Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Follow aarc on Twitter
  • Visit aarc on Facebook
Research ArticleConference Proceedings

Monitoring Gas Exchange

Gregory A Schmidt
Respiratory Care June 2020, 65 (6) 729-738; DOI: https://doi.org/10.4187/respcare.07408
Gregory A Schmidt
Division of Pulmonary Diseases, Critical Care, and Occupational Medicine, University of Iowa, Iowa City, Iowa.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Gershengorn HB,
    2. Garland A,
    3. Kramer A,
    4. Scales DC,
    5. Rubenfeld G,
    6. Wunsch H
    . Variation of arterial and central venous catheter use in United States intensive care units. Anesthesiology 2014;120(3):650-664.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Nassar BS,
    2. Schmidt GA
    . Estimating arterial partial pressure of carbon dioxide in ventilated patients: How valid are surrogate measures? Ann Am Thorac Soc 2017;14(6):1005-1014.
    OpenUrl
  3. 3.↵
    1. Nitzan M,
    2. Romem A,
    3. Koppel R
    . Pulse oximetry: fundamentals and technology update. Med Devices (Auckl) 2014;7:231-239.
    OpenUrlPubMed
  4. 4.↵
    1. Aoyagi T,
    2. Fuse M,
    3. Kobayashi N,
    4. Machida K,
    5. Miyasaka K
    . Multiwavelength pulse oximetry: theory for the future. Anesth Analg 2007;105(6 Suppl):S53-S58.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Kulcke A,
    2. Feiner J,
    3. Menn I,
    4. Holmer A,
    5. Hayoz J,
    6. Bickler P
    . The accuracy of pulse spectroscopy for detecting hypoxemia and coexisting methemoglobin or carboxyhemoglobin. Anesth Analg 2016;122(6):1856-1865.
    OpenUrl
  6. 6.↵
    1. Villalba N,
    2. Osborn ZT,
    3. Derickson PR,
    4. Manning CT,
    5. Herrington RR,
    6. Kaminsky DA,
    7. et al
    . Diagnostic performance of carbon monoxide testing by pulse oximetry in the emergency department. Respir Care 2019;64(11):1351-1357.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Hullin T,
    2. Aboab J,
    3. Desseaux K,
    4. Chevret S,
    5. Annane D
    . Correlation between clinical severity and different non-invasive measurements of carbon monoxide concentration: a population study. PLoS One 2017;12(3):e0174672.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Hébert PC,
    2. Wells G,
    3. Blajchman MA,
    4. Marshall J,
    5. Martin C,
    6. Pagliarello G,
    7. et al
    . A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 1999;340(6):409-417.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Hicks LK,
    2. Bering H,
    3. Carson KR,
    4. Kleinerman J,
    5. Kukreti V,
    6. Ma A,
    7. et al
    . The ASH Choosing Wisely® campaign: five hematological tests and treatments to question. Hematology 2013;2013(1):9-14.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Frasca D,
    2. Dahyot-Fizelier C,
    3. Catherine K,
    4. Levrat Q,
    5. Debaene B,
    6. Mimoz O
    . Accuracy of a continuous noninvasive hemoglobin monitor in intensive care unit patients. Crit Care Med 2011;39(10):2277-2282.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Awada WN,
    2. Mohmoued MF,
    3. Radwan TM,
    4. Hussien GZ,
    5. Elkady HW
    . Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput 2015;29(6):733-740.
    OpenUrl
  12. 12.↵
    1. Coquin J,
    2. Dewitte A,
    3. Manach YL,
    4. Caujolle M,
    5. Joannes-Boyau O,
    6. Fleureau C,
    7. et al
    . Precision of noninvasive hemoglobin-level measurement by pulse co-oximetry in patients admitted to intensive care units for severe gastrointestinal bleeds. Crit Care Med 2012;40(9):2576-2582.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Shabaninejad H,
    2. Ghadimi N,
    3. Sayehmiri K,
    4. Hosseinifard H,
    5. Azarfarin R,
    6. Gorji HA
    . Comparison of invasive and noninvasive blood hemoglobin measurement in the operating room: a systematic review and meta-analysis. J Anesth 2019;33(3):441-453.
    OpenUrl
  14. 14.↵
    1. Boyd JH,
    2. Forbes J,
    3. Nakada TA,
    4. Walley KR,
    5. Russell JA
    . Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 2011;39(2):259-265.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Maitland K,
    2. Kiguli S,
    3. Opoka RO,
    4. Engoru C,
    5. Olupot-Olupot P,
    6. Akech SO,
    7. et al
    . Mortality after fluid bolus in African children with severe infection. N Engl J Med 2011;364(26):2483-2495.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Osman D,
    2. Ridel C,
    3. Ray P,
    4. Monnet X,
    5. Anguel N,
    6. Richard C,
    7. et al
    . Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 2007;35(1):64-68.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Eskesen TG,
    2. Wetterslev M,
    3. Perner A
    . Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med 2016;42(3):324-332.
    OpenUrlPubMed
  18. 18.↵
    1. Monnet X,
    2. Marik PE,
    3. Teboul JL
    . Prediction of fluid responsiveness: an update. Ann Intensive Care 2016;6(1):111.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Michard F,
    2. Boussat S,
    3. Chemla D,
    4. Anguel N,
    5. Mercat A,
    6. Lecarpentier Y,
    7. et al
    . Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 2000;162(1):134-138.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Cannesson M,
    2. Desebbe O,
    3. Rosamel P,
    4. Delannoy B,
    5. Robin J,
    6. Bastien O,
    7. Lehot J-J
    . Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 2008;101(2):200-206.
    OpenUrlCrossRefPubMedWeb of Science
  21. 21.↵
    1. Mahjoub Y,
    2. Lejeune V,
    3. Muller L,
    4. Perbet S,
    5. Zieleskiewicz L,
    6. Bart F,
    7. et al
    . Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br J Anaesth 2014;112(4):681-685.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Singh AK,
    2. Sahi MS,
    3. Mahawar B,
    4. Rajpurohit S
    . Comparative evaluation of accuracy of pulse oximeters and factors affecting their performance in a tertiary intensive care unit. J Clin Diagn Res 2017;11:OC05-OC08.
    OpenUrl
  23. 23.↵
    1. Shah N,
    2. Ragaswamy HB,
    3. Govindugari K,
    4. Estanol L
    . Performance of three new-generation pulse oximeters during motion and low perfusion in volunteers. J Clin Anesth 2012;24(5):385-391.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Nassar BS,
    2. Schmidt GA
    . Capnography during critical illness. Chest 2016;149(2):576-585.
    OpenUrl
  25. 25.↵
    1. Kreit JW
    . Volume capnography in the intensive care unit: physiological principles, measurements, and calculations. Ann Am Thorac Soc 2019;163):291-300.
    OpenUrl
  26. 26.↵
    1. Yamanaka MK,
    2. Sue DY
    . Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure. Chest 1987;92(5):832-835.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Phan CQ,
    2. Tremper KK,
    3. Lee SE,
    4. Barker SJ
    . Noninvasive monitoring of carbon dioxide: a comparison of the partial pressure of transcutaneous and end-tidal carbon dioxide with the partial pressure of arterial carbon dioxide. J Clin Monitor Comput 1987;3(3):149-154.
    OpenUrl
  28. 28.
    1. Casati A,
    2. Gallioli G,
    3. Scandroglio M,
    4. Passaretta R,
    5. Borghi B,
    6. Torri G
    . Accuracy of end-tidal carbon dioxide monitoring using the NBP-75 microstream capnometer: a study in intubated ventilated and spontaneously breathing nonintubated patients. Eur J Anaesthesiol 2000;17(10):622-626.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.
    1. Hinkelbein J,
    2. Floss F,
    3. Denz C,
    4. Krieter H
    . Accuracy and precision of three different methods to determine PCO2 (PaCO2 vs. PetCO2 vs. PtcCO2) during interhospital ground transport of critically ill and ventilated adults. J Trauma 2008;65(1):10-18.
    OpenUrlCrossRefPubMed
  30. 30.
    1. Roediger R,
    2. Beck-Schimmer B,
    3. Theusinger OM,
    4. Rusch D,
    5. Seifert B,
    6. Spahn DR,
    7. et al
    . The revised digital transcutaneous PCO2/SpO2 ear sensor is a reliable noninvasive monitoring tool in patients after cardiac surgery. J Cardiothorac Vasc Anesth 2011;25(2):243-249.
    OpenUrlPubMed
  31. 31.
    1. Heines SJH,
    2. Strauch U,
    3. Roekaerts PMHJ,
    4. Winkens B,
    5. Bergmans DCJJ
    . Accuracy of end-tidal CO2 capnometers in post-cardiac surgery patients during controlled mechanical ventilation. J Emerg Med 2013;45(1):130-135.
    OpenUrl
  32. 32.
    1. Liu S-Y,
    2. Lee T-S,
    3. Bongard F
    . Accuracy of capnography in nonintubated surgical patients. Chest 1992;102(5):1512-1515.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.
    1. Rosier S,
    2. Launey Y,
    3. Bleichner J-P,
    4. Laviolle B,
    5. Jouve A,
    6. Malledant Y,
    7. Seguin P
    . The accuracy of transcutaneous PCO2 in subjects with severe brain injury: a comparison with end-tidal PCO2. Respir Care 2014;59(8):1242-1247.
    OpenUrlAbstract/FREE Full Text
  34. 34.
    1. Kim KW,
    2. Choi HR,
    3. Bang SR,
    4. Lee J-W
    . Comparison of end-tidal CO2 measured by transportable capnometer (EMMA™ capnograph) and arterial PCO2 in general anesthesia. J Clin Monit Comput 2016;30(5):737-741.
    OpenUrl
  35. 35.
    1. Lermuzeaux M,
    2. Meric H,
    3. Sauneuf B,
    4. Girard S,
    5. Normand H,
    6. Lofaso F,
    7. Terzi N
    . Superiority of transcutaneous CO2 over end-tidal CO2 measurement for monitoring respiratory failure in nonintubated patients: a pilot study. J Crit Care 2016;31(1):150-156.
    OpenUrl
  36. 36.↵
    1. Spelten O,
    2. Fiedler F,
    3. Schier R,
    4. Wetsch WA,
    5. Hinkelbein J
    . Transcutaneous PTCCO2 measurement in combination with arterial blood gas analysis provides superior accuracy and reliability in ICU patients. J Clin Monit Comput 2017;31(1):153-158.
    OpenUrl
  37. 37.↵
    1. Hess DR,
    2. Schlottag A,
    3. Levin B,
    4. Mathai J,
    5. Rexrode WO
    . An evaluation of the usefulness of end-tidal PCO2 to aid weaning from mechanical ventilation following cardiac surgery. Respir Care 1991;36(8):837-843.
    OpenUrl
  38. 38.↵
    1. Healey CJ,
    2. Fedullo AJ,
    3. Swinburne AJ,
    4. Wahl GW
    . Comparison of noninvasive measurements of carbon dioxide tension during withdrawal from mechanical ventilation. Crit Care Med 1987;15(8):764-768.
    OpenUrlPubMedWeb of Science
  39. 39.↵
    1. You B,
    2. Peslin R,
    3. Duvivier C,
    4. Dang Vu V,
    5. Grilliat JP
    . Expiratory capnography in asthma: evaluation of various shape indices. Eur Respir J 1994;7(2):318-323.
    OpenUrlAbstract
  40. 40.↵
    1. Nik Hisamuddin NAR,
    2. Rashidi A,
    3. Chew KS,
    4. Kamaruddin J,
    5. Idzwan Z,
    6. Teo AH
    . Correlations between capnographic waveforms and peak flow meter measurement in emergency department management of asthma. Int J Emerg Med 2009;2(2):83-89.
    OpenUrlPubMed
  41. 41.↵
    1. Fabius TM,
    2. Eijsvogel MMM,
    3. Brusse-Keizer MGJ,
    4. Sanchez OM,
    5. Verschuren F,
    6. de Jongh FHC
    . Retrospective validation of a new volumetric capnography parameter for the exclusion of pulmonary embolism at the emergency department. ERJ Open Res 2018;4(4):00099-2018.
    OpenUrlAbstract/FREE Full Text
  42. 42.↵
    1. Gogniat E,
    2. Ducrey M,
    3. Dianti J,
    4. Madorno M,
    5. Roux N,
    6. Midley A,
    7. et al
    . Dead space analysis at different levels of positive end-expiratory pressure in acute respiratory distress syndrome patients. J Crit Care 2018;45:231-238.
    OpenUrl
  43. 43.↵
    1. Suter PM,
    2. Fairley HB,
    3. Isenberg MD
    . Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 1975;292(6):284-289.
    OpenUrlCrossRefPubMedWeb of Science
  44. 44.↵
    1. Böhm S,
    2. Maisch S,
    3. von Sandersleben A,
    4. Thamm O,
    5. Passoni I,
    6. Martinez Arca J,
    7. Tusman G
    . The effects of lung recruitment on the phase III slope of volumetric capnography in morbidly obese patients. Anesth Analg 2009;109(1):151-159.
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. Pirrone M,
    2. Fisher D,
    3. Chipman D,
    4. Imber DA,
    5. Corona J,
    6. Mietto C,
    7. et al
    . Recruitment maneuvers and positive end-expiratory pressure titration in morbidly obese ICU patients. Crit Care Med 2016;44(2):300-307.
    OpenUrlPubMed
  46. 46.↵
    1. Elola A,
    2. Aramendi E,
    3. Irusta U,
    4. Alonso E,
    5. Lu Y,
    6. Chang MP,
    7. et al
    . Capnography: a support tool for the detection of return of spontaneous circulation in out-of-hospital cardiac arrest. Resuscitation 2019;142:153-161.
    OpenUrl
  47. 47.↵
    1. Sandroni C,
    2. De Santis P,
    3. D’Arrigo S
    . Capnography during cardiac arrest. Resuscitation 2018;132:73-77.
    OpenUrl
  48. 48.↵
    1. Paiva EF,
    2. Paxton JH,
    3. O’Neil BJ
    . The use of end-tidal carbon dioxide (ETCO2) measurement to guide management of cardiac arrest: a systematic review. Resuscitation 2018;123:1-7.
    OpenUrl
  49. 49.↵
    1. Lakhal K,
    2. Nay MA,
    3. Kamel T,
    4. Lortat-Jacob B,
    5. Ehrmann S,
    6. Rozec B,
    7. Boulain T
    . Change in end-tidal carbon dioxide outperforms other surrogates for change in cardiac output during fluid challenge. Br J Anaesth 2017;118(3):355-362.
    OpenUrl
  50. 50.↵
    1. Monnet X,
    2. Bataille A,
    3. Magalhaes E,
    4. Barrois J,
    5. Le Corre M,
    6. Gosset C,
    7. et al
    . End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med 2013;39(1):93-100.
    OpenUrlCrossRefPubMedWeb of Science
  51. 51.↵
    1. Bendjelid K,
    2. Schütz N,
    3. Stotz M,
    4. Gerard I,
    5. Suter PM,
    6. Romand JA
    . Transcutaneous PCO2 monitoring in critically ill adults: clinical evaluation of a new sensor. Crit Care Med 2005;33(10):2203-2206.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Rodriguez P,
    2. Lellouche F,
    3. Aboab J,
    4. Buisson CB,
    5. Brochard L
    . Transcutaneous arterial carbon dioxide pressure monitoring in critically ill adult patients. Intensive Care Med 2006;32(2):309-312.
    OpenUrlCrossRefPubMedWeb of Science
  53. 53.↵
    1. Janssens J-P,
    2. Howarth-Frey C,
    3. Chevrolet J-C,
    4. Abajo B,
    5. Rochat T
    . Transcutaneous PCO2 to monitor noninvasive mechanical ventilation in adults: assessment of a new transcutaneous PCO2 device. Chest 1998;113(3):768-773.
    OpenUrlCrossRefPubMedWeb of Science
  54. 54.
    1. Rohling R,
    2. Biro P
    . Clinical investigation of a new combined pulse oximetry and carbon dioxide tension sensor in adult anaesthesia. J Clin Monit Comput 1999;15(1):23-27.
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.
    1. Senn O,
    2. Clarenbach CF,
    3. Kaplan V,
    4. Maggiorini M,
    5. Bloch KE
    . Monitoring carbon dioxide tension and arterial oxygen saturation by a single earlobe sensor in patients with critical illness or sleep apnea. Chest 2005;128(3):1291-1296.
    OpenUrlCrossRefPubMedWeb of Science
  56. 56.
    1. Janssens J-P,
    2. Laszlo A,
    3. Uldry C,
    4. Titelion V,
    5. Picaud C,
    6. Michel J-P
    . Noninvasive (transcutaneous) monitoring of PCO2 (TcPCO2) in older adults. Gerontology 2005;51(3):174-178.
    OpenUrlCrossRefPubMedWeb of Science
  57. 57.
    1. Cox M,
    2. Kemp R,
    3. Anwar S,
    4. Athey V,
    5. Aung Moloney T
    . ED. Non-invasive monitoring of CO2 levels in patients using NIV for AECOPD. Thorax 2006;61(4):363-364.
    OpenUrlFREE Full Text
  58. 58.
    1. Storre JH,
    2. Steurer B,
    3. Kabitz H-J,
    4. Dreher M,
    5. Windisch W
    . Transcutaneous PCO2 monitoring during initiation of noninvasive ventilation. Chest 2007;132(6):1810-1816.
    OpenUrlCrossRefPubMedWeb of Science
  59. 59.
    1. Gancel P-E,
    2. Roupie E,
    3. Guittet L,
    4. Laplume S,
    5. Terzi N
    . Accuracy of a transcutaneous carbon dioxide pressure monitoring device in emergency room patients with acute respiratory failure. Intensive Care Med 2011;37(2):348-351.
    OpenUrlCrossRefPubMedWeb of Science
  60. 60.
    1. Nicolini A,
    2. Ferrari M
    . Evaluation of a transcutaneous carbon dioxide monitor in patients with acute respiratory failure. Ann Thorac Med 2011;6(4):217-220.
    OpenUrlCrossRefPubMed
  61. 61.
    1. Perrin K,
    2. Wijesinghe M,
    3. Weatherall M,
    4. Beasley R
    . Assessing PaCO2 in acute respiratory disease: accuracy of a transcutaneous carbon dioxide device. Intern Med J 2011;41(8):630-633.
    OpenUrlCrossRefPubMed
  62. 62.
    1. Kelly A-M,
    2. Klim S
    . Agreement between arterial and transcutaneous PCO2 in patients undergoing non-invasive ventilation. Respir Med 2011;105(2):226-229.
    OpenUrlCrossRefPubMed
  63. 63.
    1. Chhajed PN,
    2. Chaudhari P,
    3. Tulasigeri C,
    4. Kate A,
    5. Kesarwani R,
    6. Miedinger D,
    7. et al
    . Infraclavicular sensor site: a new promising site for transcutaneous capnography. Scand J Clin Lab Invest 2012;72(4):340-342.
    OpenUrlPubMed
  64. 64.
    1. Delerme S,
    2. Montout V,
    3. Goulet H,
    4. Arhan A,
    5. Le Saché F,
    6. Devilliers C,
    7. et al
    . Concordance between transcutaneous and arterial measurements of carbon dioxide in an ED. Am J Emerg Med 2012;30(9):1872-1876.
    OpenUrlCrossRefPubMed
  65. 65.↵
    1. Van Oppen JD,
    2. Daniel PS,
    3. Sovani MP
    . What is the potential role of transcutaneous carbon dioxide in guiding acute noninvasive ventilation? Respir Care 2015;60(4):484-491.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Respiratory Care: 65 (6)
Respiratory Care
Vol. 65, Issue 6
1 Jun 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Monitoring Gas Exchange
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Monitoring Gas Exchange
Gregory A Schmidt
Respiratory Care Jun 2020, 65 (6) 729-738; DOI: 10.4187/respcare.07408

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Monitoring Gas Exchange
Gregory A Schmidt
Respiratory Care Jun 2020, 65 (6) 729-738; DOI: 10.4187/respcare.07408
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Pulse Spectroscopy
    • Predicting Fluid Responsiveness
    • Pulse Spectroscopic Artifacts
    • Future Directions
    • Conclusions
    • Discussion
    • Footnotes
    • References
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • monitoring
  • capnography
  • pulse spectroscopy
  • pulse oximetry, transcutaneous
  • gas exchange

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About Us
  • Editorial Board
  • Reprints/Permissions

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire