Abstract
BACKGROUND: It is well established that physical training enhances functionality and quality of life in patients with COPD. However, little data exist concerning the effects of the usefulness of oxygen supply during exercise training for > 3 months in patients with COPD who are normoxemic at rest and during exercise. We hypothesized that oxygen supply during training sessions enables higher training intensity and thus optimizes training results in patients with COPD.
METHODS: In this blinded randomized controlled study, we carried out a 24-week training program with progressively increasing loads involving large muscle groups. In addition, we compared the influences of oxygen supplementation. Thirty-six subjects with moderate-to-severe COPD who were not dependent on long-term oxygen therapy trained under supervision for 24 weeks (3 times/week at 30 min/session). Subjects were randomized into 2 groups: oxygen supply via nasal cannula at a flow of 4 L/min and compressed air at the same flow throughout the training program. Lung function tests at rest (inspiratory vital capacity, FEV1, Tiffeneau index), cycle spiroergometry (peak ventilation, peak oxygen uptake, peak respiratory exchange rate, submaximal and peak lactic acid concentrations), 6-min walk tests, and quality-of-life assessments (Medical Outcomes Study 36-Item Short Form questionnaire) were conducted before and after 12 and 24 weeks.
RESULTS: Independent of oxygen supplementation, statistically significant improvements occurred in quality of life, maximal tolerated load during cycling, peak oxygen uptake, and 6-min walk test after 12 weeks of training. Notably, there were no further improvements from 12 to 24 weeks despite progressively increased training loads.
CONCLUSIONS: Endurance training 3 times/week resulted in significant improvements in quality of life and exercise capacity in subjects with moderate-to-severe COPD within the initial 12 weeks, followed by a stable period over the following 12 weeks with no further benefits of supplemental oxygen.
Footnotes
- Correspondence: Marc Spielmanns MD, Department of Internal and Pulmonary Medicine, St Remigius Hospital, An St Remigius 26, 51379 Leverkusen, Germany. E-mail: spielmanns{at}k-plus.de.
This study was supported by VitalAire. The authors have disclosed no conflicts of interest.
Dr Spielmanns presented a version of this paper at the Best in Pulmonary Rehabilitation of the Annual Meeting of the German Respiratory Society, held March 26–29, 2014, in Bremen, Germany.
- Copyright © 2015 by Daedalus Enterprises