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Summary

Acute brain injury, in the form of trauma, stroke, or spontaneous hemorrhage, occurs commonly
and in all age groups. Although the management of these conditions differs considerably, certain
physiologic principles are shared by all and are useful in guiding the management of the most
severely injured patients. This article reviews basic cerebral physiology and describes the links
between physiology and management principles, emphasizing subjects relevant to the respiratory
management of patients with acute brain injury. Key words: acute brain injury, respiratory, intra-
cranial pressure, cerebral blood flow, hyperventilation, lung-protective ventilation, closed head injury,
subarachnoid hemmorhage. [Respir Care 2006;51(4):357-367. © 2006 Daedalus Enterprises]

Introduction

“Acute brain injury” is a broad term that encompasses a
wide variety of conditions, including stroke, anoxia, trauma,
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infection, and spontaneous hemorrhage. Management goals
in each of these conditions may differ considerably and are
not easily generalizable. However, all forms of acute brain
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Intracranial Pressure

Intracranial Volume

Fig. 1. Intracranial pressure-volume curve. Intracranial pressure
changes slowly as intracranial volume increases, until pressure
reaches approximately 20 mm Hg, after which pressure rises rap-
idly with further increase in volume. Brain herniation may occur at
intracranial pressure of 40—45 mm Hg.

injury share common principles of cerebral physiology
that influence interventions to limit progression of injury
beyond its initial state. This review will discuss some of
these common physiologic principles and emphasize sub-
jects that may impact directly on management of mechan-
ical ventilation. Most of the discussion will center on pa-
tients with traumatic brain injury.

Cerebral Physiology
Intracranial Pressure

The intracranial contents consist predominantly of 3 con-
stituents: neural tissue, blood, and cerebral spinal fluid.
The rigid skull surrounds the intracranial contents; thus, an
increase in the volume of any or all of these constituents
can lead to an increase in intracranial pressure (ICP), de-
pending on intracranial compliance. For example, an in-
crease in the volume of cells due to cytotoxic edema or
cell proliferation (tumor), or an increase in cerebral spinal
fluid due to obstruction of the outflow pathways (hydro-
cephalus), may increase ICP. Likewise, an increase in ce-
rebral blood volume due to extravasation of blood (trauma
or spontaneous hemorrhage) or an increase in cerebral
blood flow (CBF) or blood-vessel capacitance may also
lead or contribute to an increase in ICP. Conversely, ma-
nipulation of these constituents can be used to reduce ICP,
as will be discussed in a following section.

Under normal conditions, ICP is < 10 mm Hg. An
increase in intracranial volume has little effect on ICP
until intracranial compliance can no longer accommodate
the increased volume. This typically occurs at an ICP of
15-20 mm Hg (Fig. 1). ICP measurements > 20 mm Hg
are consistently associated with poor outcome; thus, 20
mm Hg is a commonly used threshold for initiating ther-
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Fig. 2. Blood pressure autoregulation of cerebral blood flow. Ce-
rebral blood flow remains nearly constant between systemic mean
arterial pressures of 60-70 mm Hg and 150-160 mm Hg. Above
and below these thresholds, cerebral blood flow changes in a
linear relationship with mean arterial pressure.

apy.!? Another important ICP threshold occurs at approx-
imately 40—45 mm Hg. At this point, the forces on the
brain become so great that herniation of tissue downward
through openings in the dura (uncal or tentorial herniation)
or skull (foramen magnum or tonsillar herniation) can oc-
cur. Herniation of brain tissue is associated with poor out-
come, particularly if not corrected immediately.

Cerebral Blood Flow

CBF is controlled by several factors, including systemic
blood pressure, cerebral metabolic rate, and P, . CBF
remains relatively constant within a range of systemic mean
arterial pressure from 60—70 mm Hg to approximately 150
mm Hg (Fig. 2). More precisely, CBF is determined by
cerebral perfusion pressure (CPP), which is determined by
the mean arterial blood pressure minus the ICP or jugular
venous pressure, whichever is higher. In normal subjects,
CBF falls when CPP is below a threshold of approxi-
mately 50-60 mm Hg.? Thus, an increase in ICP may
result in a reduction in CBF and lead to cerebral ischemia
if it reduces CPP sufficiently. On the other hand, an in-
crease in ICP that is associated with a simultaneous in-
crease in mean arterial pressure, with a resulting main-
tained CPP, may not result in a reduction in CBF or cerebral
ischemia. Thus, it is important that the ICP be considered
in the context of its effect on CPP.

CBF is also linked to cerebral metabolic rate; as meta-
bolic rate increases, CBF increases to meet the increased
demand for oxygen. Likewise, as cerebral metabolic rate
falls, CBF also falls in response to reduced demand. Thus,
fever can be detrimental to cerebral hemodynamics by
increasing CBF and ICP; conversely, hypothermia can re-
duce ICP by reducing cerebral metabolic rate and CBF.
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Fig. 3. Regulation of cerebral blood flow by arterial carbon dioxide.
Cerebral blood flow changes linearly with P,co, between P,qo,
values of approximately 20 and 60 mm Hg. Thus, increases in
alveolar ventilation will reduce cerebral blood flow. Clinically, this
will reduce intracranial pressure because of reduced cerebral blood
volume.

Lastly, CBF is controlled by P, , and less so by P,q .
More precisely, it is the perivascular interstitial and vas-
cular intracellular pH that controls CBF. Because CO,
readily diffuses across the blood-brain barrier and into
cells, whereas bicarbonate ion does not, changes in venti-
lation and, consequently, the P, result in rapid changes
in cerebral perivascular pH and CBF.

The relationship between P,-o and CBF is approxi-
mately linear between P, of 20 and 60 mm Hg; as P,co,
rises, CBF rises also (Fig. 3). Conversely, the relationship
between ventilation and CBF is inversely linear; hypoven-
tilation results in an increase in CBF. This relationship can
be put to clinical use in the treatment of acute rises in ICP,
where hyperventilation results in a rapid reduction in P g
and subsequently CBF. The reduction in CBF reduces ce-
rebral blood volume and ICP.

The effect of changes in ventilation and P, on CBF
is rapidly lost as intracellular pH returns to baseline, by
compensatory mechanisms, including transcellular flux of
hydrogen and bicarbonate ions and lactate production.*
These compensations begin within minutes of a step change
in ventilation or P,cq , and the effect of hyperventilation
on CBF is completely lost by 4 hours in normal sub-
jects.>~7 In patients with traumatic brain injury, the effect
of hyperventilation on CBF appears to be more complex,
in that ICP returns to baseline prior to recovery of CBF.8
Thus, hyperventilation is best applied only in short incre-
ments while other more sustained treatments to reduce ICP
are applied.

P, has little to no effect on CBF until the P, falls to
below approximately 60 mm Hg, after which CBF rises in
inverse relation to P,q .
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Cerebral Oxygen Transport

Cerebral oxygen transport is determined by the same
principles that determine systemic oxygen transport, with
the caveat that cerebral rather than systemic blood flow is
considered (CBF vs cardiac output). Thus, cerebral oxy-
gen transport (T, ) can be expressed by the following
equation:

T.0, = CBF X ((hemoglobin X S,o, X 1.34)

+0.003 X Pyo,)

in which S, is blood oxygen saturation. It is evident that
dissolved oxygen plays a minor role in cerebral O, trans-
port, whereas the other factors are equally weighted.

Cerebral oxygen extraction is quantitated by the ratio of
cerebral oxygen consumption (cerebral metabolic rate for
oxygen) and cerebral oxygen transport. The brain typically
extracts 30—40% of the delivered oxygen. An increase in
cerebral oxygen extraction suggests inadequate oxygen
transport, high cerebral metabolic rate, or a combination of
the two.

Cerebral oxygen extraction can be assessed by measur-
ing the oxygen saturation and oxygen content of jugular
venous blood (Sjo, and Cjo, respectively). In addition,
cerebral oxygenation can be assessed by direct measure-
ment of brain-tissue Py (Py,0).

To measure S;, the jugular vein is cannulated in a
retrograde fashion and a catheter tip is positioned in the
jugular bulb, where the vein exits the skull. The S;, re-
flects the amount of oxygen that has been extracted as the
blood passes through the majority of brain tissue (global
monitor). The Sj, normally resides in the range of 60—
70%; if S;q, falls below approximately 55%, cerebral ox-
ygen extraction is high, implying that the brain is at risk
for ischemia. In the event of a low S, (high cerebral O,
extraction), efforts to improve cerebral O, transport may
be beneficial, including increasing CBF, hemoglobin, SaOZ’
and (less so) P, . Conversely, a high Si, (> 75-80%)
implies “luxury perfusion” of the brain with relatively high
CBF. In this event, hyperventilation may be reasonably
applied to attempt to reduce ICP. A management strategy
using S; to optimize cerebral physiology has been re-
ported to improve outcome in traumatic brain injury, al-
though the level of evidence is low.?

Py,.o, is measured by directly placing an electrode in
brain parenchyma, typically on the injured side. The Py, is
measured continuously in an area that extends approxi-
mately 1.4 cm around the tip of the probe (local monitor).
Py0, is normally 25-30 mm Hg. A fall in Py, suggests a
fall in cerebral oxygen transport relative to oxygen needs,
similar to a fall in S;q, . The critical level of Py, is in the
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Fig. 4. A: Pressure autoregulation of brain-tissue Pg, (Py,0,)- Pero, Varies with mean arterial pressure in a sigmoidal relationship in the mean
arterial pressure range of 60-150 mm Hg, similar to the relationship between cerebral blood flow and mean arterial pressure. B: CO,
reactivity of brain-tissue oxygen. Py, is linearly related to the partial pressure of end-tidal CO, (Perco,) Over the Pergo, range 20-60 mm
Hg. Py, is indexed to pre-run baseline values. (From Reference 11, with permission.)

range of 10—15 mm Hg, and values below this threshold
are associated with worse outcome.'® Py, varies with
systemic blood pressure in a pattern that mirrors the
CBF/blood-pressure autoregulation curve, with Py, re-
maining relatively stable in the mean arterial pressure
range of 70—150 mm Hg, and falling when mean arterial
pressure is < 60 mm Hg (Fig. 4A). P, varies in a
linear relationship with P, (see Fig. 4B), so hyper-
ventilation should be avoided in patients with low
Pyro,-'!!? Somewhat surprisingly, increasing the P, by
increasing the fraction of inspired oxygen (Fip) im-
proves Py (Fig. 5).13:14 This suggests that dissolved
0, may play a greater role in local O, delivery than is
predicted by the O,-transport equation. However, there
is no evidence from randomized controlled trials that
managing patients using Py, -monitoring improves pa-
tient outcomes.
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Management of Patients With Acute Brain Injury

Management Guidelines and Levels of Evidence

Somewhat surprisingly, few high-quality studies have
demonstrated that physiologic management of patients with
acute brain injury improves outcomes. Most of the re-
ported trials have been small, uncontrolled, and retrospec-
tive.!> Indeed, there are no randomized prospective trials
that clearly describe any outcome benefits from ICP mon-
itoring or management. The Brain Trauma Foundation pub-
lished guidelines in 2000, updated in 2003, that distill the
available literature on management of traumatic injury and
provide useful recommendations for clinicians."'® How-
ever, these documents rely heavily on expert opinion and
low levels of evidence. The principles of managing acute
brain injury are outlined below.
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Fig. 5. Left Panel: Mean percentage change in brain-tissue Py, (Py,o,) during a 6-hour “oxygen challenge” of hyperoxia in 20 subjects with
traumatic brain injury. The fraction of inspired oxygen (F,o,) was increased from 0.4 to 1.0 at time zero. Right Panel: P,o, and Py, in
subjects ventilated with Fo, of 1.0 (period A), followed by F o, of 0.40 (period B). * There was a significant difference between period A and
period B in both P,q, (p < 0.001) and Py, (p < 0.001). F, has a large effect on P,,q,. (Adapted from Reference 13, with permission.)
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Specialized Care

Several studies have documented the importance of spe-
cialized neurocritical care units and the involvement of
intensivists in improving the outcomes of patients with
acute brain injury.!’-2° In addition, protocolized care ap-
pears to improve outcomes in this population, just as it
does in other aspects of critical care.!®

Cerebral Blood Flow

In general, acute brain injury is associated with focal,
regional, or global cerebral ischemia, depending on the
mechanism of injury. In traumatic brain injury, global CBF
is often low, particularly in the first 24 hours after injury.?!
Thus, an important management tenet is to preserve CBF
to avoid secondary injury to vulnerable brain tissue, and
most therapeutic strategies focus on this principle. This is
most commonly achieved by maintaining adequate CPP,
which in turn is accomplished by reducing elevated ICP
and avoiding low blood pressure. In addition, other per-
turbations that may increase secondary brain injury, such
as hypoxemia, hyperglycemia, seizures, or fever, must be
avoided or treated aggressively.

However, the response of CBF after acute brain injury
is complex and variable. In some patients with acute brain
injury, total CBF may be relatively high (hyperemia) de-
spite focal or regional ischemia, and is associated with
elevated ICP and poor outcome.??> Thus, somewhat para-
doxically, some management strategies may be employed
that actually reduce CBF in order to protect cerebral ho-
meostasis. Various treatment strategies will be discussed
below.

Hyperventilation

As mentioned previously, hyperventilation rapidly re-
duces ICP by reducing CBF. However, hyperventilation in
acute brain injury is controversial because:

1. The effect of hyperventilation on ICP is lost relatively
quickly, whereas the effect on CBF may be more sustained
(Fig. 6).8

2. The reduction in ICP at the cost of reduced CBF may
exacerbate cerebral ischemia. This is of particular concern
in the first 24 hours after brain injury, when CBF may
already be low. Furthermore, a study published in the early
1990s found worse long-term outcome in patients who
underwent aggressive, prophylactic hyperventilation.?? On
the other hand, more recent studies have not found critical
reductions in CBF associated with short periods of hyper-
ventilation.?425 Based on these observations, it seems pru-
dent to avoid prolonged periods of hyperventilation, but to
consider its use for short-term treatment of increased ICP.
If sustained or frequent hyperventilation is considered as a
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Fig. 6. The relationship between cerebral blood flow and intracra-
nial pressure in acute traumatic brain injury. Hyperventilation is
initiated at the 20-min point. After approximately 60 min of hyper-
ventilation, intracranial pressure returns to near-baseline values,
whereas cerebral blood flow continues to fall. (From Reference 8,
with permission.)

therapeutic option, monitoring of S;, or Py, may assist
in titrating ventilation. Hyperventilation should clearly be
avoided if Sjo, and/or Py, are low,*° but may be consid-
ered if there is evidence of high CBF (hyperemia; S, >
75%). Unfortunately, the evidence is poor regarding either
benefit or harm from hyperventilation to treat elevated
ICP.27,28

Blood Pressure Management

Even brief periods of hypotension are associated with
poor outcome in patients with traumatic brain injury, and
this is probably true in other forms of acute brain injury as
well.29-31 For example, even a modest reduction in blood
pressure is associated with adverse outcomes in stroke.3?
Thus, it is clearly desirable to avoid hypotension in pa-
tients with acute brain injury, and generally desirable to
keep blood pressure above the lower limit of CBF auto-
regulation. On the average, this corresponds to a mean
arterial pressure of approximately 70 mm Hg if ICP is
normal, or a CPP of approximately 60 mm Hg. If treat-
ment of elevated ICP is insufficient to increase CPP to the
desired level, then efforts to drive blood pressure higher
using intravascular volume expansion or vasopressors are
often initiated. Efforts to increase CPP above 60 mm Hg
do not appear to be helpful, and may result in other com-
plications, including acute respiratory distress syndrome
(ARDS).?33:3¢ The risk of ARDS is strongly associated
with the use of high concentrations of vasopressors to
increase CPP, rather than positive fluid balance.?? Ideally,
patients with traumatic brain injury should be kept in a
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state of euvolemia, because volume depletion is associated
with worse outcome.3!

Efforts to increase cerebral oxygen transport by increas-
ing CPP and CBF may be beneficial in increasing S;, and
Py0,, particularly if CPP is low or CBF autoregulation is
disrupted.'°-13 Maneuvers to improve CBF might include:

1. Normalization of P¢q,

2. Increasing CPP through ICP reduction (without hy-
perventilation), volume expansion, or vasopressors

In addition, reducing cerebral metabolic rate with seda-
tion, aggressive fever control, or hypothermia may reduce
cerebral oxygen extraction and prevent ischemia, as dis-
cussed below.

Surgical Decompression and Cerebral Spinal Fluid
Drainage

In the event of an increase in intracranial volume due to
hemorrhage, an obvious way to relieve pressure on the
brain is to remove the blood clot by surgical decompres-
sion. In cases of severe brain swelling, the surgical cranial
defect may be left open until the patient has recovered
from the acute injury. Removing cerebral spinal fluid by
placing a drainage catheter into the ventricles (ventricu-
lostomy) can also decompress the brain, and is commonly
used in cases of traumatic brain injury or mechanical ven-
tricular obstruction.

Reduction of Cerebral Water/Edema

Reducing intracranial volume by osmotic therapy is the
cornerstone of ICP management. The most commonly used
osmotic agent is mannitol. Mannitol does not cross the
blood-brain barrier, and it acts to draw water out of brain
cells. The kidney subsequently excretes this water, where
mannitol acts as an osmotic diuretic. Hypertonic saline
also reduces brain water and ICP by osmosis, without
inducing diuresis. Thus, it has appeal in the management
of patients who may be volume-depleted, as in after acute
trauma. Hypertonic saline may also be more effective, on
an equimolar basis, than mannitol in reducing ICP.3> No
placebo-controlled trials have documented outcome bene-
fits of either mannitol or hypertonic saline in acute brain
injury, although some data suggest that high-dose manni-
tol (1.4 g/kg) is more effective than a low dose (0.7 g/kg)
in traumatic brain injury.3¢

Sedation

Short-acting and titratable agents such as propofol or
midazolam are ideal for sedation of patients with acute
brain injury, as they allow frequent neurologic examina-
tion during periods of sedation interruption. These agents
have the added benefit of reducing CBF by reducing ce-
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rebral metabolic rate, and may therefore reduce ICP. In
cases of refractory high ICP, more potent longer-acting
agents such as barbiturates are occasionally employed.
Based on one small randomized trial, barbiturates do ap-
pear to reduce mortality in patients with refractory high
ICP.37 However, high-dose barbiturates are typically used
as a last resort because of their prolonged effect and pro-
found cardiovascular and respiratory depression. Prolonged
infusion of high-dose propofol has been associated with
the development of cardiovascular collapse and death in
patients with acute brain injury, and should be avoided.38

Fever Control and Hypothermia

Fever occurs in the majority of critically ill patients with
acute brain injury, and is associated with greater morbid-
ity.3940 In patients with stroke, fever is associated with
approximately 20% higher mortality.*! Thus, prevention
of fever and maintenance of normothermia may improve
outcomes in patients with acute brain injury. Unfortunately,
fever control in this patient population is often difficult.
Acetaminophen, ibuprofen, and air cooling blankets are
largely ineffective in controlling fever.#>43 Newer water-
circulating surface-cooling devices that closely approxi-
mate the skin and intravascular cooling devices do appear
to be more effective than conventional methods, although
both are associated with an increased incidence of shiver-
ing.#44> Moreover, the effect of aggressive fever control
on outcome in patients with acute brain injury has not been
determined.

Hypothermia reduces cerebral metabolic rate, CBF, and
ICP, and may have additional protective effects during
acute brain injury.*¢ Mild therapeutic hypothermia (tem-
perature 32-34°C) has been employed in patients with
severe traumatic brain injury, stroke, and after cardiac ar-
rest (anoxia). A large prospective randomized trial of ther-
apeutic hypothermia after traumatic brain injury found no
evidence of improved outcomes in the hypothermic group.4”
The trials of hypothermia in stroke patients have been
small and uncontrolled, although the early results are en-
couraging.*® The major benefit identified thus far of ther-
apeutic hypothermia is in patients with anoxic brain injury
after cardiac arrest. Two prospective randomized trials
found that mild hypothermia for 12—24 hours after cardiac
arrest improved neurologic outcome and decreased mor-
tality 4849

Hyperoxic Therapy for Low Py,

As mentioned earlier, Py, increases with increasing
Fio, and P, . Consequently, hyperoxic therapy is fre-
quently initiated in an effort to correct a low Py, . How-
ever, there is no evidence that this strategy improves out-
come, and there is a theoretical risk of oxygen-induced
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lung injury when Fi5 > 0.60 is used for an extended
period.>® Exposure of human subjects, including those with
coma or neuromuscular disease, to 100% oxygen for sev-
eral days produced evidence of lung injury, with pulmo-
nary dysfunction and multilobar opacities on chest radio-
graphs.>!>2 Thus, the use of Fig > 60% for more than a
few hours should be discouraged, at least until there are
outcome data to support the safety and benefit of this
practice.

Additional Considerations in the Management of
Acute Brain Injury

As alluded to earlier, hyperglycemia is a potential source
of secondary brain injury. Hyperglycemia is associated
with poor outcome in patients with traumatic brain inju-
ry,>3-54 stroke,> -7 and after cardiac arrest.>® Retrospective
analysis of a small subgroup of patients with neurologic
injury from a large randomized trial of intensive insulin
therapy in critically ill patients suggested that tight glucose
control is associated with reduced ICP, less vasopressor
use, fewer seizures, and better long-term neurologic out-
come.>>0 There have been no large randomized trials of
glucose control in patients with acute brain injury, but the
above evidence suggests that tight control is warranted in
this population. The appropriate goal level for glucose is
not clear, but may be < 110 mg/dL, which is the threshold
used in the previously mentioned trial of intensive insulin
therapy in critically ill patients.%®

Seizures occur frequently after acute brain injury and
are potentially harmful in that they increase cerebral met-
abolic rate, CBF, and ICP. However, there is little to no
evidence that seizures are independent determinants of in-
creased mortality after trauma, stroke, or subarachnoid hem-
orrhage. In addition, although prophylactic administration
of anticonvulsants does reduce the incidence of seizures in
patients with post-traumatic brain injury and subarachnoid
hemorrhage, there is no evidence that this improves other
outcomes.o!

For many years, high-dose corticosteroids have been
sporadically administered to patients with traumatic brain
injury, based on experimental data indicating a protective
effect from this therapy. However, a recent large prospec-
tive multicenter randomized placebo-controlled trial
showed that high-dose methylprednisolone in patients with
acute traumatic brain injury increased mortality at 2 weeks
and 6 months, and increased the risk of the combined end
point of death and disability at 6 months.®2-03 That study
convincingly refuted a role for high-dose corticosteroids in
traumatic brain injury.

Patients with acute brain injury are at risk for all the
medical complications of critical illness that other patients
are subject to, including stress gastritis and bleeding, ve-
nous thromboembolism, and intensive-care-unit (ICU) ac-
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quired infections. Preventing complications of critical ill-
ness with semirecumbent positioning, prophylaxis against
gastrointestinal bleeding and thromboembolism, and care-
ful attention to infection-control practices, should be rou-
tine. In addition, patients with traumatic brain injury are
highly catabolic. Institution of early enteral nutrition is
probably beneficial in patients who will be unable to eat
for an extended period, although the level of evidence
supporting this practice is low.

Implications of Acute Brain Injury
for Respiratory Care

There are several aspects of neurocritical care that have
particular implications for the management of respiratory
failure and acute lung injury. These include application of
the use of lung-protective ventilation, positive end-expi-
ratory pressure (PEEP), liberation from mechanical venti-
lation, and tracheal extubation.

Lung-Protective Ventilation and PEEP

Acute lung injury and ARDS occur frequently in pa-
tients with traumatic and other forms of acute brain injury,
and are associated with poor outcome.34-04-% Limiting tidal
volume to = 6 mL/kg (of predicted body weight) and
static airway pressure to = 30 cm H,O reduces mortality
in patients with acute lung injury and ARDS.¢7 This strat-
egy, known as lung-protective ventilation, is commonly
associated with some degree of hypercapnia and respira-
tory acidosis, which in the majority of critically ill patients
is of little physiologic consequence. However, in patients
with acute brain injury and increased ICP there is concern
that hypercapnia may contribute to ICP elevation and ce-
rebral ischemia. There is little evidence to suggest that this
is true, however. As previously discussed, the evidence
supporting hyperventilation as an effective long-term strat-
egy for reducing ICP is weak. The compensatory responses
to changes in intracerebral perivascular pH occur rapidly
(within minutes to hours); thus, hypoventilation, like hy-
perventilation, is likely to have only a transient effect on
ICP. Unfortunately, there are few data to document either
benefit or harm from the application of lung-protective
ventilation to patients with acute brain injury. One small
study suggested that lung-protective ventilation is safe and
results in little change in ICP, despite a small increase in
P.co,-®® Given the proven benefits of lung-protective ven-
tilation in the general population of patients with acute
lung injury and ARDS and the speculative detriments of
lung-protective ventilation and hypercapnia in acute brain
injury, it is reasonable practice to cautiously reduce tidal
volume to the goal of 4—6 mL/kg and static airway pres-
sure to = 30 cm H,O, with close observation of ICP and
CPP if P,co, rises. Increased ICP can be treated with os-
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Fig. 7. Cumulative modifiable risk factors and the risk of extuba-
tion failure. The risk factors were inability to perform all 4 simple
tasks, cough peak flow of = 60 L/min, and secretions of = 2.5
mL/h. The accumulation of risks had a synergistic effect on extu-
bation failure. (Adapted from Reference 82, with permission.)

motic agents, sedation, and/or ventricular drainage if nec-
essary.

PEEP increases intrathoracic pressure and reduces the
flow of venous blood to the heart, with a resulting increase
in jugular venous pressure. Thus, PEEP can increase ICP,
reduce mean arterial blood pressure, and, consequently,
reduce CPP. Concerns about the effects of PEEP on ICP
and CPP in head-injured patients were initially raised more
than 30 years ago.®®7 However, laboratory and ICU stud-
ies with patients have found inconsistent effects of PEEP
on ICP and CPP.%371-77 The variable effect of PEEP on
ICP may in part be dependent on lung and brain mechan-
ical properties.’®7® For example, patients with relatively
normal static lung compliance may be more susceptible to
the effects of PEEP on ICP than are those with low com-
pliance.’ In addition, in some patients ICP may increase
because of an increase in P,cq, as a result of PEEP-in-
duced lung hyperinflation.”® Patients in whom PEEP in-
duces lung recruitment and improves lung compliance may
be less likely to suffer an increase in ICP. Thus, PEEP
should be applied cautiously to patients with acute brain
injury, but should certainly not be withheld if needed to
provide adequate oxygenation. If PEEP increases the ICP,
interventions such as osmotic therapy and sedation may be
useful to restore adequate CPP. In addition, expansion of
intravascular volume may improve CPP by limiting the
deleterious effects of PEEP on preload and systemic blood
pressure.

Liberation From Mechanical Ventilation and
Extubation

Once acute management issues are resolved and eleva-
tion of ICP is no longer a major problem, the process of
evaluating the acute-brain-injury patient’s readiness for
extubation should proceed just as it does for other patients
with respiratory failure. The ability to breath without sup-
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port should be tested, ideally using a respiratory-care-driven
protocol.”® After the patient has successfully completed a
trial of spontaneous ventilation, special attention must be
paid to airway issues, given that these patients may have
an altered level of consciousness and/or obtunded airway
reflexes due to central-nervous-system injury. There have
been few studies on this subject to guide practice, but it
appears that depressed level of consciousness should not
be the sole reason for delaying extubation of patients with
acute brain injury. In a prospective, cohort study of pa-
tients with acute brain injury of diverse etiologies, Coplin
et al found that depressed level of consciousness was as-
sociated with extubation delay but not extubation failure,
as defined by the need for reintubation.8° The presence of
a spontaneous cough and a low frequency of tracheal suc-
tioning, but not the presence of gag, predicted extubation
success. Furthermore, extubation delay was associated with
a greater risk of pneumonia, longer ICU and hospital stay,
higher costs, and higher mortality, independent of the pres-
ence of coma. Namen et al found that a higher Glasgow
Coma Score was associated with successful extubation in
patients with acute brain injury; however, that study was
seriously compromised by the inclusion of patients who
had support withdrawn after extubation, resulting in a large
number of “extubation failures” in patients who were likely
to have had a low Glasgow Coma Score prior to extuba-
tion.8! Given the high morbidity and cost associated with
delayed extubation, it is reasonable that patients with acute
brain injury be extubated when they meet usual clinical
criteria and have a spontaneous cough and minimal tra-
cheal secretions.

A recent study with medical ICU patients emphasized
the importance of cough and secretion volume in deter-
mining extubation success. Salam et al quantitated cough
using peak expiratory flow, volume of tracheal secretions,
and neurologic status, measured with a simple 4-part set of
tasks, in medical ICU patients.8? They found that a cough
peak flow of = 60 L/min, secretion volume > 2.5 mL/h,
and inability to perform the 4 simple tasks all predicted
extubation failure, and a combination of these factors had
a synergistic effect on extubation failure (Fig. 7). Patients
with all 3 factors present had an extubation failure rate of
80%.

In general, approximately 60—80% of patients with se-
vere acute brain injury can be successfully extubated on
the first attempt.8081-83 A subset of patients will require
tracheotomy for extended airway management; the fre-
quency of this appears to be in part a matter of local
preference. In the study by Coplin et al, only 4% of the
study cohort underwent tracheotomy,®° whereas others have
reported that approximately a third of patients with acute
brain injury undergo tracheotomy at their institutions.8!-83

RESPIRATORY CARE ¢ APRIL 2006 VoL 51 No 4



MANAGEMENT OF ACUTE BRAIN INJURY AND ASSOCIATED RESPIRATORY ISSUES

Summary

The critical-care management of acute brain injury is
based on observational studies and basic principles of ce-
rebral physiology. Unfortunately, there is little high-level
evidence to prove that various management strategies ei-
ther help or harm patients with acute brain injury, and
large randomized prospective trials are desperately needed.
The outcome of patients with acute brain injury is likely to
be improved when management is led by intensivists using
protocol-driven therapy. It is important to recognize that
theoretical detrimental effects of various ventilatory strat-
egies on cerebral physiology should not preclude the use
of therapies that have proven mortality benefits, such as
lung-protective ventilation in patients with acute lung in-
jury. Lastly, the presence of coma should not preclude
consideration of extubation of patients with acute brain
injury, as a high percentage of these patients can be suc-
cessfully extubated. On the other hand, if the patient has
weak cough or large secretion volume, early tracheotomy
may expedite discharge from the ICU.
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