Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Follow aarc on Twitter
  • Visit aarc on Facebook
Research ArticleReview

Usual and Advanced Monitoring in Patients Receiving Oxygen Therapy

François Lellouche and Erwan L’Her
Respiratory Care October 2020, 65 (10) 1591-1600; DOI: https://doi.org/10.4187/respcare.07623
François Lellouche
Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Erwan L’Her
CHU La Cavale Blanche, Brest, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Andersen LW,
    2. Holmberg MJ,
    3. Berg KM,
    4. Donnino MW,
    5. Granfeldt A
    . In-hospital cardiac arrest: a review. JAMA 2019;321(12):1200-1210.
    OpenUrlCrossRefPubMed
  2. 2.↵
    National Highway Traffic Safety Administration. Motor vehicle fatality rate in U.S. by year. Available at: https://www.nhtsa.gov/press-releases/early-estimates-traffic-fatalities-2019. Accessed June 25, 2020.
  3. 3.↵
    1. Galhotra S,
    2. DeVita MA,
    3. Simmons RL,
    4. Dew MA
    , Members of the Medical Emergency Response Improvement Team (MERIT) Committee. Mature rapid response system and potentially avoidable cardiopulmonary arrests in hospital. Qual Saf Health Care 2007;16(4):260-265.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Andersen LW,
    2. Kim WY,
    3. Chase M,
    4. Berg KM,
    5. Mortensen SJ,
    6. Moskowitz A,
    7. et al
    . The prevalence and significance of abnormal vital signs prior to in-hospital cardiac arrest. Resuscitation 2016;98:112-117.
    OpenUrl
  5. 5.↵
    1. Kronick SL,
    2. Kurz MC,
    3. Lin S,
    4. Edelson DP,
    5. Berg RA,
    6. Billi JE,
    7. et al
    . Part 4: systems of care and continuous quality improvement: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2015;132(18 Suppl 2):S397-S413.
    OpenUrlFREE Full Text
  6. 6.↵
    1. Morgan R,
    2. Williams F,
    3. Wright M
    . An early warning scoring system for detecting developing critical illness. Clin Intensive Care 1997;8(2):100.
    OpenUrl
  7. 7.↵
    1. Smith MEB,
    2. Chiovaro JC,
    3. O’Neil M,
    4. Kansagara D,
    5. Quiñones AR,
    6. Freeman M,
    7. et al
    . Early warning system scores for clinical deterioration in hospitalized patients: a systematic review. Ann Am Thorac Soc 2014;11(9):1454-1465.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Maharaj R,
    2. Raffaele I,
    3. Wendon J
    . Rapid response systems: a systematic review and meta-analysis. Crit Care 2015;19(1):254.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Churpek MM,
    2. Yuen TC,
    3. Huber MT,
    4. Park SY,
    5. Hall JB,
    6. Edelson DP
    . Predicting cardiac arrest on the wards: a nested case-control study. Chest 2012;141(5):1170-1176.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. O’Driscoll BR,
    2. Howard LS,
    3. Earis J,
    4. Mak V
    , BTS Emergency Oxygen Guideline Development Group. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax 2017;72(Suppl 1):ii1-ii90.
    OpenUrlFREE Full Text
  11. 11.↵
    Centre for Clinical Practice at NICE (UK). Acutely Ill Patients in Hospital: Recognition of and Response to Acute Illness in Adults in Hospital. London: National Institute for Health and Clinical Excellence (UK); 2007.
  12. 12.↵
    1. Gullo AL,
    2. Besso J,
    3. Williams GF
    1. Vincent J-L
    . Definition, monitoring, and management of shock states. In: Gullo AL, Besso J, Williams GF, editors. Intensive and critical care medicine. Milan: Springer; 2009.
  13. 13.↵
    1. Tobin MJ
    . Respiratory monitoring in the intensive care unit. Am Rev Respir Dis 1988;138(6):1625-1642.
    OpenUrlPubMedWeb of Science
  14. 14.↵
    1. Schein RM,
    2. Hazday N,
    3. Pena M,
    4. Ruben BH,
    5. Sprung CL
    . Clinical antecedents to in-hospital cardiopulmonary arrest. Chest 1990;98(6):1388-1392.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Ludikhuize J,
    2. Smorenburg SM,
    3. de Rooij SE,
    4. de Jonge E
    . Identification of deteriorating patients on general wards; measurement of vital parameters and potential effectiveness of the Modified Early Warning Score. J Crit Care 2012;27(4):424.e7-e13.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Tulaimat A,
    2. Gueret RM,
    3. Wisniewski MF,
    4. Samuel J
    . Association between rating of respiratory distress and vital signs, severity of illness, intubation, and mortality in acutely ill subjects. Respir Care 2014;59(9):1338-1344.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    World Health Organization. Fourth Programme Report, 1988–1989: Acute Respiratory Infections Programme for Control of Acute Respiratory Infections. Geneva: World Health Organization; 1990.
  18. 18.↵
    1. Cretikos MA,
    2. Bellomo R,
    3. Hillman K,
    4. Chen J,
    5. Finfer S,
    6. Flabouris A
    . Respiratory rate: the neglected vital sign. Med J Aust 2008;188(11):657-659.
    OpenUrlPubMedWeb of Science
  19. 19.↵
    1. L’Her E,
    2. N’Guyen QT,
    3. Pateau V,
    4. Bodenes L,
    5. Lellouche F
    . Photoplethysmographic determination of the respiratory rate in acutely ill patients: validation of a new algorithm and implementation into a biomedical device. Ann Intensive Care 2019;9(1):11.
    OpenUrl
  20. 20.↵
    1. Jubran A
    . Pulse oximetry. Crit Care 2015;19:272.
    OpenUrlPubMed
  21. 21.↵
    1. Bickler PE,
    2. Feiner JR,
    3. Severinghaus JW
    . Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology 2005;102(4):715-719.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Feiner JR,
    2. Severinghaus JW,
    3. Bickler PE
    . Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender. Anesth Analg 2007;105(6 Suppl):S18-S23.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Louie A,
    2. Feiner JR,
    3. Bickler PE,
    4. Rhodes L,
    5. Bernstein M,
    6. Lucero J
    . Four types of pulse oximeters accurately detect hypoxia during low perfusion and motion. Anesthesiology 2018;128(3):520-530.
    OpenUrl
  24. 24.↵
    1. Foglia EE,
    2. Whyte RK,
    3. Chaudhary A,
    4. Mott A,
    5. Chen J,
    6. Propert KJ,
    7. Schmidt B
    . The effect of skin pigmentation on the accuracy of pulse oximetry in infants with hypoxemia. J Pediatr 2017;182:375-377.
    OpenUrl
  25. 25.
    1. Richards NM,
    2. Giuliano KK,
    3. Jones PG
    . A prospective comparison of 3 new-generation pulse oximetry devices during ambulation after open heart surgery. Respir Care 2006;51(1):29-35.
    OpenUrlAbstract/FREE Full Text
  26. 26.
    1. Ross PA,
    2. Newth CJ,
    3. Khemani RG
    . Accuracy of pulse oximetry in children. Pediatrics 2014;133(1):22-29.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Singh AK,
    2. Sahi MS,
    3. Mahawar B,
    4. Rajpurohit S
    . Comparative evaluation of accuracy of pulse oximeters and factors affecting their performance in a tertiary intensive care unit. J Clin Diagn Res 2017;11(6):OC05-OC08.
    OpenUrl
  28. 28.↵
    1. Sauty A,
    2. Uldry C,
    3. Debétaz LF,
    4. Leuenberger P,
    5. Fitting JW
    . Differences in PO2 and PCO2 between arterial and arterialized earlobe samples. Eur Respir J 1996;9(2):186-189.
    OpenUrlAbstract
  29. 29.↵
    1. Jubran A,
    2. Tobin MJ
    . Reliability of pulse oximetry in titrating supplemental oxygen therapy in ventilator-dependent patients. Chest 1990;97(6):1420-1425.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    1. Yamamoto LG,
    2. Yamamoto JA,
    3. Yamamoto JB,
    4. Yamamoto BE,
    5. Yamamoto PP
    . Nail polish does not significantly affect pulse oximetry measurements in mildly hypoxic subjects. Respir Care 2008;53(11):1470-1474.
    OpenUrlAbstract/FREE Full Text
  31. 31.↵
    1. Sütçü Çiçek H,
    2. Gümüs S,
    3. Deniz Ö,
    4. Yildiz S,
    5. Açikel CH,
    6. Çakir E,
    7. et al
    . Effect of nail polish and henna on oxygen saturation determined by pulse oximetry in healthy young adult females. Emerg Med J 2011;28(9):783-785.
    OpenUrlAbstract/FREE Full Text
  32. 32.↵
    1. Moller JT,
    2. Johannessen NW,
    3. Espersen K,
    4. Ravlo O,
    5. Pedersen BD,
    6. Jensen PF,
    7. et al
    . Randomized evaluation of pulse oximetry in 20,802 patients: II. Perioperative events and postoperative complications. Anesthesiology 1993;78(3):445-453.
    OpenUrlPubMedWeb of Science
  33. 33.↵
    1. Sun Z,
    2. Sessler DI,
    3. Dalton JE,
    4. Devereaux PJ,
    5. Shahinyan A,
    6. Naylor AJ,
    7. et al
    . Postoperative hypoxemia is common and persistent: a prospective blinded observational study. Anesth Analg 2015;121(3):709-715.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Force ADT,
    2. Ranieri VM,
    3. Rubenfeld GD,
    4. Thompson BT,
    5. Ferguson ND,
    6. Caldwell E,
    7. et al
    . Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012;307(23):2526-2533.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.↵
    1. Rice TW,
    2. Wheeler AP,
    3. Bernard GR,
    4. Hayden DL,
    5. Schoenfeld DA,
    6. Ware LB
    . Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest 2007;132(2):410-417.
    OpenUrlCrossRefPubMedWeb of Science
  36. 36.↵
    1. Wettstein RB,
    2. Shelledy DC,
    3. Peters JI
    . Delivered oxygen concentrations using low-flow and high-flow nasal cannulas. Respir Care 2005;50(5):604-609.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Smith GB,
    2. Prytherch DR,
    3. Schmidt PE,
    4. Featherstone PI
    . Review and performance evaluation of aggregate weighted ‘track and trigger’ systems. Resuscitation 2008;77(2):170-179.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Forster S,
    2. Housley G,
    3. McKeever TM,
    4. Shaw DE
    . Investigating the discriminative value of Early Warning Scores in patients with respiratory disease using a retrospective cohort analysis of admissions to Nottingham University Hospitals Trust over a 2-year period. BMJ Open 2018;8(7):e020269.
    OpenUrlAbstract/FREE Full Text
  39. 39.↵
    1. Kwack WG,
    2. Lee DS,
    3. Min H,
    4. Choi YY,
    5. Yun M,
    6. Kim Y,
    7. et al
    . Evaluation of the SpO2/FiO2 ratio as a predictor of intensive care unit transfers in respiratory ward patients for whom the rapid response system has been activated. PloS One 2018;13(7):e0201632.
    OpenUrl
  40. 40.↵
    1. Roca O,
    2. Caralt B,
    3. Messika J,
    4. Samper M,
    5. Sztrymf B,
    6. Hernández G,
    7. et al
    . An index combining respiratory rate and oxygenation to predict outcome of nasal high flow therapy. Am J Respir Crit Care Med 2019;199(11):1368-1376.
    OpenUrl
  41. 41.↵
    1. Lee LA,
    2. Caplan RA,
    3. Stephens LS,
    4. Posner KL,
    5. Terman GW,
    6. Voepel-Lewis T,
    7. et al
    . Postoperative opioid-induced respiratory depression: a closed claims analysis. Anesthesiology 2015;122(3):659-665.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Delorme M,
    2. Bouchard PA,
    3. Simon M,
    4. Simard S,
    5. Lellouche F
    . Effects of high-flow nasal cannula on the work of breathing in patients recovering from acute respiratory failure. Crit Care Med 2017;45(12):1981-1988.
    OpenUrl
  43. 43.↵
    1. Mathews DM,
    2. Oberding MJ,
    3. Simmons EL,
    4. O’Donnell SE,
    5. Abnet KR,
    6. MacDonald K
    . Improving patient safety during procedural sedation via respiratory volume monitoring: a randomized controlled trial. J Clin Anesth 2018;46:118-123.
    OpenUrl
  44. 44.
    1. Nichols RH,
    2. Blinn JA,
    3. Ho TM,
    4. McQuitty RA,
    5. Kinsky MP
    . Respiratory volume monitoring reduces hypoventilation and apnea in subjects undergoing procedural sedation. Respir Care 2018;63(4):448-454.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Sessler DI
    . Preventing respiratory depression. Anesthesiology 2015;122(3):484-485.
    OpenUrlCrossRefPubMed
  46. 46.↵
    Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet 1981;1(8222):681-686.
    OpenUrlCrossRefPubMedWeb of Science
  47. 47.↵
    1. Dar K,
    2. Williams T,
    3. Aitken R,
    4. Woods KL,
    5. Fletcher S
    . Arterial versus capillary sampling for analysing blood gas pressures. BMJ 1995;310(6971):24-25.
    OpenUrlFREE Full Text
  48. 48.↵
    1. Zavorsky GS,
    2. Cao J,
    3. Mayo NE,
    4. Gabbay R,
    5. Murias JM
    . Arterial versus capillary blood gases: a meta-analysis. Respir Physiol Neurobiol 2007;155(3):268-279.
    OpenUrlCrossRefPubMedWeb of Science
  49. 49.↵
    1. van Loon K,
    2. van Rheineck Leyssius AT,
    3. van Zaane B,
    4. Denteneer M,
    5. Kalkman CJ
    . Capnography during deep sedation with propofol by nonanesthesiologists: a randomized controlled trial. Anesth Analg 2014;119(1):49-55.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Fujimoto S,
    2. Suzuki M,
    3. Sakamoto K,
    4. Ibusuki R,
    5. Tamura K,
    6. Shiozawa A,
    7. et al
    . Comparison of end-tidal, arterial, venous, and transcutaneous PCO2. Respir Care 2019;64(10):1208-1214.
    OpenUrlAbstract/FREE Full Text
  51. 51.↵
    1. Rodriguez P,
    2. Lellouche F,
    3. Aboab J,
    4. Buisson CB,
    5. Brochard L
    . Transcutaneous arterial carbon dioxide pressure monitoring in critically ill adult patients. Intensive Care Med 2006;32(2):309-312.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.
    1. Mummery V,
    2. Rogers E,
    3. Padmanaban V,
    4. Matthew D,
    5. Woodcock T,
    6. Bloch S
    . Transcutaneous carbon dioxide measurement is not a reliable alternative to arterial blood gas sampling in the acute medical setting. Eur Respir J 2019;53(4):1801726
    OpenUrlAbstract/FREE Full Text
  53. 53.
    1. Maniscalco M,
    2. Fuschillo S
    . A transcutaneous carbon dioxide monitor is a useful tool with known caveats. Eur Respir J 2019;54(4):1900918
    OpenUrlAbstract/FREE Full Text
  54. 54.↵
    1. Conway A,
    2. Tipton E,
    3. Liu WH,
    4. Conway Z,
    5. Soalheira K,
    6. Sutherland J,
    7. et al
    . Accuracy and precision of transcutaneous carbon dioxide monitoring: a systematic review and meta-analysis. Thorax 2019;74(2):157-163.
    OpenUrlAbstract/FREE Full Text
  55. 55.↵
    1. Alam N,
    2. Hobbelink EL,
    3. van Tienhoven AJ,
    4. van de Ven PM,
    5. Jansma EP,
    6. Nanayakkara PW
    . The impact of the use of the Early Warning Score (EWS) on patient outcomes: a systematic review. Resuscitation 2014;85(5):587-594.
    OpenUrlCrossRefPubMedWeb of Science
  56. 56.↵
    1. Angus DC,
    2. Marrie TJ,
    3. Obrosky DS,
    4. Clermont G,
    5. Dremsizov TT,
    6. Coley C,
    7. et al
    . Severe community-acquired pneumonia: use of intensive care services and evaluation of American and British Thoracic Society Diagnostic criteria. Am J Respir Crit Care Med 2002;166(5):717-723.
    OpenUrlCrossRefPubMedWeb of Science
  57. 57.↵
    1. Fine MJ,
    2. Auble TE,
    3. Yealy DM,
    4. Hanusa BH,
    5. Weissfeld LA,
    6. Singer DE,
    7. et al
    . A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 1997;336(4):243-250.
    OpenUrlCrossRefPubMedWeb of Science
  58. 58.↵
    1. Carr GE,
    2. Yuen TC,
    3. McConville JF,
    4. Kress JP,
    5. VandenHoek TL,
    6. Hall JB,
    7. et al
    . Early cardiac arrest in patients hospitalized with pneumonia: a report from the American Heart Association’s Get With The Guidelines-Resuscitation Program. Chest 2012;141(6):1528-1536.
    OpenUrlCrossRefPubMedWeb of Science
  59. 59.↵
    1. Burk M,
    2. El-Kersh K,
    3. Saad M,
    4. Wiemken T,
    5. Ramirez J,
    6. Cavallazzi R
    . Viral infection in community-acquired pneumonia: a systematic review and meta-analysis. Eur Respir Rev 2016;25(140):178-188.
    OpenUrlAbstract/FREE Full Text
  60. 60.↵
    1. Huang C,
    2. Wang Y,
    3. Li X,
    4. Ren L,
    5. Zhao J,
    6. Hu Y,
    7. et al
    . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020 [Epub ahead of print] doi: 10.1016/S0140-6736(20)30183-5.
    OpenUrlCrossRefPubMed
  61. 61.↵
    1. Wang D,
    2. Hu B,
    3. Hu C,
    4. Zhu F,
    5. Liu X,
    6. Zhang J,
    7. et al
    . Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323(11):1061.
    OpenUrlCrossRefPubMed
  62. 62.↵
    1. Churpek MM,
    2. Yuen TC,
    3. Park SY,
    4. Meltzer DO,
    5. Hall JB,
    6. Edelson DP
    . Derivation of a cardiac arrest prediction model using ward vital signs. Crit Care Med 2012;40(7):2102-2108.
    OpenUrlCrossRefPubMed
  63. 63.
    1. Jo S,
    2. Yoon J,
    3. Lee JB,
    4. Jin Y,
    5. Jeong T,
    6. Park B
    . Predictive value of the National Early Warning Score-Lactate for mortality and the need for critical care among general emergency department patients. J Crit Care 2016;36:60-68.
    OpenUrl
  64. 64.
    1. Jansen JO,
    2. Cuthbertson BH
    . Detecting critical illness outside the ICU: the role of track and trigger systems. Curr Opin Crit Care 2010;16(3):184-190.
    OpenUrlCrossRefPubMed
  65. 65.↵
    1. Smith GB,
    2. Prytherch DR,
    3. Meredith P,
    4. Schmidt PE,
    5. Featherstone PI
    . The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation 2013;84(4):465-470.
    OpenUrlCrossRefPubMed
  66. 66.
    1. Prytherch DR,
    2. Smith GB,
    3. Schmidt PE,
    4. Featherstone PI
    . ViEWS: towards a national early warning score for detecting adult inpatient deterioration. Resuscitation 2010;81(8):932-937.
    OpenUrlCrossRefPubMedWeb of Science
  67. 67.
    1. Fernando SM,
    2. Fox-Robichaud AE,
    3. Rochwerg B,
    4. Cardinal P,
    5. Seely AJE,
    6. Perry JJ,
    7. et al
    . Prognostic accuracy of the Hamilton Early Warning Score (HEWS) and the National Early Warning Score 2 (NEWS2) among hospitalized patients assessed by a rapid response team. Crit Care 2019;23(1):60.
    OpenUrl
  68. 68.↵
    1. Eccles SR,
    2. Subbe C,
    3. Hancock D,
    4. Thomson N
    . CREWS: improving specificity whilst maintaining sensitivity of the National Early Warning Score in patients with chronic hypoxaemia. Resuscitation 2014;85(1):109-111.
    OpenUrlCrossRefPubMed
  69. 69.↵
    1. Churpek MM,
    2. Adhikari R,
    3. Edelson DP
    . The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation 2016;102:1-5.
    OpenUrl
  70. 70.↵
    1. Gao H,
    2. McDonnell A,
    3. Harrison DA,
    4. Moore T,
    5. Adam S,
    6. Daly K,
    7. et al
    . Systematic review and evaluation of physiological track and trigger warning systems for identifying at-risk patients on the ward. Intensive Care Med 2007;33(4):667-679.
    OpenUrlCrossRefPubMedWeb of Science
  71. 71.↵
    1. Churpek MM,
    2. Snyder A,
    3. Han X,
    4. Sokol S,
    5. Pettit N,
    6. Howell MD,
    7. et al
    . Quick sepsis-related organ failure assessment, systemic inflammatory response syndrome, and early warning scores for detecting clinical deterioration in infected patients outside the intensive care unit. Am J Respir Crit Care Med 2017;195(7):906-911.
    OpenUrlCrossRefPubMed
  72. 72.↵
    1. Usman OA,
    2. Usman AA,
    3. Ward MA
    . Comparison of SIRS, qSOFA, and NEWS for the early identification of sepsis in the emergency department. Am J Emerg Med 2019;37(8):1490-1497.
    OpenUrlPubMed
  73. 73.↵
    1. Sutherasan Y,
    2. Theerawit P,
    3. Suporn A,
    4. Nongnuch A,
    5. Phanachet P,
    6. Kositchaiwat C
    . The impact of introducing the early warning scoring system and protocol on clinical outcomes in tertiary referral university hospital. Ther Clin Risk Manag 2018;14:2089-2095.
    OpenUrl
  74. 74.
    1. McNeill G,
    2. Bryden D
    . Do either early warning systems or emergency response teams improve hospital patient survival? A systematic review. Resuscitation 2013;84(12):1652-1667.
    OpenUrlCrossRefPubMedWeb of Science
  75. 75.↵
    1. Kivipuro M,
    2. Tirkkonen J,
    3. Kontula T,
    4. Solin J,
    5. Kalliomäki J,
    6. Pauniaho SL,
    7. et al
    . National early warning score (NEWS) in a Finnish multidisciplinary emergency department and direct vs. late admission to intensive care. Resuscitation 2018;128:164-169.
    OpenUrl
  76. 76.↵
    1. Weenk M,
    2. Koeneman M,
    3. van de Belt TH,
    4. Engelen L,
    5. van Goor H,
    6. Bredie S
    . Wireless and continuous monitoring of vital signs in patients at the general ward. Resuscitation 2019;136:47-53.
    OpenUrl
  77. 77.↵
    1. Hodgson LE,
    2. Dimitrov BD,
    3. Congleton J,
    4. Venn R,
    5. Forni LG,
    6. Roderick PJ
    . A validation of the National Early Warning Score to predict outcome in patients with COPD exacerbation. Thorax 2017;72(1):23-30.
    OpenUrlAbstract/FREE Full Text
  78. 78.↵
    1. Pimentel MAF,
    2. Redfern OC,
    3. Gerry S,
    4. Collins GS,
    5. Malycha J,
    6. Prytherch D,
    7. et al
    . A comparison of the ability of the National Early Warning Score and the National Early Warning Score 2 to identify patients at risk of in-hospital mortality: a multi-centre database study. Resuscitation 2019;134:147-156.
    OpenUrlCrossRefPubMed
  79. 79.
    1. Hodgson LE,
    2. Congleton J,
    3. Venn R,
    4. Forni LG,
    5. Roderick PJ
    . NEWS2: too little evidence to implement? Clin Med (Lond) 2018;18(5):371-373.
    OpenUrl
  80. 80.↵
    1. O’Driscoll R,
    2. Bakerly N,
    3. Murphy P,
    4. Turkington P
    . NEWS2 needs to be tested in prospective trials involving patients with confirmed hypercapnia. Resuscitation 2019;139:369-370.
    OpenUrl
  81. 81.↵
    1. Cardona-Morrell M,
    2. Prgomet M,
    3. Turner RM,
    4. Nicholson M,
    5. Hillman K
    . Effectiveness of continuous or intermittent vital signs monitoring in preventing adverse events on general wards: a systematic review and meta-analysis. Int J Clin Pract 2016;70(10):806-824.
    OpenUrl
  82. 82.
    1. Watkins T,
    2. Whisman L,
    3. Booker P
    . Nursing assessment of continuous vital sign surveillance to improve patient safety on the medical/surgical unit. J Clin Nurs 2016;25(1-2):278-281.
    OpenUrlCrossRefPubMed
  83. 83.
    1. Boatin AA,
    2. Wylie BJ,
    3. Goldfarb I,
    4. Azevedo R,
    5. Pittel E,
    6. Ng C,
    7. Haberer JE
    . Wireless vital sign monitoring in pregnant women: a functionality and acceptability study. Telemed J E Health 2016;22(7):564-571.
    OpenUrl
  84. 84.
    1. Sahandi R,
    2. Noroozi S,
    3. Roushan G,
    4. Heaslip V,
    5. Liu Y
    . Wireless technology in the evolution of patient monitoring on general hospital wards. J Med Eng Technol 2010;34(1):51-63.
    OpenUrlPubMed
  85. 85.↵
    1. Zubiete ED,
    2. Luque LF,
    3. Rodríguez AV,
    4. González IG
    . Review of wireless sensors networks in health applications. Conf Proc IEEE Eng Med Biol Soc 2011;2011:1789-1793.
    OpenUrlPubMed
  86. 86.↵
    1. Weenk M,
    2. van Goor H,
    3. Frietman B,
    4. Engelen LJ,
    5. van Laarhoven CJ,
    6. Smit J,
    7. et al
    . Continuous monitoring of vital signs using wearable devices on the general ward: pilot study. JMIR Mhealth Uhealth 2017;5(7):e91.
    OpenUrl
  87. 87.↵
    1. Weenk M,
    2. van Goor H,
    3. van Acht M,
    4. Engelen LJ,
    5. van de Belt TH,
    6. Bredie S
    . A smart all-in-one device to measure vital signs in admitted patients. PloS One 2018;13(2):e0190138.
    OpenUrl
  88. 88.↵
    1. Roca O,
    2. Messika J,
    3. Caralt B,
    4. Garcia-de-Acilu M,
    5. Sztrymf B,
    6. Ricard J-D,
    7. Masclans JR
    . Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: the utility of the ROX index. J Crit Care 2016;35:200-205.
    OpenUrlPubMed
  89. 89.↵
    1. Sztrymf B,
    2. Messika J,
    3. Bertrand F,
    4. Hurel D,
    5. Leon R,
    6. Dreyfuss D,
    7. et al
    . Beneficial effects of humidified high flow nasal oxygen in critical care patients: a prospective pilot study. Intensive Care Med 2011;37(11):1780-1786.
    OpenUrlCrossRefPubMedWeb of Science
  90. 90.↵
    1. Mauri T,
    2. Alban L,
    3. Turrini C,
    4. Cambiaghi B,
    5. Carlesso E,
    6. Taccone P,
    7. et al
    . Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med 2017;43(10):1453-1463.
    OpenUrl
  91. 91.↵
    1. Hess DR
    . Pulse oximetry: beyond SpO2. Respir Care 2016;61(12):1671-1680.
    OpenUrlAbstract/FREE Full Text
  92. 92.↵
    1. Viglino D,
    2. L’her E,
    3. Maltais F,
    4. Maignan M,
    5. Lellouche F
    . Evaluation of a new respiratory monitoring tool “Early Warning ScoreO2” for patients admitted at the emergency department with dyspnea. Resuscitation 2020;148:59-65.
    OpenUrl
  93. 93.↵
    1. Lellouche F,
    2. Ferrière N,
    3. Bodenes L,
    4. Pateau V,
    5. Doulou J,
    6. L’Her E
    . NEWS, heart rate variability and Early Warning Score O2 (EWS.O2): predictors of poor outcomes in ICU patient under spontaneous ventilation? American Journal of Respiratory and Critical Care Medicine 2020;201:A1145.
    OpenUrl
  94. 94.↵
    1. Arabi YM,
    2. Balkhy HH,
    3. Hayden FG,
    4. Bouchama A,
    5. Luke T,
    6. Baillie JK,
    7. et al
    . Middle East respiratory syndrome. N Engl J Med 2017;376(6):584-594.
    OpenUrlCrossRefPubMed
  95. 95.↵
    1. Yu IT,
    2. Li Y,
    3. Wong TW,
    4. Tam W,
    5. Chan AT,
    6. Lee JH,
    7. et al
    . Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med 2004;350(17):1731-1739.
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

Respiratory Care: 65 (10)
Respiratory Care
Vol. 65, Issue 10
1 Oct 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Usual and Advanced Monitoring in Patients Receiving Oxygen Therapy
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Usual and Advanced Monitoring in Patients Receiving Oxygen Therapy
François Lellouche, Erwan L’Her
Respiratory Care Oct 2020, 65 (10) 1591-1600; DOI: 10.4187/respcare.07623

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Usual and Advanced Monitoring in Patients Receiving Oxygen Therapy
François Lellouche, Erwan L’Her
Respiratory Care Oct 2020, 65 (10) 1591-1600; DOI: 10.4187/respcare.07623
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Usual Monitoring of Patients on Oxygen Therapy
    • Advanced Monitoring for Patients on Oxygen Therapy
    • Summary
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • acute respiratory failure
  • COPD
  • oxygen therapy
  • respiratory monitoring
  • oximetry
  • oxygen flow
  • breathing frequency
  • early warning scores
  • automated oxygen therapy

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About Us
  • Editorial Board
  • Reprints/Permissions

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire