Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Portugûes
    • 国语

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Portugûes
    • 国语
  • Follow aarc on Twitter
  • Visit aarc on Facebook
Research ArticleConference Proceedings

Physiologic Effects of Noninvasive Ventilation

Neil R MacIntyre
Respiratory Care June 2019, 64 (6) 617-628; DOI: https://doi.org/10.4187/respcare.06635
Neil R MacIntyre
Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Bello G,
    2. DePascale G,
    3. Antonelli M
    . Non-invasive ventilation. Clin Chest Med 2016;37(4):701–710.
    OpenUrl
  2. 2.↵
    1. Mehta S,
    2. Hill NS
    . Noninvasive ventilation. Am J Respir Crit Care Med 2001;163(2):540–577.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Rochwerg B,
    2. Brochard L,
    3. Elliott MW,
    4. Hess D,
    5. Hill NS,
    6. Nava S,
    7. et al
    . Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017;50(2):1–20.
    OpenUrl
  4. 4.↵
    1. Nicolini A,
    2. Banfi P,
    3. Grecchi B,
    4. Lax A,
    5. Walterspacher S,
    6. Barlascini C,
    7. Robert D
    . Non-invasive ventilation in the treatment of sleep-related breathing disorders: a review and update. Rev Port Pneumol 2014;20(6):324–335.
    OpenUrl
  5. 5.↵
    1. Weng CL,
    2. Zhao YT,
    3. Liu QH,
    4. Fu CJ,
    5. Sun F,
    6. Ma YL,
    7. et al
    . Meta-analysis: noninvasive ventilation in acute cardiogenic pulmonary edema. Ann Intern Med 2010;152(9):590–600.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Dreyfuss D,
    2. Saumon G
    . Ventilator induced lung injury: lessons from experimental studies Am J Respir Crit Care Med 1998;157(1):294–323.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.
    1. Beitler JR,
    2. Malhotra A,
    3. Thompson BT
    . Ventilator induced lung injury. Clin Chest Med 2016;37(4):633–646.
    OpenUrl
  8. 8.↵
    1. Slutsky AS,
    2. Ranieri VM
    . Ventilator-induced lung injury. N Engl J Med 2013;369(22):2126–2136.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. MacIntyre NR
    . Design features of modern mechanical ventilators. Clin Chest Med 2016;37(4):607–614.
    OpenUrl
  10. 10.↵
    1. Comroe JH,
    2. Forster RE,
    3. Dubois AB,
    4. Briscoe WA,
    5. Carlsen E
    . The lung: clinical physiology and pulmonary function tests, 2nd ed. Chicago: Year Book Medical Publishers, Chicago, 1962, p 46.
  11. 11.↵
    1. West JB,
    2. Wagner PD
    . Pulmonary gas exchange. Am J Respir Crit Care Med 1998;157:S82–S87.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. West JB
    . Respiratory physiology: the essentials, 9th edition. Philadelphia, Lippincott Williams & Wilkins, 2012.
  13. 13.↵
    1. Macklen PT
    . Relationship between lung mechanics and ventilation distribution. Physiologist 1973;16(4):580–588.
    OpenUrlPubMed
  14. 14.↵
    1. Johnson NJ,
    2. Luks AM,
    3. Glenny RW
    . Gas exchange in the prone posture. Respir Care 2017;62(8):1097–1110.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Neumann P,
    2. Wrigge H,
    3. Zinserling J,
    4. Hinz J,
    5. Maripuu E,
    6. Andersson LG,
    7. et al
    . Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support. Crit Care Med 2005;33(5):1090–1095.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Marini JJ,
    2. Crooke PS 3rd.
    . A general mathematical model for respiratory dynamics relevant to the clinical setting. Am Rev Respir Dis 1993;147(1):14–24.
    OpenUrlPubMedWeb of Science
  17. 17.↵
    1. Polla B,
    2. et al
    . Respiratory muscle fibres: specialisation and plasticity. Thorax 2004;59(9):808–817.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. McKenzie DK,
    2. Butler JE,
    3. Gandevia SC
    . Respiratory muscle function and activation in chronic obstructive pulmonary disease. J Appl Physiol 2009;107(2):621–629.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Gea J,
    2. Casadevall C,
    3. Pascual S,
    4. Orozco-Levi M,
    5. Barreiro E
    . Respiratory diseases and muscle dysfunction. Expert Rev Respir Med 2012;6(1):75–90.
    OpenUrlCrossRefPubMed
  20. 20.
    1. Campellone JV
    . Respiratory muscle weakness in patients with critical illness neuromyopathies: a practical assessment. Crit Care Med 2007;35(9):2205–2206.
    OpenUrlPubMed
  21. 21.↵
    1. Laghi F,
    2. Tobin MJ
    . Disorders of the respiratory muscles. Am J Respir Crit Care Med, 2003;168(1):10–48.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Roussos C,
    2. Koutsoukou A
    . Respiratory failure. Eur Respir J 2003;47(Suppl):3S–14S.
    OpenUrl
  23. 23.↵
    1. Verges S,
    2. Bachasson D,
    3. Wuyam B
    . Effect of acute hypoxia on respiratory muscle fatigue in healthy humans. Respir Res 2010;11(1):109–19.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. MacIntyre NR,
    2. Leatherman NE
    . Mechanical loads on the ventilatory muscles: a theoretical analysis. Am Rev Resp Dis 1989;139(4):968–973.
    OpenUrlPubMedWeb of Science
  25. 25.↵
    1. Bellemare F,
    2. Grassino A
    . Effect of pressure and timing of contraction on human diaphragm fatigue. J Appl Physiol 1982;53(5):1190–1195.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.
    1. Collett PW,
    2. Perry C,
    3. Engel LA
    . Pressure-time product, flow, and oxygen cost of resistive breathing in humans. J Appl Physiol 1985;58(4):1263–1272.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Field S,
    2. Sanci S,
    3. Grassino A
    . Respiratory muscle oxygen consumption estimated by the diaphragm pressure-time index. J Appl Physiol 1984;57(1):44–51.
    OpenUrlPubMedWeb of Science
  28. 28.↵
    1. Banner MJ,
    2. Kirby RR,
    3. MacIntyre NR
    . Patient and ventilatory work of breathing and ventilatory muscle loads at different levels of pressure support ventilation. Chest 1991;100(2):531–533.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Vassilakopoulos D,
    2. Petrof B
    . Ventilator induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004;169(3):336–41.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    1. Marini JJ
    . Strategies to minimize breathing effort during mechanical ventilation. Crit Care Clin 1990;6(3):635–61.
    OpenUrlPubMedWeb of Science
  31. 31.↵
    1. Murphy PB,
    2. Rehal S,
    3. Arbane G,
    4. Bourke S,
    5. Calverley PMA,
    6. Crook AM,
    7. et al
    . Effect of home noninvasive ventilation with oxygen therapy vs oxygen therapy alone on hospital readmission or death after an acute COPD exacerbation: A randomized clinical trial. JAMA 2017;317(21):2177–2186.
    OpenUrl
  32. 32.↵
    1. Köhnlein T,
    2. Windisch W,
    3. Köhler D,
    4. Drabik A,
    5. Geiseler J,
    6. Hartl S,
    7. et al
    . Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial. Lancet Respir Med 2014;2(9):698–705.
    OpenUrl
  33. 33.↵
    1. Georgopoulos D,
    2. Roussos C
    . Control of breathing in mechanically ventilated patients. Eur Respir J 1996;9(10):2151–2160.
    OpenUrlAbstract/FREE Full Text
  34. 34.↵
    1. Williams K,
    2. Hinojosa-Kurtzberg M,
    3. Parthasarathy S
    . Control of breathing during mechanical ventilation: who is the boss? Respir Care 2011;56(2):127–136.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Tobin M
    1. Georgopoulos D
    . Effects of mechanical ventilation on control of breathing. In: Tobin M (ed), Principles and practice of mechanical ventilation, 3rd ed. New York: McGraw Hill, 2013, 805–826.
  36. 36.↵
    1. Otis AB
    . The work of breathing. Physiol Rev 1954;34(3):449–58.
    OpenUrlCrossRefPubMedWeb of Science
  37. 37.↵
    1. Mitrouska J,
    2. Xirouchaki N,
    3. Patakas D,
    4. Siafakas N,
    5. Georgopoulos D
    . Effects of chemical feedback on respiratory motor and ventilatory output during different modes of assisted mechanical ventilation. Eur Respir J 1999;13(4):873–882.
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. Leiter JC,
    2. Manning HL
    . The Hering-Breuer reflex, feedback control, and mechanical ventilation: the promise of neurally adjusted ventilatory assist. Crit Care Med 2010;38(9):1915–1916.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Xirouhaki N,
    2. Kondili E,
    3. Mitrouska I,
    4. Siafakas N,
    5. Georgopoulos D
    . Response of respiratory motor output to varying pressure in mechanically ventilated patients. Eur Respir J 1999;14(3):508–516.
    OpenUrlAbstract/FREE Full Text
  40. 40.↵
    1. Kondili E,
    2. Prinianakis G,
    3. Georgopoulos D
    . Patient –ventilator interaction. Br J Anaesth 2003;91(1):106–119.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Sassoon C
    . Triggering of the ventilator in patient-ventilatory interactions. Respir Care 2011;56(1):39–51.
    OpenUrlAbstract/FREE Full Text
  42. 42.↵
    1. Gilstrap D,
    2. MacIntyre N
    . Patient-ventilator interactions. Implications for clinical management. Am J Respir Crit Care Med 2013;188(9):1058.
    OpenUrlCrossRefPubMed
  43. 43.
    1. Chiumello D,
    2. Pelosi P,
    3. Croci M,
    4. Bigatello LM,
    5. Gattinoni L
    . The effects of pressurization rate on breathing pattern, work of breathing, gas exchange and patient comfort in pressure support ventilation. Eur Respir J. 2001;18(1):107–14.
    OpenUrlAbstract/FREE Full Text
  44. 44.↵
    1. Jubran A,
    2. Van de Graaff WB,
    3. Tobin MJ
    . Variability of patient-ventilatory interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1995;152(1):129–136
    OpenUrlPubMedWeb of Science
  45. 45.↵
    1. Tobin MJ,
    2. Jubran A,
    3. Laghi F
    . Patient-ventilatory interaction. Am J Respir Crit Care Med 2001;163(5):1059–1063.
    OpenUrlCrossRefPubMedWeb of Science
  46. 46.↵
    1. Gattinoni L,
    2. Pesenti A,
    3. Baglioni S,
    4. Vitale G,
    5. Rivola M,
    6. Pelosi P
    . Inflammatory pulmonary edema and PEEP: correlation between imaging and physiologic studies. J. Thorac Imaging 3(3):59–64, 1988.
    OpenUrlPubMed
  47. 47.↵
    1. Gattinoni L,
    2. Pelosi P,
    3. Crotti S,
    4. Valenza F
    . Effects of positive end expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 1995;151(6):1807–1814.
    OpenUrlCrossRefPubMedWeb of Science
  48. 48.↵
    1. Gattinoni L
    . Caironi P. Cressoni M. Chiumello D, Ranieri VM, Quintel M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006;354(17):1775–86.
    OpenUrlCrossRefPubMedWeb of Science
  49. 49.↵
    1. Truwit JD,
    2. Marini JJ
    . Evaluation of thoracic mechanics in the ventilated patient. Part I; Primary measurements. J Crit Care 1988;3(2):133–150.
    OpenUrlCrossRef
  50. 50.↵
    1. Truwit JD,
    2. Marini JJ
    . Evaluation of thoracic mechanics in the ventilated patient. Part II; Applied mechanics. J Crit Care 1988;3(3):192–213.
    OpenUrl
  51. 51.↵
    1. Kacmarek RM,
    2. Kirmse M,
    3. Nishimura M,
    4. Mang H,
    5. Kimball WR
    . The effects of applied vs auto-PEEP on local lung unit pressure and volume in a four-unit lung model. Chest 1995;108(4):1073–1079.
    OpenUrlCrossRefPubMed
  52. 52.↵
    1. Wyszogrodski I,
    2. Kyei-Aboagye K,
    3. Taaeusch HW Jr.,
    4. Avery ME
    . Surfactant inactivation by hyperventilation: conservation by end-expiratory pressure. J Appl Physiol 1975;38(3):461–466.
    OpenUrlPubMedWeb of Science
  53. 53.↵
    1. Grasso S,
    2. Stripoli T,
    3. De Michele M,
    4. Bruno F,
    5. Moschetta M,
    6. Angelelli G,
    7. et al
    . ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med 2007;176(8):761–767.
    OpenUrlCrossRefPubMedWeb of Science
  54. 54.↵
    1. Ferragni PP,
    2. Rosbosh G,
    3. Tealdi A,
    4. Corno E,
    5. Menaldo E,
    6. Davini O,
    7. et al
    . Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2007;175(2):160–166.
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.↵
    1. Milic-Emili J
    . Dynamic pulmonary hyperinflation and intrinsic PEEP: consequences and management in patients with chronic obstructive pulmonary disease. Recent Prog Med 1990;81(11):733–737.
    OpenUrl
  56. 56.
    1. MacIntyre NR,
    2. McConnell R,
    3. Cheng KC
    . Applied PEEP reduces the inspiratory load of intrinsic PEEP during pressure support. Chest 1997;111(1):188–193.
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. Fauroux B,
    2. Hart N,
    3. Luo YM,
    4. MacNeill S,
    5. Moxham J,
    6. Lofaso F,
    7. Polkey MI
    . Measurement of diaphragm loading during pressure support ventilation. Inten Care Med 2003;29(11):1960–1966.
    OpenUrl
  58. 58.↵
    1. Marini JJ,
    2. Culver BH,
    3. Butler J
    . Mechanical effect of lung inflation with positive pressure on cardiac function. Am Rev Respir Dis 1981;124(4):382–386.
    OpenUrlPubMedWeb of Science
  59. 59.
    1. Scharf SM,
    2. Caldini P,
    3. Ingram RH Jr.
    . Cardiovascular effects of increasing airway pressure in dogs. Am J Physiol 1977;232(1):1135–1143.
    OpenUrl
  60. 60.
    1. Pinsky MR,
    2. Guimond JG
    . The effects of positive end-expiratory pressure on heart-lung interactions. J Crit Care 1991;6(1):1–15.
    OpenUrl
  61. 61.↵
    1. Lemaire F,
    2. Teboul JL,
    3. Cinotti L,
    4. Giotto G,
    5. Abrouk F,
    6. Steg G,
    7. et al
    . Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 1988;69(2):171–179.
    OpenUrlCrossRefPubMedWeb of Science
  62. 62.↵
    1. Hughes JM,
    2. Glazier JB,
    3. Maloney JE,
    4. West JB
    . Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol 1968;4(1):58–72.
    OpenUrlCrossRefPubMedWeb of Science
  63. 63.↵
    1. Anzueto A,
    2. Frutos-Vivar F,
    3. Esteban A,
    4. Alía I,
    5. Brochard L,
    6. Stewart T,
    7. et al
    . Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Inten Care Med 2004;30(4):612–619.
    OpenUrl
  64. 64.↵
    1. Chiumello D,
    2. Carlesso E,
    3. Cadringher P,
    4. Caironi P,
    5. Valenza F,
    6. Polli F,
    7. et al
    . Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 2008;178(4):346–355.
    OpenUrlCrossRefPubMedWeb of Science
  65. 65.↵
    1. Trembly L,
    2. Valenza F,
    3. Ribiero SP,
    4. Li J,
    5. Slutsky AS
    . Injurious ventilatory strategies increase cyto-kines and C-fos M-RNA expression in an isolated rat lung model. J Clin Invest 1997;99(5):944–952.
    OpenUrlCrossRefPubMedWeb of Science
  66. 66.↵
    1. Ranieri VM,
    2. Suter PM,
    3. Totorella C,
    4. De Tullio R,
    5. Dayer JM,
    6. Brienza A,
    7. et al
    . Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome. JAMA 1999;282(1):54–61.
    OpenUrlCrossRefPubMedWeb of Science
  67. 67.↵
    1. Nahum A,
    2. Hoyt J,
    3. Schmitz L,
    4. Moody J,
    5. Shapiro R,
    6. Marini JJ,
    7. et al
    . Effect of mechanical ventilation strategy on dissemination of intracheally instilled E coli in dogs. Crit Care Med 1997;25(10):1733–1743.
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.↵
    1. Schmidt GA
    . Managing acute lung injury. Clin Chest Med 2016;37(4):647–658.
    OpenUrl
  69. 69.↵
    1. Amato MB,
    2. Meade MO,
    3. Slutsky AS,
    4. Brochard L,
    5. Costa EL,
    6. Schoenfeld DA,
    7. et al
    . Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372(8):747–755.
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. Brochard L,
    2. Slutsky A,
    3. Pesenti A
    . Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017;195(4):438–442.
    OpenUrl
  71. 71.↵
    1. Brochard L
    . Ventilation-induced lung injury exists in spontaneously breathing patients with acute respiratory failure: yes. Intensive Care Med 2017;43(2):250–252.
    OpenUrl
  72. 72.↵
    1. Laghi F,
    2. Segal J,
    3. Choe WK,
    4. Tobin MJ
    . Effect of imposed inflation time on respiratory frequency and hyperinflation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;163(6):1365–1370.
    OpenUrlPubMedWeb of Science
  73. 73.↵
    1. Hess DR
    . Noninvasive ventilation for acute respiratory failure. Resp Care 2013;58(6):950–972.
    OpenUrl
  74. 74.↵
    1. Younes M
    . Proportional assist ventilation, a new approach to ventilatory support. Am Rev Respir Dis 1992;145(1):114–120.
    OpenUrlCrossRefPubMedWeb of Science
  75. 75.↵
    1. Sinderby C
    . Neurally adjusted ventilatory assist (NAVA). Minerva Anesthes 2002;68(5):378–380.
    OpenUrl
PreviousNext
Back to top

In this issue

Respiratory Care: 64 (6)
Respiratory Care
Vol. 64, Issue 6
1 Jun 2019
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Physiologic Effects of Noninvasive Ventilation
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Physiologic Effects of Noninvasive Ventilation
Neil R MacIntyre
Respiratory Care Jun 2019, 64 (6) 617-628; DOI: 10.4187/respcare.06635

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Physiologic Effects of Noninvasive Ventilation
Neil R MacIntyre
Respiratory Care Jun 2019, 64 (6) 617-628; DOI: 10.4187/respcare.06635
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • NIV Can Augment Minute Ventilation
    • NIV Unloads Ventilatory Muscles
    • NIV Resets the Ventilatory Control System
    • Alveolar Recruitment and Gas Exchange
    • Other Physiologic Effects of NIV: Intended and Unintended
    • Summary
    • Discussion
    • Footnotes
    • References
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • invasive ventilation
  • noninvasive ventilation
  • minute and alveolar ventilation
  • ventilation distribution
  • ventilation-perfusion matching
  • control of ventilation
  • ventilatory muscles
  • work of breathing
  • patient–ventilator interactions
  • ventilator-induced lung injury

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About Us
  • Editorial Board
  • Reprints/Permissions

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire