Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Portugûes
    • 国语

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Portugûes
    • 国语
  • Follow aarc on Twitter
  • Visit aarc on Facebook
Review ArticleInvited Review

Airway Clearance Techniques for Mechanically Ventilated Patients: Insights for Optimization

Marcia S Volpe, Fernando S Guimarães and Caio CA Morais
Respiratory Care August 2020, 65 (8) 1174-1188; DOI: https://doi.org/10.4187/respcare.07904
Marcia S Volpe
Department of Sciences of Human Movement, Federal University of São Paulo, Santos, São Paulo, Brazil.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Fernando S Guimarães
Physical Therapy Department, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Caio CA Morais
Pulmonary Division, Heart Institute, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Gosselink R,
    2. Bott J,
    3. Johnson M,
    4. Dean E,
    5. Nava S,
    6. Norrenberg M,
    7. et al
    . Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine task force on physiotherapy for critically ill patients. Intensive Care Med 2008;34(7):1188-1199.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    1. Spapen HD,
    2. De Regt J,
    3. Honoré PM
    . Chest physiotherapy in mechanically ventilated patients without pneumonia-a narrative review. J Thorac Dis 2017;9(1):E44-E49.
    OpenUrl
  3. 3.↵
    1. Pneumatikos IA,
    2. Dragoumanis CK,
    3. Bouros DE
    . Ventilator-associated pneumonia or endotracheal tube-associated pneumonia? An approach to the pathogenesis and preventive strategies emphasizing the importance of endotracheal tube. Anesthesiology 2009;110(3):673-680.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Restrepo RD,
    2. Walsh BK
    . American Association for Respiratory Care. Humidification during invasive and noninvasive mechanical ventilation: 2012. Respir Care 2012;57(5):782-788.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Paratz J,
    2. Ntoumenopoulos G
    . Detection of secretion retention in the ventilated patient. Curr Respir Med Rev 2015;10(3):151-157.
    OpenUrl
  6. 6.↵
    1. Hess DR
    . Airway clearance: physiology, pharmacology, techniques, and practice. Respir Care 2007;52(10):1392-1396.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Zamanian M,
    2. Marini JJ
    . Pressure-flow signatures of central-airway mucus plugging. Crit Care Med 2006;34(1):223-226.
    OpenUrlPubMed
  8. 8.↵
    1. Konrad F,
    2. Schreiber T,
    3. Brecht-Kraus D,
    4. Georgieff M
    . Mucociliary transport in ICU patients. Chest 1994;105(1):237-241.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Branson RD
    . Secretion management in the mechanically ventilated patient. Respir Care 2007;52(10):1328-1342.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    AARC Clinical Practice Guidelines. Endotracheal suctioning of mechanically ventilated patients with artificial airways 2010. Respir Care 2010;55(6):758-764.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Paulus F,
    2. Binnekade JM,
    3. Vroom MB,
    4. Schultz MJ
    . Benefits and risks of manual hyperinflation in intubated and mechanically ventilated intensive care unit patients: a systematic review. Crit Care 2012;16(4):R145.
    OpenUrlPubMed
  12. 12.↵
    1. Fink JB
    . Forced expiratory technique, directed cough, and autogenic drainage. Respir Care 2007;52(9):1210-1221. discussion 1221-1213.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. Volpe MS,
    2. Adams AB,
    3. Amato MB,
    4. Marini JJ
    . Ventilation patterns influence airway secretion movement. Respir Care 2008;53(10):1287-1294.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. Ntoumenopoulos G,
    2. Shannon H,
    3. Main E
    . Do commonly used ventilator settings for mechanically ventilated adults have the potential to embed secretions or promote clearance? Respir Care 2011;56(12):1887-1892.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Freitag L,
    2. Long WM,
    3. Kim CS,
    4. Wanner A
    . Removal of excessive bronchial secretions by asymmetric high-frequency oscillations. J Appl Physiol 1989;67(2):614-619.
    OpenUrlPubMed
  16. 16.
    1. Kim CS,
    2. Greene MA,
    3. Sankaran S,
    4. Sackner MA
    . Mucus transport in the airways by two-phase gas-liquid flow mechanism: continuous flow model. J Appl Physiol 1986;60(3):908-917.
    OpenUrlPubMed
  17. 17.↵
    1. Kim CS,
    2. Rodriguez CR,
    3. Eldridge MA,
    4. Sackner MA
    . Criteria for mucus transport in the airways by two-phase gas-liquid flow mechanism. J Appl Physiol 1986;60(3):901-907.
    OpenUrlPubMedWeb of Science
  18. 18.↵
    1. Kim CS,
    2. Iglesias AJ,
    3. Sackner MA
    . Mucus clearance by two-phase gas-liquid flow mechanism: asymmetric periodic flow model. J Appl Physiol 1987;62(3):959-971.
    OpenUrlPubMedWeb of Science
  19. 19.↵
    1. Maxwell L,
    2. Ellis ER
    . The effects of three manual hyperinflation techniques on pattern of ventilation in a test lung model. Anaesth Intensive Care 2002;30(3):283-288.
    OpenUrlPubMedWeb of Science
  20. 20.
    1. Maxwell LJ,
    2. Ellis ER
    . Pattern of ventilation during manual hyperinflation performed by physiotherapists. Anaesthesia 2007;62(1):27-33.
    OpenUrlPubMed
  21. 21.↵
    1. Jones AM,
    2. Thomas PJ,
    3. Paratz JD
    . Comparison of flow rates produced by two frequently used manual hyperinflation circuits: a benchtop study. Heart Lung 2009;38(6):513-516.
    OpenUrlPubMed
  22. 22.↵
    1. Li Bassi G,
    2. Saucedo L,
    3. Marti JD,
    4. Rigol M,
    5. Esperatti M,
    6. Luque N,
    7. et al
    . Effects of duty cycle and positive end-expiratory pressure on mucus clearance during mechanical ventilation. Crit Care Med 2012;40(3):895-902.
    OpenUrlPubMed
  23. 23.↵
    1. Li Bassi G,
    2. Marti JD,
    3. Saucedo L,
    4. Rigol M,
    5. Roca I,
    6. Cabanas M,
    7. et al
    . Gravity predominates over ventilatory pattern in the prevention of ventilator-associated pneumonia. Crit Care Med 2014;42(9):e620-627.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Kallet RH
    . Adjunct therapies during mechanical ventilation: airway clearance techniques, therapeutic aerosols, and gases. Respir Care 2013;58(6):1053-1073.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Oberwaldner B
    . Physiotherapy for airway clearance in paediatrics. Eur Respir J 2000;15(1):196-204.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Holland AE,
    2. Button BM
    . Is there a role for airway clearance techniques in chronic obstructive pulmonary disease? Chron Respir Dis 2006;3(2):83-91.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Osadnik CR,
    2. McDonald CF,
    3. Holland AE
    . Advances in airway clearance technologies for chronic obstructive pulmonary disease. Expert Rev Respir Med 2013;7(6):673-685.
    OpenUrl
  28. 28.↵
    1. Van der Schans CP
    . Bronchial mucus transport. Respir Care 2007;52(9):1150-1156.
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. Junhasavasdikul D,
    2. Telias I,
    3. Grieco DL,
    4. Chen L,
    5. Gutierrez CM,
    6. Piraino T,
    7. et al
    . Expiratory flow limitation during mechanical ventilation. Chest 2018;154(4):948-962.
    OpenUrl
  30. 30.↵
    1. Berney S,
    2. Denehy L
    . A comparison of the effects of manual and ventilator hyperinflation on static lung compliance and sputum production in intubated and ventilated intensive care patients. Physiother Res Int 2002;7(2):100-108.
    OpenUrlPubMed
  31. 31.↵
    1. Lemes DA,
    2. Zin WA,
    3. Guimaraes FS
    . Hyperinflation using pressure support ventilation improves secretion clearance and respiratory mechanics in ventilated patients with pulmonary infection: a randomised crossover trial. Aust J Physiother 2009;55(4):249-254.
    OpenUrlPubMed
  32. 32.↵
    1. Savian C,
    2. Paratz J,
    3. Davies A
    . Comparison of the effectiveness of manual and ventilator hyperinflation at different levels of positive end-expiratory pressure in artificially ventilated and intubated intensive care patients. Heart Lung 2006;35(5):334-341.
    OpenUrlPubMed
  33. 33.↵
    1. Dennis D,
    2. Jacob W,
    3. Budgeon C
    . Ventilator versus manual hyperinflation in clearing sputum in ventilated intensive care unit patients. Anaesth Intensive Care 2012;40(1):142-149.
    OpenUrlPubMed
  34. 34.↵
    1. Assmann CB,
    2. Vieira PJC,
    3. Kutchak F,
    4. Rieder M. D M,
    5. Forgiarini SGI,
    6. Forgiarini Junior LA
    . Lung hyperinflation by mechanical ventilation versus isolated tracheal aspiration in the bronchial hygiene of patients undergoing mechanical ventilation. Rev Bras Ter Intensiva 2016;28(1):27-32.
    OpenUrl
  35. 35.↵
    1. Ribeiro BS,
    2. Lopes AJ,
    3. Menezes SLS,
    4. Guimarães FS
    . Selecting the best ventilator hyperinflation technique based on physiologic markers: a randomized controlled crossover study. Heart Lung 2019;48(1):39-45.
    OpenUrl
  36. 36.↵
    1. Thomas PJ
    . The effect of mechanical ventilator settings during ventilator hyperinflation techniques: a bench-top analysis. Anaesth Intensive Care 2015;43(1):81-87.
    OpenUrlPubMed
  37. 37.↵
    1. Chapman RL,
    2. Shannon H,
    3. Koutoumanou E,
    4. Main E
    . Effect of inspiratory rise time on sputum movement during ventilator hyperinflation in a test lung model. Physiotherapy 2019;105(2):283-289.
    OpenUrl
  38. 38.↵
    1. Berney S,
    2. Denehy L
    . The effect of physiotherapy treatment on oxygen consumption and haemodynamics in patients who are critically ill. Aust J Physiother 2003;49(2):99-105.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Ahmed F,
    2. Shafeeq AM,
    3. Moiz JA,
    4. Geelani MA
    . Comparison of effects of manual versus ventilator hyperinflation on respiratory compliance and arterial blood gases in patients undergoing mitral valve replacement. Heart Lung 2010;39(5):437-443.
    OpenUrlPubMed
  40. 40.↵
    1. Ntoumenopoulos G,
    2. Hammond N,
    3. Watts NR,
    4. Thompson K,
    5. Hanlon G,
    6. Paratz JD,
    7. Thomas P
    . Secretion clearance strategies in Australian and New Zealand intensive care units. Aust Crit Care 2018;31(4):191-196.
    OpenUrl
  41. 41.↵
    1. Berti JSW,
    2. Tonon E,
    3. Ronchi CF,
    4. Berti HW,
    5. Stefano L. M D,
    6. Gut AL,
    7. et al
    . Manual hyperinflation combined with expiratory rib cage compression for reduction of length of ICU stay in critically ill patients on mechanical ventilation. J Bras Pneumol 2012;38(4):477-486.
    OpenUrlPubMed
  42. 42.↵
    1. Freynet A,
    2. Gobaille G,
    3. Joannes-Boyau O,
    4. Grandet P,
    5. Fleureau C,
    6. Ripoche J,
    7. et al
    . Effects of chest physiotherapy by expiratory flow increase on secretion removal and lung mechanics in ventilated patients: a randomized crossover study. Intensive Care Med 2016;42(6):1090-1091.
    OpenUrl
  43. 43.↵
    1. Marti JD,
    2. Li Bassi G,
    3. Rigol M,
    4. Saucedo L,
    5. Ranzani OT,
    6. Esperatti M,
    7. et al
    . Effects of manual rib cage compressions on expiratory flow and mucus clearance during mechanical ventilation. Crit Care Med 2013;41(3):850-856.
    OpenUrlPubMed
  44. 44.↵
    1. Avena KdM,
    2. Duarte ACM,
    3. Cravo SLD,
    4. Sologuren MJJ,
    5. Gastaldi AC
    . Effects of manually assisted coughing on respiratory mechanics in patients requiring full ventilatory support. J Bras Pneumol 2008;34(6):380-386.
    OpenUrlPubMed
  45. 45.↵
    1. Guimarães FS,
    2. Silveira de Menezes SL,
    3. Lopes AJ
    . Expiratory rib cage compressions to improve secretion clearance during mechanical ventilation: not only a matter of squeezing the chest-reply. Respir Care 2014;59(8):e121.
    OpenUrlFREE Full Text
  46. 46.↵
    1. Oliveira ACO,
    2. Lorena DM,
    3. Gomes LC,
    4. Amaral BLR,
    5. Volpe MS
    . Effects of manual chest compression on expiratory flow bias during the positive end-expiratory pressure-zero end-expiratory pressure maneuver in patients on mechanical ventilation. J Bras Pneumol 2019;45(3):e20180058.
    OpenUrl
  47. 47.↵
    1. Unoki T,
    2. Mizutani T,
    3. Toyooka H
    . Effects of expiratory rib cage compression combined with endotracheal suctioning on gas exchange in mechanically ventilated rabbits with induced atelectasis. Respir Care 2004;49(8):896-901.
    OpenUrlAbstract/FREE Full Text
  48. 48.↵
    1. Unoki T,
    2. Kawasaki Y,
    3. Mizutani T,
    4. Fujino Y,
    5. Yanagisawa Y,
    6. Ishimatsu S,
    7. et al
    . Effects of expiratory rib-cage compression on oxygenation, ventilation, and airway-secretion removal in patients receiving mechanical ventilation. Respir Care 2005;50(11):1430-1437.
    OpenUrlAbstract/FREE Full Text
  49. 49.↵
    1. Genc A,
    2. Akan M,
    3. Gunerli A
    . The effects of manual hyperinflation with or without rib-cage compression in mechanically ventilated patients. It J Physiother 2011;1:48-54.
    OpenUrl
  50. 50.↵
    1. Shannon H,
    2. Stiger R,
    3. Gregson RK,
    4. Stocks J,
    5. Main E
    . Effect of chest wall vibration timing on peak expiratory flow and inspiratory pressure in a mechanically ventilated lung model. Physiotherapy 2010;96(4):344-349.
    OpenUrlPubMed
  51. 51.↵
    1. Amaral BLR,
    2. de Figueiredo AB,
    3. Lorena DM,
    4. Oliveira ACO,
    5. Carvalho NC,
    6. Volpe MS
    . Effects of ventilation mode and manual chest compression on flow bias during the positive end- and zero end-expiratory pressure manoeuvre in mechanically ventilated patients: a randomised crossover trial. Physiotherapy 2020;106:145-153.
    OpenUrl
  52. 52.↵
    1. Silva ARB,
    2. Fluhr SA,
    3. Bezerra AdL,
    4. Correia MAdV Jr.,
    5. de França EET,
    6. de Andrade FMD
    . Expiratory peak flow and respiratory system resistance in mechanically ventilated patients undergoing two different forms of manually assisted cough. Rev Bras Ter Intensiva 2012;24(1):58-63.
    OpenUrl
  53. 53.↵
    1. Guimaraes FS,
    2. Lopes AJ,
    3. Constantino SS,
    4. Lima JC,
    5. Canuto P,
    6. de Menezes SL
    . Expiratory rib cage compression in mechanically ventilated subjects: a randomized crossover trial [corrected]. Respir Care 2014;59(5):678-685.
    OpenUrlAbstract/FREE Full Text
  54. 54.↵
    1. MacLean D,
    2. Drummond G,
    3. Macpherson C,
    4. McLaren G,
    5. Prescott R
    . Maximum expiratory airflow during chest physiotherapy on ventilated patients before and after the application of an abdominal binder. Intensive Care Med 1989;15(6):396-399.
    OpenUrlPubMedWeb of Science
  55. 55.↵
    1. Gonçalves EC,
    2. Souza HC,
    3. Tambascio J,
    4. Almeida MB,
    5. Basile Filho A,
    6. Gastaldi AC
    . Effects of chest compression on secretion removal, lung mechanics, and gas exchange in mechanically ventilated patients: a crossover, randomized study. Intensive Care Med 2016;42(2):295-296.
    OpenUrl
  56. 56.↵
    1. Calverley PM,
    2. Koulouris NG
    . Flow limitation and dynamic hyperinflation: key concepts in modern respiratory physiology. Eur Respir J 2005;25(1):186-199.
    OpenUrlAbstract/FREE Full Text
  57. 57.↵
    1. Koutsoukou A,
    2. Armaganidis A,
    3. Stavrakaki-Kallergi C,
    4. Vassilakopoulos T,
    5. Lymberis A,
    6. Roussos C,
    7. et al
    . Expiratory flow limitation and intrinsic positive end-expiratory pressure at zero positive end-expiratory pressure in patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 2000;161(5):1590-1596.
    OpenUrlCrossRefPubMedWeb of Science
  58. 58.↵
    1. Santos FR,
    2. Schneider Junior LC,
    3. Forgiarini Junior LA,
    4. Veronezi J
    . Effects of manual rib-cage compression versus PEEP-ZEEP maneuver on respiratory system compliance and oxygenation in patients receiving mechanical ventilation. Rev Bras Ter Intensiva 2009;21(2):155-161.
    OpenUrl
  59. 59.↵
    1. Herbst-Rodrigues MV,
    2. Carvalho VO,
    3. Auler JO Jr.,
    4. Feltrim MI
    . PEEP-ZEEP technique: cardiorespiratory repercussions in mechanically ventilated patients submitted to a coronary artery bypass graft surgery. J Cardiothorac Surg 2011;6(1):108.
    OpenUrlPubMed
  60. 60.↵
    1. Lobo DML,
    2. Cavalcante LA,
    3. Mont’Alverne DGB
    . Applicability of bag squeezing and ZEEP maneuvers in mechanically ventilated patients. Rev Bras Ter Intensiva 2010;22(2):186-191.
    OpenUrl
  61. 61.↵
    1. Barach AL,
    2. Beck GJ,
    3. Bickerman HA,
    4. Seanor HE
    . Physical methods simulating cough mechanisms use in poliomyelitis, bronchial asthma, pulmonary emphysema, and bronchiectasis. J Am Med Assoc 1952;150(14):1385-1390.
    OpenUrlPubMed
  62. 62.
    1. Barach AL,
    2. Beck GJ,
    3. Bickerman HA,
    4. Seanor HE,
    5. Smith W
    . Physical methods simulating mechanisms of the human cough. J Appl Physiol 1952;5(2):85-91.
    OpenUrlPubMedWeb of Science
  63. 63.
    1. Chatwin M,
    2. Ross E,
    3. Hart N,
    4. Nickol AH,
    5. Polkey MI,
    6. Simonds AK
    . Cough augmentation with mechanical insufflation/exsufflation in patients with neuromuscular weakness. Eur Respir J 2003;21(3):502-508.
    OpenUrlAbstract/FREE Full Text
  64. 64.↵
    1. Sancho J,
    2. Servera E,
    3. Vergara P,
    4. Marín J
    . Mechanical insufflation-exsufflation vs. tracheal suctioning via tracheostomy tubes for patients with amyotrophic lateral sclerosis: a pilot study. Am J Phys Med Rehabil 2003;82(10):750-753.
    OpenUrlCrossRefPubMedWeb of Science
  65. 65.↵
    1. Branson RD,
    2. Benditt JO
    . Optimizing mechanical insufflation-exsufflation - much more than cough peak flow. Respir Care 2020;65(2):265-268.
    OpenUrlFREE Full Text
  66. 66.↵
    1. Sánchez-García M,
    2. Santos P,
    3. Rodríguez-Trigo G,
    4. Martínez-Sagasti F,
    5. Fariña-González T,
    6. del Pino-Ramírez A,
    7. et al
    . Preliminary experience on the safety and tolerability of mechanical “insufflation-exsufflation” in subjects with artificial airway. Intensive Care Med Exp 2018;6(1):8.
    OpenUrl
  67. 67.↵
    1. Bach JR,
    2. Goncalves MR,
    3. Hamdani I,
    4. Winck JC
    . Extubation of patients with neuromuscular weakness: a new management paradigm. Chest 2010;137(5):1033-1039.
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.↵
    1. Gonçalves MR,
    2. Honrado T,
    3. Winck JC,
    4. Paiva JA
    . Effects of mechanical insufflation-exsufflation in preventing respiratory failure after extubation: a randomized controlled trial. Crit Care 2012;16(2):R48.
    OpenUrlCrossRefPubMed
  69. 69.↵
    1. Ferreira de Camillis ML,
    2. Savi A,
    3. Goulart Rosa R,
    4. Figueiredo M,
    5. Wickert R,
    6. Borges LGA,
    7. et al
    . Effects of mechanical insufflation-exsufflation on airway mucus clearance among mechanically ventilated ICU subjects. Respir Care 2018;63(12):1471-1477.
    OpenUrlAbstract/FREE Full Text
  70. 70.↵
    1. Nunes LC,
    2. Rizzetti DA,
    3. Neves D,
    4. Vieira FN,
    5. Kutchak FM,
    6. Wiggers GA,
    7. et al
    . Mechanical insufflation/exsufflation improves respiratory mechanics in critical care: randomized crossover trial. Respir Physiol Neurobiol 2019;266:115-120.
    OpenUrl
  71. 71.↵
    1. Coutinho WM,
    2. Vieira PJC,
    3. Kutchak FM,
    4. Dias AS,
    5. Rieder MM,
    6. Forgiarini LA Jr..
    Comparison of mechanical insufflation-exsufflation and endotracheal suctioning in mechanically ventilated patients: effects on respiratory mechanics, hemodynamics, and volume of secretions. Indian J Crit Care Med 2018;22(7):485-490.
    OpenUrl
  72. 72.↵
    1. Stilma W,
    2. Schultz MJ,
    3. Paulus F
    . Preventing mucus plugging in invasively ventilated intensive care unit patients-routine or personalized care and ‘primum non nocere’. J Thorac Dis 2018;10(12):E817-E818.
    OpenUrl
  73. 73.↵
    1. Terzi N,
    2. Guerin C,
    3. Gonçalves MR
    . What’s new in management and clearing of airway secretions in ICU patients? It is time to focus on cough augmentation. Intensive Care Med 2019;45(6):865-868.
    OpenUrl
  74. 74.↵
    1. Volpe MS,
    2. Naves JM,
    3. Ribeiro GG,
    4. Ruas G,
    5. Amato M
    . Airway clearance with an optimized mechanical insufflation-exsufflation maneuver. Respir Care 2018;63(10):1214-1222.
    OpenUrlAbstract/FREE Full Text
  75. 75.↵
    1. Striegl AM,
    2. Redding GJ,
    3. Diblasi R,
    4. Crotwell D,
    5. Salyer J,
    6. Carter ER
    . Use of a lung model to assess mechanical in-exsufflator therapy in infants with tracheostomy. Pediatr Pulmonol 2011;46(3):211-217.
    OpenUrl
  76. 76.↵
    1. Andersen T,
    2. Sandnes A,
    3. Brekka AK,
    4. Hilland M,
    5. Clemm H,
    6. Fondenes O,
    7. et al
    . Laryngeal response patterns influence the efficacy of mechanical assisted cough in amyotrophic lateral sclerosis. Thorax 2017;72(3):221-229.
    OpenUrlAbstract/FREE Full Text
  77. 77.↵
    1. Andersen TM,
    2. Sandnes A,
    3. Fondenes O,
    4. Nilsen RM,
    5. Tysnes OB,
    6. Heimdal JH,
    7. et al
    . Laryngeal responses to mechanically assisted cough in progressing amyotrophic lateral sclerosis. Respir Care 2018;63(5):538-549.
    OpenUrlAbstract/FREE Full Text
  78. 78.↵
    1. Guimarães FS,
    2. Rocha AR
    . Weak cough strength and secretion retention in mechanically ventilated patients: is there a role for cough-assist devices? Respir Care 2018;63(12):1583-1584.
    OpenUrlFREE Full Text
PreviousNext
Back to top

In this issue

Respiratory Care: 65 (8)
Respiratory Care
Vol. 65, Issue 8
1 Aug 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Airway Clearance Techniques for Mechanically Ventilated Patients: Insights for Optimization
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Airway Clearance Techniques for Mechanically Ventilated Patients: Insights for Optimization
Marcia S Volpe, Fernando S Guimarães, Caio CA Morais
Respiratory Care Aug 2020, 65 (8) 1174-1188; DOI: 10.4187/respcare.07904

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Airway Clearance Techniques for Mechanically Ventilated Patients: Insights for Optimization
Marcia S Volpe, Fernando S Guimarães, Caio CA Morais
Respiratory Care Aug 2020, 65 (8) 1174-1188; DOI: 10.4187/respcare.07904
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Flow Bias and Airways Dynamic Compression During Airway Clearance Therapy
    • Airway Clearance Techniques for Mechanically Ventilated Patients
    • Summary
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • airway clearance/secretion management
  • mechanical ventilation
  • physiotherapy
  • physical therapy
  • sputum
  • ventilator hyperinflation

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About Us
  • Editorial Board
  • Reprints/Permissions

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire