Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Follow aarc on Twitter
  • Visit aarc on Facebook
Research ArticleConference Proceedings

Lung Volume Measurement and Ventilation Distribution During Invasive Mechanical Ventilation

Thomas Piraino
Respiratory Care June 2020, 65 (6) 760-771; DOI: https://doi.org/10.4187/respcare.07467
Thomas Piraino
St. Michael’s Hospital, Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Campos MA,
    2. Diaz AA
    . The role of computed tomography for the evaluation of lung disease in alpha-1 antitrypsin deficiency. Chest 2018;153(5):1240-1248.
    OpenUrl
  2. 2.↵
    1. Chiumello D,
    2. Cressoni M,
    3. Chierichetti M,
    4. Tallarini F,
    5. Botticelli M,
    6. Berto V,
    7. et al
    . Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care 2008;12(6):R150.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Patroniti N,
    2. Bellani G,
    3. Manfio A,
    4. Maggioni E,
    5. Giuffrida A,
    6. Foti G,
    7. et al
    . Lung volume in mechanically ventilated patients: measurement by simplified helium dilution compared to quantitative CT scan. Intensive Care Med 2004;30(2):282-289.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Bikker IG,
    2. Leonhardt S,
    3. Bakker J,
    4. Gommers D
    . Lung volume calculated from electrical impedance tomography in ICU patients at different PEEP levels. Intensive Care Med 2009;35(8):1362-1367.
    OpenUrlPubMed
  5. 5.
    1. Hinz J,
    2. Hahn G,
    3. Neumann P,
    4. Sydow M,
    5. Mohrenweiser P,
    6. Hellige G,
    7. et al
    . End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med 2003;29(1):37-43.
    OpenUrlPubMedWeb of Science
  6. 6.
    1. Karsten J,
    2. Meier T,
    3. Iblher P,
    4. Schindler A,
    5. Paarmann H,
    6. Heinze H
    . The suitability of EIT to estimate EELV in a clinical trial compared to oxygen wash-in/wash-out technique. Biomed Tech (Berl) 2014;59(1):59-64.
    OpenUrl
  7. 7.↵
    1. Mauri T,
    2. Eronia N,
    3. Turrini C,
    4. Battistini M,
    5. Grasselli G,
    6. Rona R,
    7. et al
    . Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography. Intensive Care Med 2016;42(10):1576-1587.
    OpenUrl
  8. 8.↵
    1. Eronia N,
    2. Mauri T,
    3. Maffezzini E,
    4. Gatti S,
    5. Bronco A,
    6. Alban L,
    7. et al
    . Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study. Ann Intensive Care 2017;7(1):76.
    OpenUrl
  9. 9.↵
    1. Becher T,
    2. Wendler A,
    3. Eimer C,
    4. Weiler N,
    5. Frerichs I
    . Changes in electrical impedance tomography findings of ICU patients during rapid infusion of a fluid bolus: a prospective observational study. Am J Respir Crit Care Med 2019;199(12):1572-1575.
    OpenUrl
  10. 10.↵
    1. Chiumello D,
    2. Carlesso E,
    3. Cadringher P,
    4. Caironi P,
    5. Valenza F,
    6. Polli F,
    7. et al
    . Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 2008;178(4):346-355.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. González-López A,
    2. García-Prieto E,
    3. Batalla-Solís E,
    4. Amado-Rodríguez L,
    5. Avello N,
    6. Blanch L,
    7. Albaiceta GM
    . Lung strain and biological response in mechanically ventilated patients. Intensive Care Med 2012;38(2):240-247.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. Bellani G,
    2. Laffey JG,
    3. Pham T,
    4. Fan E,
    5. Brochard L,
    6. Esteban A,
    7. et al
    . Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016;315(8):788-800.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Loring SH,
    2. O’Donnell CR,
    3. Behazin N,
    4. Malhotra A,
    5. Sarge T,
    6. Ritz R,
    7. et al
    . Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol (1985) 2010;108(3):515-522.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Chen L,
    2. Chen GQ,
    3. Shore K,
    4. Shklar O,
    5. Martins C,
    6. Devenyi B,
    7. et al
    . Implementing a bedside assessment of respiratory mechanics in patients with acute respiratory distress syndrome. Crit Care 2017;21(1):84.
    OpenUrl
  15. 15.↵
    1. Chen L,
    2. Del Sorbo L,
    3. Grieco DL,
    4. Junhasavasdikul D,
    5. Rittayamai N,
    6. Soliman I,
    7. et al
    . Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med 2020;201(2):178-187.
    OpenUrl
  16. 16.↵
    1. Brower RG,
    2. Matthay MA,
    3. Morris A,
    4. Schoenfeld D,
    5. Thompson BT,
    6. Wheeler A
    Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342(18):1301-1308.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Meade MO,
    2. Cook DJ,
    3. Guyatt GH,
    4. Slutsky AS,
    5. Arabi YM,
    6. Cooper DJ,
    7. et al
    . Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome. JAMA 2008;299(6):637-645.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Goligher EC,
    2. Kavanagh BP,
    3. Rubenfeld GD,
    4. Adhikari NK,
    5. Pinto R,
    6. Fan E,
    7. et al
    . Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome: a secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med 2014;190(1):70-76.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Amato MB,
    2. Meade MO,
    3. Slutsky AS,
    4. Brochard L,
    5. Costa EL,
    6. Schoenfeld DA,
    7. et al
    . Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372(8):747-755.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Aoyama H,
    2. Yamada Y,
    3. Fan E
    . The future of driving pressure: a primary goal for mechanical ventilation? J Intensive Care 2018;6(1):64.
    OpenUrl
  21. 21.↵
    1. Cavalcanti AB,
    2. Suzumura EA,
    3. Laranjeira LN,
    4. Paisani DM,
    5. Damiani LP,
    6. et al
    Writing Group For The Alveolar Recruitment For Acute Respiratory Distress Syndrome Trial Investigators, Cavalcanti AB, Suzumura EA, Laranjeira LN, Paisani DM, Damiani LP, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low peep on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2017;318(14):1335-1345.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Costa ELV,
    2. Borges JB,
    3. Melo A,
    4. Suarez-Sipmann F,
    5. Toufen C,
    6. Bohm SH,
    7. et al
    . Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med 2012;1:165-170.
    OpenUrl
  23. 23.↵
    1. Franchineau G,
    2. Bréchot N,
    3. Lebreton G,
    4. Hekimian G,
    5. Nieszkowska A,
    6. Trouillet JL,
    7. et al
    . Bedside contribution of electrical impedance tomography to setting positive end-expiratory pressure for extracorporeal membrane oxygenation-treated patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2017;196(4):447-457.
    OpenUrl
  24. 24.↵
    1. Gattinoni L,
    2. Tonetti T,
    3. Cressoni M,
    4. Cadringher P,
    5. Herrmann P,
    6. Moerer O,
    7. et al
    . Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 2016;42(10):1567-1575.
    OpenUrl
  25. 25.↵
    1. Gattinoni L,
    2. Pelosi P,
    3. Crotti S,
    4. Valenza F
    . Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 1995;151(6):1807-1814.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Victorino JA,
    2. Borges JB,
    3. Okamoto VN,
    4. Matos GF,
    5. Tucci MR,
    6. Caramez MP,
    7. et al
    . Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 2004;169(7):791-800.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Goligher EC,
    2. Fan E,
    3. Herridge MS,
    4. Murray A,
    5. Vorona S,
    6. Brace D,
    7. et al
    . Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med 2015;192(9):1080-1088.
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. Yoshida T,
    2. Amato MBP,
    3. Kavanagh BP,
    4. Fujino Y
    . Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome. Curr Opin Crit Care 2019
  29. 29.↵
    1. Brochard L,
    2. Slutsky A,
    3. Pesenti A
    . Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017;195(4):438-442.
    OpenUrl
  30. 30.↵
    1. Yoshida T,
    2. Torsani V,
    3. Gomes S,
    4. De Santis RR,
    5. Beraldo MA,
    6. Costa EL,
    7. et al
    . Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 2013;188(12):1420-1427.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Yoshida T,
    2. Nakahashi S,
    3. Nakamura MAM,
    4. Koyama Y,
    5. Roldan R,
    6. Torsani V,
    7. et al
    . Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am J Respir Crit Care Med 2017;196(5):590-601.
    OpenUrl
  32. 32.↵
    1. Karsten J,
    2. Stueber T,
    3. Voigt N,
    4. Teschner E,
    5. Heinze H
    . Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study. Crit Care 2016;20:3.
    OpenUrlPubMed
  33. 33.↵
    1. Mauri T,
    2. Bellani G,
    3. Confalonieri A,
    4. Tagliabue P,
    5. Turella M,
    6. Coppadoro A,
    7. et al
    . Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support. Crit Care Med 2013;41(7):1664-1673.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Goligher EC,
    2. Dres M,
    3. Fan E,
    4. Rubenfeld GD,
    5. Scales DC,
    6. Herridge MS,
    7. et al
    . Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med 2018;197(2):204-213.
    OpenUrl
  35. 35.↵
    1. Yoshida T,
    2. Piraino T,
    3. Lima CAS,
    4. Kavanagh BP,
    5. Amato MBP,
    6. Brochard L
    . Regional ventilation displayed by electrical impedance tomography as an incentive to decrease PEEP. Am J Respir Crit Care Med 2019;200(7):933-937.
    OpenUrl
PreviousNext
Back to top

In this issue

Respiratory Care: 65 (6)
Respiratory Care
Vol. 65, Issue 6
1 Jun 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Lung Volume Measurement and Ventilation Distribution During Invasive Mechanical Ventilation
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Lung Volume Measurement and Ventilation Distribution During Invasive Mechanical Ventilation
Thomas Piraino
Respiratory Care Jun 2020, 65 (6) 760-771; DOI: 10.4187/respcare.07467

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Lung Volume Measurement and Ventilation Distribution During Invasive Mechanical Ventilation
Thomas Piraino
Respiratory Care Jun 2020, 65 (6) 760-771; DOI: 10.4187/respcare.07467
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Lung Volume Measurements During Mechanical Ventilation
    • Ventilation Distribution
    • Discussion
    • Footnotes
    • References
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • lung volume measurement
  • electrical impedance tomography
  • mechanical ventilation

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About Us
  • Editorial Board
  • Reprints/Permissions

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire