vents gas to the atmosphere to relieve the pres-
sure.

The Hierarchy of Ventilator Control Systems

The basic concept of closed-loop control has evolved
into at least 7 different ventilator control systems (set-
point, auto-set-point, servo, adaptive, optimal, knowledge-
based, and neural network control). These control types
are the foundation that makes possible several dozen seem-

Fig. 1. Schematic diagrams of open-loop control of a mechanical
ventilator. A: Basic control circuit. B: Open-loop control circuit for
a ventilator. C: Example of open-loop control of a jet ventilator.
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ingly different ventilation modes, but once we understand
how these control types work, many of the seeming dif-
ferences are seen to be similarities. With that understand-
ing we can transcend the confusion that can arise out of
ventilator marketing hyperbole and we begin to appreciate
the true clinical capabilities of various ventilators.

Set-Point Control. All ventilators use at least set-point
control (Fig. 3). In set-point control the output is con-
strained to match a constant input (ie, a set maximum
pressure or flow value). This makes possible the standard
volume- (actually flow) or pressure-controlled breaths. The
operator sets either a fixed pressure or a flow limit, and the
ventilator then maintains a consistent pressure or flow wave-

form output. (Recall that the term “limit” means that a
control variable reaches a preset maximum value before
inspiration ends.4) This type of control is similar to the
“cruise control” function of an automobile.

Auto-Set-Point Control. Auto-set-point control is a more
advanced version of set-point control. It gives the venti-
lator the decision of whether the breath will be flow-con-
trolled or pressure-controlled, according to the operator-
set priorities. The breath can start out as pressure-controlled
and automatically switch to flow-controlled (eg, the Bird
VAPS [volume-assured pressure support] mode5) or vice
versa (eg, the Dräger Pmax mode).

Servo Control. Whereas set-point control attempts to
maintain a constant output to match a constant input, servo
control tracks a moving input, much like power steering in
an automobile. Servo control was developed during World
War II to aim ship’s guns and radar equipment. Servo
control makes possible the proportional assist mode,6 in
which the ventilator’s output follows and amplifies the
patient’s own flow pattern. The ventilator can thus support
the abnormal load imposed by disease while the patient’s
muscles handle the normal load of the respiratory system’s
normal resistance and compliance (Fig. 4).

Adaptive Control. Adaptive control means automatic
adjustment of one set-point to maintain a different opera-
tor-selected set-point (Fig. 5). One of the first examples of
a mode that used adaptive control was pressure-regulated
volume control on the Siemens Servo ventilator. Adaptive
control is an evolutionary step because it permits the ven-
tilator to determine a set-point level independent of the
operator. Set-point control operates within breaths, whereas
adaptive control introduces another feedback loop that op-
erates between breaths. It is that second feedback loop that
prompted the term “dual control.” The feedback of ex-
haled tidal volume allows the ventilator to adapt to changes
in the patient’s lung mechanics. Despite having various
names for the specific modes it allows, adaptive control to
date has been implemented as a way for the ventilator to
automatically adjust the pressure limit of a breath to meet
an operator-set volume target over several breaths. Notice
that the operator’s influence has subtly moved away, in a
sense, from direct control of the breath.

Optimal Control. Optimal control takes adaptive con-
trol a step further by allowing the ventilator to set both
volume and pressure set-points (Fig. 6). Optimum control
takes its name from the fact that a mathematical model is
used to find the best (in this case, minimum) value of some
performance function. The Hamilton Galileo is the only
ventilator with this feature. It allows the ventilator to make
all subsequent adjustments after the operator sets the targetFig. 3. Set-point control.

Fig. 2. Schematic diagrams of closed-loop control of a mechanical
ventilator. A: Pressure control. B: Flow control. C: The flow signal
is integrated to provide a signal for volume control. D: Flow/vol-
ume control using a calibrated gas-control valve instead of a flow
sensor.
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minute volume. Again the operator is moved another step
away from direct control of the breath.

An experimental form of optimal control gives the ven-
tilator even more authority.7 The exhaled carbon dioxide
signal allows the ventilator to estimate the patient’s minute
volume needs (Fig. 7). With this control system the oper-

ator has stepped completely out of the picture, though, of
course, we are only talking about eliminating the operator
in the sense of establishing the ventilatory pattern. Oper-
ator input is still required for all the other variables, such
as positive end-expiratory pressure, fraction of inspired
oxygen (FIO2

), and alarm settings.

Knowledge-Based Control. Knowledge-based control
is yet another evolutionary step; it gives the ventilator
more knowledge than what can be contained in a simple,
static, mathematical model. In fact, knowledge-based con-
trol attempts to capture the experience of human experts
and thus expand the scope of control to potentially all of
the ventilation mode variables. An experimental applica-
tion of this type of control has been described for auto-
matic adjustment of pressure support.8 An even more so-
phisticated approach coupled a knowledge base with fuzzy
logic (Fig. 8).9 In that control system the ventilator used

Fig. 5. Adaptive control. Notice that the operator has stepped
back from direct control of the within-breath parameters of pres-
sure and flow. Examples of adaptive control are pressure-regu-
lated volume control (PRVC) on the Siemens ventilator and Auto-
flow on the Dräger Evita 4 ventilator.

Fig. 7. An experimental form of optimal control allows the venti-
lator to estimate the patient’s minute ventilation needs based partly
on the exhaled carbon dioxide signal. This eliminates the need for
the operator to set any of the major breath parameters. Set-points
for fraction of inspired oxygen and positive end-expiratory pres-
sure are still required, however.

Fig. 4. Servo control is the basis for the proportional assist
mode. In this mode the operator sets targets for elastic and
resistive unloading. The ventilator then delivers airway pressure
in proportion to the patient’s own inspiratory volume and flow.
When the patient’s muscles have to contend with an abnormal
load caused by disease, proportional assist allows the operator
to set amplification factors (K1 and K2) on the feedback volume
and flow signals. By amplifying volume and flow the ventilator
generates a pressure that supports the abnormal load, freeing
the respiratory muscles to support only the normal load that is
due to the normal elastance and resistance of the respiratory
system. Pmus � pressure generated by the muscles. Loadnormal �
respiratory system’s load during normal resistance and compli-
ance (no disease). Loaddisease � extra load caused by disease.
Pvent � pressure generated by the ventilator. V � volume. V̇ �
flow.

Fig. 6. Optimal control. A static mathematical model optimizes
some performance parameter, such as work of breathing. The only
commercially available form of optimal control is the adaptive sup-
port ventilation (ASV) mode on the Hamilton Galileo ventilator.
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both instantaneous measurements of physiologic values
(eg, respiratory rate and oxygen saturation) and their rates
of change. Fuzzy logic10 was used to integrate the mea-
surements with predefined ranges of values representing
the patient status. Once the patient’s status was deter-
mined, appropriate expert rules were selected from a lookup
table and used to adjust the ventilator. Though this was a
limited application, it proved the concept.

No doubt the most convincing proof of concept was
presented by East et al.11 They used a rule-based expert
system for ventilator management in a large, multicenter,
prospective, randomized trial. Though patient survival and
duration of stay were not different between human-con-
trolled and computer-controlled ventilator management,
computer control was associated with significantly less
multi-organ dysfunction and lower incidence and severity
of lung overdistention injury. The most important finding,
however, was that expert knowledge can be encoded and
successfully shared with institutions that had no input into
the model. Note that the expert system did not directly
control the ventilator but rather made suggestions for the
human operator. In theory, of course, the operator could be
eliminated.

Artificial Neural Network Control. The ultimate in
ventilator control to date is the artificial neural network
(Fig. 9).12 Again, this experimental system does not di-

rectly control the ventilator but acted as a decision-support
system. In the Snowden et al report,12 the comment I found
most interesting was that the neural network was capable
of learning, which offers substantial advantages over static
rule-based systems.

Neural networks are essentially data modeling tools used
to capture and represent complex input-output relationships.
A neural network learns by experience, similar to the way a
human brain does, by storing knowledge in the strengths of
inter-node connections. As data modeling tools neural net-
works have been used in many business applications and in
medical applications for both diagnosis and forecasting.13 A
neural network, like a brain, is made up of individual “neu-
rons.” Signals (action-potentials) appear at the unit’s inputs
(synapses). The effect each signal has is approximated by
multiplying the signal by a number (a weight) that indicates
the “strength” of the synapse. The weighted signals are then
summed to produce an overall unit activation. If this activa-
tion exceeds a certain threshold, the unit produces an output
response. Large numbers of “neurons” can be linked together
in layers (Fig. 10). The nodes in Figure 10 represent the
summation and transfer processes. Each node contains infor-
mation from all “neurons.” As the network learns, the weights
change and thus the values at the nodes change, affecting the
final output.

There are 2 basic kinds of neural networks: supervised
and unsupervised. A supervised network must be trained

Fig. 8. A knowledge-based control system for automatically ad-
justing pressure support levels. �SaO2

� change in arterial oxygen
saturation.

Fig. 10. Neural network structure. A single “neuron” accepts in-
puts of any value and weights them to indicate the strength of the
synapse. The weighted signals are summed to produce an overall
unit activation. If this activation exceeds a certain threshold the
unit produces an output response. A network is made up of layers
of individual “neurons.”

Fig. 9. Artificial neural network control. PEEP � positive end-ex-
piratory pressure. FIO2

� fraction of inspired oxygen.
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by providing an input and comparing the output to the
desired output. This feedback process is repeated until the
output error is acceptable (Fig. 11). Unsupervised net-
works can train themselves.

Summary of Control Systems

In summary, ventilator control schemes have a hierar-
chy of evolutionary complexity. At the most basic level,
control is focused on what happens within a breath. We
can call this tactical control, with which there is a very
direct need for operator input of static set-points. The next
level up we can call strategic control, in which set-points
are dynamic in that they can be automatically adjusted
over time by the ventilator, according to some model of
desired performance. The operator is somewhat removed
in that, instead of individual breath control, the inputs are
entered according to the model of desired performance and
they take effect over several breaths. The highest control
level so far is what might be considered intelligent control,
in which the operator can be eliminated altogether. Not
only dynamic set-points but dynamic models of desired
performance are permitted. There is the possibility of the
system learning from experience so that the control spans
between patients (Fig. 12).

Future Possibilities

Of course, the real challenge in closed-loop control of
ventilation is defining and measuring the appropriate feed-
back signals. If we stop to consider all the variables a
human operator assesses, the problem looks insurmount-
able. Not only does a human consider a wide range of
individual physiologic variables, there are also more ab-
stract evaluations of such things as metabolic, cardiovas-
cular, and psychological states. Add to that the various
environmental factors that may affect operator judgment
and we get a truly complex control problem (Fig. 13). I
would like to speculate now about a response to that chal-
lenge.

The ideal control strategy would have to start out with
basic tactical control of the individual breath. Next we

would add longer-term strategic control to adapt to chang-
ing load characteristics. Mathematical models could pro-
vide the mode’s basic parameters, and expert rules would
set limits to ensure lung protection. Next we would sample
various physiologic variables and use fuzzy logic to es-
tablish the patient’s immediate condition. That informa-
tion would be passed on to a neural network that would

Fig. 11. Neural network training.

Fig. 13. The challenge of total computer control of mechanical
ventilation. Solid arrows depict signals that have been used at
least experimentally. Dotted arrows represent potential feedback
signals. PIP � peak inspiratory pressure. PEEP � positive end-
expiratory pressure. FIO2

� fraction of inspired oxygen. PeCO2
�

partial pressure of carbon dioxide in exhaled gas. SpO2
� arterial

oxygen saturation measured via pulse oximetry. P0.1 � airway
occlusion pressure 0.1 s after the onset of inspiratory effort. au-
toPEEP � intrinsic positive end-expiratory pressure.

Fig. 12. Summary of control system hierarchy. A: Tactical control
(within breaths) involves static set-points (set-point, auto-set-point,
and servo). B: Strategic control (between breaths) involves dy-
namic set-points (static models, adaptive, and optimal). C: Intel-
ligent control (between patients) involves dynamic set-points (dy-
namic models, ability to learn from experience, knowledge-based,
artificial neural networks).
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then select the best response to the patient’s condition. The
neural network would have access to a huge database of
expert rules and actual patient responses to various venti-
lation strategies. This arrangement would allow the ven-
tilator to learn not only from its interaction with the cur-
rent patient but also to learn from and contribute to the
database. Finally, the database and the ventilator could be
networked with other intelligent ventilators to multiply the
learning capacity (Fig. 14).

Computerized Input Control

Let’s switch gears now and talk about the opposite end of
the ventilator—the operator-ventilator interface. Computers
have brought a high level of sophistication to ventilator input
control. We have come a long way from using a crank to
adjust the stroke of a ventilator’s piston to set tidal volume.
The operator-ventilator interface must provide for 3 basic
functions: to allow input of control and alarm variables; to
monitor the ventilator’s status; and to monitor the ventilator-
patient interaction status. Computers have automated the once
manual procedures of producing waveform graphics and cal-
culated patient status indicators (Table 1)

Ventilator manufacturers have a spectrum of choices
when designing the operator-ventilator interface. At the
low end, some ventilators still use hard-wired knobs and
buttons in conjunction with digital light-emitting diode
(LED) displays. Replacing the LEDs with a computer mon-
itor costs more but adds a great deal of flexibility. Replac-
ing the hard-wired knobs reduces the cost of future up-
grades. The ideal situation in terms of flexibility and
upgradeability is to use a touch-screen to create a “virtual
instrument.” The virtual instrument concept has been quite
popular among researchers and electrical engineers for
many years. A software package called LabView is com-
monly used to replace a wide variety of stand-alone mon-

itors and displays. For example, the Ingmar Medical
ASL5000 lung simulator’s interface is a virtual instrument
based entirely on LabView. (By the way, ASL stands for
“active servo lung” and it represents a control strategy that
is essentially proportional assist ventilation in reverse.)

It amazes me that with all the research on mechanical
ventilation there seems to be nothing written about the
usability of the input screens. We, as users, just seem to
take for granted the operator-ventilator interfaces the man-
ufacturers have offered. This is particularly curious given
that there is a huge industry built around the psychology of
human-computer interaction.14 As I see it, this is a rich
subject for future research and continued improvement. In
my opinion, there are several problems with current ven-
tilator screens. Some are too small, most are too cluttered,
and all could better organize the information they present.

To facilitate future research I would suggest that we
learn from studies of human-computer interaction, a field
known as usability engineering. We can define usability as
ease of use plus usefulness. An interface that has high
usability is easy to learn, easy to remember (even after a
period of absence), allows efficient use of the operator’s
time, causes few errors, and is aesthetically pleasing.

Perhaps it is not a coincidence that there have been no
studies of operator-ventilator interfaces. According to ex-
perts in the field, not only are manufacturers generally
ignorant of usability design tools, but also the available
methods for evaluating finished designs leave something
to be desired. However, one prominent expert has pro-
posed a testing method that might be appropriate for ven-
tilator evaluation.15 It is composed of 3 fairly informal
methods to identify problems and quantify their effects
(Table 2).

Simplified thinking aloud is an easy method of getting
user feedback. The basic idea is to observe users (one at a
time) interacting with the ventilator as they perform typ-
ical operational procedures (eg, setting the mode). The
user thinks aloud as he or she operates the ventilator. In
formal settings videotapes are used, but good results can
also be obtained by simply taking notes.

Fig. 14. A potential approach to the challenge of fully automated
control of mechanical ventilation.

Table 1. Functions of the Operator-Ventilator Interface

Manipulate input control parameters
Mode parameters
Alarm thresholds

Monitor operational status
Mode status
Alarms status

Monitor ventilator-patient interaction
Control variable graphics (eg, pressure, volume, flow waveforms)
Calculated variables (eg, respiratory system mechanics)
Integrate adjunctive monitors (eg, oxygen saturation and exhaled

carbon dioxide)
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The key method is “heuristic evaluation”—the use of rules
of thumb for good design to identify difficulties that users
encounter. Research indicates that individual evaluators have
substantial difficulty finding even major problems, so it is
recommended that at least 3 evaluators be used.

There are hundreds of usability heuristics. Usability
expert Jakob Nielson16 proposed a simplified list of 10
heuristics for general use. I have pared that list down to
5 rules that could be applied to ventilators (Table 3).
Most importantly, the interface should clearly indicate
the status of the ventilator’s operation, focusing on the
mode parameters. The interface should use logical con-
nections among ideas and provide definitions where ap-
plicable. It may be too much to expect that there will
ever be a standard nomenclature among manufacturers
beyond that imposed by regulatory agencies. Neverthe-
less, all the information the user needs to make the
clinical decision should be available without having to
resort to memory. As one design expert said, “. . . in the
world of sales, if a company were to make the perfect
product, any other company would have to change it—
which would make it worse—in order to promote its
own innovation, to show that it was different. How can nat-
ural design work under these circumstances? It can’t.”17

Once evaluators have identified potential problems, us-
ing heuristics, the problems can be collated on a list. The

evaluators then review the list and rank the severity of the
problems on a simple ordinal scale (Table 4). Outcome
scores can then be easily calculated to identify needed
design changes or to compare ventilators.

Summary

There is no doubt that the evolution of microprocessors
has stimulated a parallel evolution in ventilator design.
Computers have made the most tangible impact on the
way new control systems are designed, leading to many
new ventilation modes. But the promise of computer con-
trol lies in the power of the learning machine. Our slow-
ness in improving outcomes may be caused by our lack of
an organized way to learn from the experience of clini-
cians around the world. Powerful relational databases linked
to learning ventilators that use fuzzy logic to categorize
experience may be one solution. Such databases may pro-
vide enough information to create “virtual studies” by us-
ing resampling techniques18 instead of costly prospective,
randomized, controlled trials. Or, perhaps more simply,
we may never know exactly the reasoning that produces
the output we desire but only which neural networks seem
to be most successful.

As for the operator-ventilator interface, there is much
room for improvement in usability. Just take a look at the
interfaces of some of the most successful software tools, or
even computer games, to see what might be possible. With
the reduction in staff development resources we have ex-
perienced in this economy, we need to take full advantage
of the teaching ability of the computers that are built into
ventilators. I think we can expect to see great and exciting
developments in the near future.
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Discussion

MacIntyre: I want to discuss the
control mechanisms of ventilators. It
seems to me that the Achilles heel of
this whole concept is the “expert rules”
and where they come from. To be hon-
est, I don’t think we as clinicians know
what we want. I don’t think we know
what the desirable output is.

In an exercise I did with a consen-
sus group a few years ago,1 we came
up with the idea that there are only 4
things we’re worried about in mechan-
ical ventilation: PO2

, pH, plateau pres-
sure, and FIO2

. That’s it! We’re trying
to maximize PO2

and pH and, on the
other hand, protect against unneces-
sarily high FIO2

and plateau pressures,
but we found trouble when we went
around the room at that meeting and
tried to rank “equi-toxic” levels of hyp-
oxia, acidosis, supplemental oxygen,
and plateau pressure. What was equi-
toxic to an FIO2

of 100%? Was it a
plateau pressure of 35 cm H2O? Was
it a PO2

of 55 mm Hg? The thing that
struck me in that exercise was that
everybody had a different idea of what
the proper balances were.

The problem with computer-con-
trolled systems based on expert-rules
is that one clinician might have one

set of expert rules that he or she thinks
is appropriate, while another physician
or therapist team might have a sub-
stantially different approach to balanc-
ing PO2

, pH, plateau pressure, and FIO2
.

I think neural networks can get hope-
lessly confused, depending on who is
setting up the desirable output vari-
ables.

The problem is that it’s not the in-
dividual patient that we learn the most
from. We can learn a few things from
an individual patient, but the impor-
tant learning process in trying to fig-
ure out how to balance those 4 vari-
ables comes from large outcomes
studies with large populations. I’m
concerned that the only way to do that
would be to network multiple institu-
tions and see how various approaches
work on a much larger scale, and to
use important clinical outcomes such
as long-term lung damage and mor-
tality.
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Chatburn: As usual, you’ve hit the
nail right on the head. But I would
argue that we really don’t need to know
a priori what the optimum scheme is.
Take an analogous example: there was
a great deal of interest in using artifi-
cial intelligence to create chess pro-
grams to play against humans. People
had different strategies on how to do
that. Ten years ago nobody believed
that a computer could beat the top-
ranking human chess player. Now it’s
obvious that that can be done. The
top-ranking chess player has stated it
won’t be long before no human can
beat a computer. Computer program-
mers didn’t arrive at that kind of evo-
lution by sitting down and saying,
“This is the single best way for a com-
puter to play chess against a human.”
A bunch of different people tried what
they thought would be best and then
competed.

So we should have several different
groups of experts decide how they
think it should be done and then let
them “go at it” and see what the out-
comes are. If we insist on huge mul-
ticenter trials, I don’t think it’s ever
going to happen, because that would
be expensive and take too long. But
what if we just did a virtual experi-
ment? Suppose we had a huge data
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base of patients’ specific reactions to
specific ventilation control strategies.
Then we could use a statistical proce-
dure called resampling, in which, es-
sentially, you take your database and
sample with replacement, such that
you have a virtually infinite sample
size. Then you can at least approach
that way of learning from your expe-
rience without having to know before-
hand which is the best way to go.

MacIntyre: I would agree. You
don’t have to do this in a formal, pro-
spective trial. But I think you and I
would agree that the way to do this is
to get a huge sample with meaningful
outcomes such as death and lung in-
jury, which you could do retrospec-
tively and then design your expert sys-
tems.

Chatburn: It’s fascinating and I just
can’t wait to see what the future holds
because we’re going somewhere.
That’s for sure.

MacIntyre: I’m also interested in
your thoughts on alarm systems and
feedback control. There are so many
false alarms that some of the real
alarms are ignored because they’re lost
in the noise of false alarms.

Chatburn: I didn’t have time to go
into that and I know you’ve written a
lot on the subject. The problem relates
partly to our passive approach to man-
ufacturers: we just take what they give
us; we don’t demand intelligent con-
trols and intelligent alarms. There’s
no reason that alarms can’t learn in
the same way that control theories
have. I don’t know of much research
on developing intelligent alarm sys-
tems based on currently available en-
gineering control theory, at least not
in our industry.

Gardner: Regarding alarms, at my
institution we use an electronic med-
ical information bus to gather alarm
data (such as a ventilator disconnect)
from the ventilators.1 Some alarms

sound alike so we’re designing some-
thing that will flash every screen in
the unit. The issue of alarm setting on
bedside monitors is really problem-
atic. Are ventilator monitors any bet-
ter?
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Chatburn: You mean stand-alone
monitors?

Gardner: Yes. What is the false
alarm rate on ventilator monitors?

Chatburn: It’s high. I think the de-
sign problem is that there is so much
noise in the alarm signal that you can’t
tell if you even have a signal or if it’s
a signal that you should be paying at-
tention to, let alone how to process it
and what the signal means. I think
that’s the key to the issue. To my
knowledge there’s no good way of ad-
dressing that problem at this point.

Gardner: I love your idea for eval-
uating the devices. I encourage you to
go home and get those 4 experts and
get 5 ventilators and do that, and pub-
lish the results, which I think would
impact the manufacturers. It’s a won-
derful idea. In recent meetings I’ve
been at people have said, “How did
Microsoft Word get so widely ac-
cepted? I think it has a terrible user
interface but almost everyone uses it.”

Belda: I have a comment about the
designing of the operator-ventilator in-
terface. You mentioned Jakob Niel-
son (http://www.useit.com), who is a
“usability guru,” and I agree that he
does fantastic work on user interface
design and defining requirements for
applications. One of the approaches
he advocates for designing user inter-
faces and incorporating user-feedback
is an approach towards ultimate sim-
plicity. He urges designers to draw out
on paper the interface’s various ele-

ments, whether those elements are
knobs or buttons. Then he suggests
having users push the mock-up but-
tons and follow through a branching
logic scenario of, “Turn this button
and this is what happens.” Do you think
that approach could work for getting
manufacturers to reconsider designs
based on users’ needs and requests?

Chatburn: That brings to mind sto-
ries I’ve read about Jeff Hawkins, the
creator of the Palm Pilot. He built a
model out of cardboard, drew little but-
tons on it, and carried it around in his
pocket all day. He’d whip it out and
use it as if it were real, so he got a real
user-interface evaluation by first-hand
experience.

Obviously, that was a highly suc-
cessful design approach, so perhaps
what we can do in terms of scientific
research is just clear the slate and say,
“All right, forget what we know about
what’s available on the market today.
What would we want in an ideal ven-
tilator?” We could ask experienced cli-
nicians, “Show me what you would
use at the bedside. What would you
like to have? What would be ideal?”
and have them brainstorm. You could
probably even do it on a spreadsheet
on a computer or a slide show. You
could really simulate to a great degree
what the user would like to have. I
think that would be a fascinating study.
But if we don’t communicate what we
want to the manufacturers, they’ll just
keep making what they think they can
sell.

Pierson:* In your discussion about
ways to control mechanical ventila-
tion and to have the machine measure
and monitor things and adjust itself,
and in all of the models you showed
us, those were all mechanical and
physiologic measurements. At 2 pre-
vious journal conferences John Han-

* David J Pierson, MD FAARC, Editor in Chief,
RESPIRATORY CARE Journal, Seattle, Washing-
ton.
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sen-Flaschen made an impassioned ap-
peal for what he calls “patient-centered
mechanical ventilation,”1,2 which he
believes should be built into our rou-
tine at the bedside. Every time the ven-
tilator is checked or any kind of bed-
side assessment is made, the patient
should be asked, “Are you short of
breath?” The patient’s experience of
being ventilated, although it isn’t nec-
essarily measurable in physiologic
variables, may be pretty important. I
would think that incorporating the pa-
tient’s subjective responses to venti-
lator adjustments would be really im-
portant, but also pretty difficult to do.
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Chatburn: I would say it’s proba-
bly not possible yet. But I would ask
you whether he said how frequently
that needs to be done? Hourly? Every
2 hours? Every 4 hours? Every time
you check the ventilator? I think that
would be the key. We’re never going
to get rid of the operator entirely.

Pierson: Dr Hansen-Flaschen thinks
it should be done every time anything
is done that interacts with the ventila-
tor, because sometimes patients are in
substantial distress and he thinks that
even another minute of that is unde-
sirable. So, ideally, I wish that this
monitor or some other neurophysio-
logic device could measure something
that correlated fairly well with patient
distress and that that could be incor-
porated into this as well. Because we
know from the ARDS [acute respira-
tory distress syndrome] Network and
other data that better physiologic mea-
surements don’t necessarily correlate
with better outcomes. Certainly nitric
oxide and prone positioning and other
things that improve PO2

don’t seem to
improve survival. In the ARDS Net-
work study the patients in the control
group, who received larger tidal vol-
ume, had better PO2

and higher PaO2
/

FIO2
ratios and therefore would have

been judged as doing better during the
initial days of their management, but
they had a 20% lower survival rate.1

It’s the problem of what you measure
and whether it is the right thing to
measure.
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Chatburn: It’s also a problem with
paradigm-shift, too, because if we de-
cide to check the ventilator every 2
hours because we have to manually
make these simple within-breath ad-
justments, it becomes natural to say,
“Well, while I’m doing that, I should
also assess how the patient feels.” But
if the ventilator is making minor ad-
justments by itself, then maybe we
need to step back and say we need to
do patient assessment uncoupled from
what we do with the ventilator. Set
the standard for how often to do pa-
tient assessments based on the needs
of the patient and set the standard for
how often to check the ventilator based
on its capabilities.

Pierson: Patient distress is a com-
plex thing that can be produced not
only by how the ventilator is set, but
also by whether you have the sedation
right and various other things. So in-
corporation of some assessment of pa-
tient distress would have to be inte-
grated with systems beyond just the
ventilator.

Chatburn: Exactly.
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