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Abstract 

Background: Ventilator management for children with hypoxemic respiratory failure may benefit from 

ventilator protocols, which rely on blood gases.  Accurate non-invasive estimates for pH or PaCO2 could 

allow frequent ventilator changes to optimize lung protective ventilation strategies.  If these models are 

highly accurate, they can facilitate the development of closed-loop ventilator systems.  We sought to 

develop and test algorithms for estimating pH and PaCO2 from measures of ventilator support, pulse 

oximetry, and end tidal carbon dioxide (ETCO2).   We also sought to determine whether surrogates for 

changes in dead space can improve prediction.  

Methods: Algorithms were developed and tested using 2 datasets from previous published investigations.   

A baseline model estimated pH and PaCO2 from ETCO2 using the previously observed relationship 

between ETCO2 and PaCO2 or pH (using Henderson-Hasselbalch equation).  We developed a multivariate 

Gaussian processes (MGP) model incorporating other available non-invasive measurements. 

Results: The training dataset had 2,386 observations from 274 children, and the testing dataset 658 

observations from 83 children.  The baseline model predicted PaCO2 within +/- 7 mmHg of observed 

PaCO2 80% of the time.  The MGP model improved this to +/- 6 mmHg. When the MGP model predicted 

PaCO2 between 35-60 mmHg, the 80% prediction interval narrowed to +/- 5 mmHg.  For pH, the baseline 

model predicted pH within +/- 0.07 of observed pH 80% of the time.  The MGP model improved this to 

+/- 0.05.   

Conclusions: We have demonstrated a conceptual first step for predictive models that estimate pH and 

PaCO2 to facilitate clinical decision making for children with lung injury.  These models may have some 

applicability when incorporated in ventilator protocols to encourage practitioners  to maintain permissive 

hypercapnia when using high ventilator support. Refinement with additional data may improve model 

accuracy.   
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Introduction 

Ventilator management for children with Acute Lung Injury (ALI) varies widely 
1, 2

.  Explicit ventilator 

protocols can standardize mechanical ventilation, provided practitioners follow recommendations 
1, 3-6

.  

Specifically, potentially injurious ventilator settings are frequently not reduced, even with normal or over-

ventilated pH or PaCO2.
1
 In general, in the acute phase of illness ventilator settings are changed based on 

arterial blood gases (ABG), requiring an arterial catheter and frequent blood samples, which is 

challenging in children 
7
.    Accurate and reliable non-invasive methods to estimate pH or PaCO2 could 

allow for more frequent ventilator changes during the acute phase of illness to maintain permissive 

hypercapnia, and help clinical decision making.   

Pulse oximetry (SpO2) is routinely used for clinical decision making 
8
, and clinicians change PEEP or 

FiO2 in response to either PaO2 or SpO2, both in the acute phase of illness and during weaning.  However, 

clinicians and ventilator protocols most frequently make decisions to change ventilator rate, tidal volume, 

or peak inspiratory pressure during the acute phase of illness based on arterial pH or PaCO2.  The most 

widely used non-invasive sensor to estimate adequacy of ventilation is End Tidal Carbon Dioxide 

(ETCO2).  However, the relationship between ETCO2 and PaCO2 changes as a function of alveolar dead 

space.  Additionally, estimating pH from ETCO2 is confounded by  changing metabolic acidosis. 

At the bedside, one can estimate PaCO2 from ETCO2 using the alveolar dead space fraction 

(AVDSF=(PaCO2-ETCO2)/PaCO2)
9
.  While this is not the same as a dead space to tidal volume ratio, 

which requires volumetric capnography, it is a clinical surrogate 
10-13

. Although one can use this value, 

calculated from simultaneous measurement of ETCO2 and PaCO2 to estimate future PaCO2 from a known 

value of ETCO2, it will not perform well in the setting of changing alveolar dead space, as may be the 

case during the acute phase of respiratory illness.  To date, most closed-loop algorithms incorporating end 

tidal CO2 for ventilator management have been applied to the weaning phase of mechanical ventilation
14

.  
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We seek to develop a predictive algorithm to estimate pH and PaCO2 which can account for changing 

alveolar dead space, for application during the acute phase of illness. 

We have previously demonstrated that non-invasive surrogates for intrapulmonary shunt (i.e. Oxygen 

Saturation Index or SpO2/FiO2 Ratio) are correlated with changes in AVDSF
8, 9

.  We hypothesize that 

incorporating non-invasive measures of intrapulmonary shunt, non-invasive continuously available values 

from the ventilator, and previous known values from the ABG, will permit development of a predictive 

algorithm to estimate PaCO2 and pH accurately.  Such an algorithm could be incorporated into a computer 

ventilator protocol to encourage lung protective-behavior and permissive hypercapnia for children with 

lung injury.   

Materials and Methods 

We developed and tested algorithms using datasets from previous studies on children with acute 

hypoxemic respiratory failure
1, 8, 9, 15

.  We constructed datasets with simultaneous measurements of arterial 

pH, PaCO2, PaO2, pulse oximetry (when SpO2 was ≤ 97%), ETCO2 (measured via main stream, with the 

same adapter size for all children as per ICU standards), and ventilator settings (mode, ventilator rate 

(VR), peak inspiratory pressure (PIP), positive end expiratory pressure (PEEP), exhaled tidal volume 

(ml/kg)(VT), Fraction of Inspired Oxygen (FiO2)).  We created composite variables for deficits in 

oxygenation including Oxygen Saturation Index (OSI=Mean Airway Pressure * FiO2*100/SpO2) and 

SpO2/FiO2 (SF) ratio. We excluded measurements if there was a leak around the endotracheal tube of 

≥20%
16

, if it had been > 24 hours since the previous ABG, or if there was only one ABG for an individual 

patient.  The first ABG attained for each patient was used as baseline, and the algorithms generated 

estimates for pH and PaCO2 at the time of subsequent ABGs.  Predicted values for pH and PaCO2 were 

compared to actual measured values.  The study was approved by the Committee on Clinical Investigation 

at CHLA with a waiver of informed consent (CCI-09-00126 and CCI-09-00287). 

Dataset 1:  Single Center Dataset 
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We assembled this dataset from a single institution retrospective study.  Children (<18 years of age) were 

included in this study if they were intubated and mechanically ventilated with at least one PF ratio <300 

after intubation. Children with left ventricular dysfunction or cyanotic congenital heart disease were 

excluded. We have previously published the methods regarding data collection, patient characteristics, 

and ventilator support
1, 15

 .  We extracted data from the electronic medical record, time ordered per 

patient.  We extracted the closest charted value for SpO2 and ETCO2 which was at most 1 hour prior to a 

study ABG.  We have previously used this methodology to demonstrate that OSI, AVDSF, and SF ratio 

correlate with mortality
9
. 

Dataset 2: Multi-center Dataset 

We assembled this dataset from a six-center prospective study in children.  Children (<18 years of age) 

were included in this study if they were intubated and mechanically ventilated with an indwelling arterial 

line and SpO2 ≤ 97%. Children with left ventricular dysfunction or cyanotic congenital heart disease were 

excluded. We have previously published the methods regarding data collection, patient characteristics, 

and ventilator support 
8
.  SpO2 and ETCO2 were recorded prospectively precisely at the time of the ABG, 

with concurrent ventilator settings. Therefore, unlike with the single-center dataset, ETCO2, SPO2, 

ventilator settings and ABG results were simultaneous.  ABG values were not recorded if the pulse 

oximetry waveform was inadequate, or if the patient had received endotracheal tube suctioning or 

invasive procedures for 30 minutes prior to the blood gas.  ETCO2 was recorded when available as part of 

routine care. ETCO2 was not used routinely for all ventilated patients in some of the study ICUs. 

Analysis 

We report the results of the statistical models trained on dataset 1, and tested on dataset 2.    To predict 

both PaCO2 and pH, we created two models.  The first models used the previous simultaneous values for 

PaCO2 and ETCO2 to calculate AVDSF, which was used to estimate the expected current value for 

PaCO2, based on a new ETCO2.  We used AVDSF instead of the difference between PaCO2 and ETCO2 
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to control for proportionality inaccuracies as PaCO2 increases. The first model for pH uses this estimate 

for PaCO2 with the serum bicarbonate from the previous ABG to predict pH using the Henderson-

Hasselbalch equation. 

The second models were generated using a multivariate Gaussian process (MGP): a machine learning 

technique.  A Gaussian process is a probability distribution over a function.  The joint values of the 

function at any subset of times have a multivariate normal distribution, defined by its mean and 

covariance function.  We used a squared exponential (SE) covariance function. The resulting process can 

be thought of as a generalization of a Bayesian linear regression model applied to higher dimensions.   

The covariance function of an MGP is represented as a matrix  

where the element   is the correlation between variable  at time  and variable at time . We 

used a separable model,  where  is the temporal covariance between two time 

points and  is the covariance matrix between the variables. For an offset of observation times 

the resulting observations are jointly Gaussian with a covariance matrix of  . We 

exploit the separable nature of our model and the simultaneity of the observations to avoid explicit 

computations with such a large matrix. We estimate the covariance matrix  from the training data 

(dataset 1).   

When testing on dataset 2, we assume we know the measurements for all components except for current 

values of PaCO2 and pH.  We predict the mean and covariance of the marginal distributions of PaCO2 and 

pH at the current time given all known measurements for all the components up until and including the 

current time. 

Additional Models  

In addition to the AVDSF model, we computed a model based on minute ventilation which is often 

calculated at the bedside (estimates the current PaCO2 from the current minute ventilation and previous 
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PaCO2 and minute ventilation).  It did not perform as well as AVDSF, so results are not shown.  We 

tested two additional models to account for changing dead space including  hierarchical linear regression, 

and continuous time based Bayesian network 
17

, but they were not superior to the MGP model, so the 

results are not shown.  We have previously presented one of these models in abstract form 
18

. 

Outcome Measures 

Our primary outcome was the accuracy of different algorithms to predict pH and PaCO2.  To evaluate 

these outcomes we generated 80 and 95% prediction intervals around the point estimate for pH and 

PaCO2.  The purpose of this outcome was to assess whether the model could generate estimates which fall 

into a range that may be acceptable in certain clinical scenarios 80 or 95% of the time.  To mimic the 

decisions a ventilator protocol would make, we binned observed and predicted values.  PaCO2 was 

binned: <35 mmHg, 35-60mmHg, > 60mmHg.  pH was binned using guidance from the ARDS Network 

protocol: <7.30, 7.30-7.44, ≥ 7.45 
1, 4

.  We report percent agreement between observed versus predicted 

bins, kappa statistics, as well as 80% and 95% prediction intervals for PaCO2 or pH within each of the 

predicted bins.  We also report the percentage of observations which fall within Clinical Laboratory 

Improvement Amendments (CLIA) standards for PaCO2 (the greater of +/-5mmHg or 8%) and pH (+/-

0.04)
19

. 

Results 

Of the 398 children enrolled in the single-center retrospective study (dataset 1), 274 met inclusion criteria 

with SpO2 ≤ 97%, and ETCO2 results available at most 1 hour prior to the ABG.  Of the 103 children 

without cyanotic congenital heart disease enrolled in the multi-center study, 83 met inclusion criteria with 

ETCO2 data available at the time of the ABG. Hence, this training dataset had 2,386 observations (aligned  

ETCO2, SPO2, ABG, and ventilator data) from 274 children.  The testing dataset (dataset 2) had 658 

observations from 83 children.  In general, the datasets were similar with respect to disease severity, 

blood gas parameters, and ventilator support.  The patients had moderate to severe lung injury, with a 
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median FiO2 of 0.6 (IQR 0.4,0.8), median PF ratio of 127 (IQR 86,192) and median Oxygenation Index 

(OI) of 12.6 (IQR 6.7,22) in dataset 1.  Results for dataset 2 were similar (Table 1).  The median time 

between observations (ABGs) was 6.5 hours in both datasets (Table 1).   

Model Training 

The model was trained (parameters were estimated) on dataset 1.  Variables included in the model were: 

ETCO2, OSI, PIP, PEEP, Ventilator Rate, Tidal Volume, Minute Ventilation, an interaction term of 

ETCO2/Minute Ventilation, Dynamic Compliance of the Respiratory System (Cdyn), and previous values 

for pH, PaCO2, ETCO2.  Other variables considered but not used in the model were: Pressure Support and 

SF ratio.  This is because Pressure Support varied little (the value was almost always 10 cmH2O) and SF 

ratio is included in the calculation of OSI which is included in the model.   

Prediction of PaCO2 in the testing dataset (Dataset 2) 

We constructed a baseline model to predict PaCO2, using the previous AVDSF with the current ETCO2.  

The predicted values were on average 0.266 mmHg (SD 7.2) higher than the observed values. Overall 

67.5% of predicted PaCO2 would fall within CLIA standards (greater of +/-5mmHg or 8% difference) 

against the measured PaCO2. 80% of the predicted values were within +/- 7 mmHg of observed values 

and 95% were within +/- 13 mmHg (Figure 1a).  When binning the observed and predicted PaCO2, the 

overall agreement between observed and predicted bins was 89%, with a kappa value of 0.76 (Table 2a).  

The accuracy was best in  the ”normal”  or “low” PaCO2 bins, where 80% of predicted values were within 

+/- 6 mmHg of observed values, and 95% within +/- 12 mmHg (Table 3; Figure 2a).  

The MGP model derived from dataset 1 performed slightly better than the baseline model using AVDSF. 

The predicted values were on average 0.02 mmHg (SD 6.1) higher than the observed values.  Overall 

73.6% of predicted PaCO2 would fall within CLIA standards against the measured PaCO2. For the MGP 

model, 80% of the predicted values were within +/- 6 mmHg of observed values and 95% were within +/- 

11 mmHg (Figure 1b).  When binning the observed and predicted PaCO2 the overall agreement between 
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observed and predicted bins was 91%, with a kappa value of 0.80 (Table 2b).  Within each PaCO2 bin, the 

prediction intervals were narrower than with the AVDSF model, and in the “normal” PaCO2 bin, 80% of 

predicted values were within +/- 5 mmHg of observed values, and 95% within +/- 10 mmHg.  In the 

“low” PaCO2 bin, 80% of predicted values were within +/- 3 mmHg of observed values, and 95% within 

+/- 4 mmHg (Table 3; Figure 2b).  

Prediction of pH in the testing dataset (Dataset 2) 

We used predicted PaCO2 from the AVDSF equation with the calculated serum bicarbonate (HCO3) from 

the previous ABG with the Henderson-Hasselbalch equation to predict pH.  The predicted values were on 

average 0.004 (SD 0.064)  lower than the observed values. Overall 59.3% of predicted pH  would fall 

within CLIA standards (+/-0.04) against the measured pH.  Using this model, 80% of the predicted pH 

values were within +/- 0.07 of observed values and 95% were within +/- 0.13 (Figure 3a).  When binning 

the observed and predicted pH, the overall agreement between observed and predicted bins was 70%, 

with a kappa value of 0.48 (Table 4a).  The best accuracy was in the “normal” pH bin, where 80% of the 

predicted values were within +/- 0.06 of observed values and 95% within +/- 0.10 (Table 3; Figure 4a).  

The same MGP model (trained on dataset 1) was used to predict pH on dataset 2.  In general, the MGP 

model was slightly superior to the model using the AVDSF and Henderson-Hasselbalch equation.  The 

predicted values were on average 0.002 (SD 0.05) lower than the observed values. Overall 67.6% of 

predicted pH  would fall within CLIA standards against the measured pH. Using the MGP model, 80% of 

the predicted pH values were within +/- 0.05 of observed values and 95% were within +/- 0.10 (Figure 

3b).  When binning the observed and predicted pH, the overall agreement between observed and predicted 

bins was 72%, with a kappa value of 0.49 (Table 4b).  Within each pH bin, the prediction intervals are 

narrower than the Henderson-Hasselbalch model, and in the “normal” pH bin, 80% of the predicted 

values were within +/- 0.05 of observed values and 95% within +/- 0.10. In the “high” pH bin, 80% of the 

predicted values were within +/- 0.05 of observed values and 95% within +/- 0.07 (Table 3; Figure 4b). 
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Alternate Training and Testing Datasets 

We repeated the analysis using dataset 2 as the training dataset, and dataset 1 as the testing dataset.  In 

general, each model had larger prediction intervals and less agreement between observed and predicted 

bins of pH and PaCO2 (analysis not shown).   

Discussion 

We have demonstrated a first step in the application of machine learning algorithms to estimate pH and 

PaCO2 to facilitate decision making regarding ventilator management for children with moderate to 

severe lung injury. Over the entire range of predicted values, these models may not yet have an acceptable 

level of accuracy to replace blood gas sampling. However, these algorithms may be useful in certain 

clinical scenarios such as decreasing potentially injurious ventilator settings for children who fall in the 

“over-ventilated range” through a protocol with standardized ventilator decisions.  With model 

refinement, it may become more clinically acceptable in other scenarios. Furthermore, while models 

which use previous known relationships between ETCO2 and PaCO2 perform reasonably, we can 

modestly improve the accuracy by incorporating non-invasive markers of oxygenation as well as changes 

to ventilator settings.  It may be that these are surrogates for changes in alveolar dead space. Our 

multivariate Gaussian process model predicts PaCO2 with 80% prediction intervals of +/-6 mmHg and pH 

with 80% prediction intervals of +/- 0.05.  It performed best in middle or over-ventilated range of pH and 

PaCO2.  For example, if the model predicted PaCO2 to be 50 mmHg, 80% of the time the actual PaCO2 (if 

one were to draw an ABG) would be between 45 and 55 mmHg, and 95% of the time it would be between 

40 and 60 mmHg.  For pH in the over-ventilated range, for example, if the model predicted pH to be 7.45, 

80% of the time the actual pH would be between 7.4 and 7.5, and 95% of the time it would be between 

7.38 and 7.52.  Overall, the model would predict PaCO2 with CLIA acceptable equivalence to a blood gas 

machine 74% of the time and pH 67% of the time.  
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Some may believe that the confidence in these predictions is not adequate for clinical decision making.    

While in medicine we strive for 95% certainty for statistical significance, clinical decisions are often 

based on much more uncertainty than 20%.  For example, pulse oximetry, in a low range (< 87%) may 

have 95% prediction intervals greater than +/- 10% against co-oximetry.
20

   For example, if the pulse 

oximeter is reading 85%, then 50% of the time the actual SaO2 on co-oximetry would lie between 75 and 

83%, but for 95% certainty, the SaO2 could range from 64 to 89%.  Nevertheless, pulse oximetry in a low 

range is routinely used for clinical decision making for children with cyanotic congenital heart disease.   

While SpO2 is more accurate in the range frequently seen for children with ALI, this example is meant to 

illustrate that parameters practitioners routinely use for clinical decisions relating to mechanical 

ventilation may have more uncertainty than 20%.  As such, 80% certainty that the PaCO2 is in a range of 

10 mmHg or pH in a range of 0.1 (as seen in our model in the “normal or overventilated range”) may be 

acceptable in certain situations to facilitate a clinical decision such as decreasing potentially injurious 

ventilator settings when the value is predicted to be normal or high, embracing a permissive hypercapnia 

strategy for ALI.   

 We believe there are several potential applications of these algorithms.  First, non-invasive estimates of 

PaCO2 or pH may decrease the number of ABGs.  If the clinician can be 80% confident that the PaCO2 

lies within a range of 10 mmHg, or the pH within a range of 0.1, he may be willing to forgo an ABG, and 

instead change the ventilator.  This is likely applicable in the “over-ventilated” range for patients with 

ALI, encouraging more continual lung protective behavior. Leaving the decision to act on the estimate 

open-loop allows the provider flexibility regarding their comfort with the reported level of certainty, as 

there may be scenarios when this level of accuracy is not acceptable. 

Second, these continuously available estimates may facilitate standardized assessment of ventilator 

support and adherence to ventilator protocols.  For example, an open-loop computer protocol could be 

developed which requires an assessment every 2 - 4 hours.  The decision support tool could display an 

estimate for the predicted pH, with a prediction interval. The clinician could accept or reject the 
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protocol’s recommendation, or obtain an ABG, if he is uncomfortable with the potential error in the 

prediction at that time point.   As we see in this analysis, the majority of blood gas values for children 

with ALI lie in a normal range, where the model performs well (> 90% agreement in PaCO2 bins). We 

have previously demonstrated there are many lost opportunities to be lung protective, when clinicians 

don’t wean the ventilator, even when settings are high and the pH is normal or high 
1
.  A continuously 

available estimate of pH or PaCO2 may make clinicians more willing to wean ventilators, because they 

can more closely monitor the effects of their change.  However, as is clear from the analysis, these 

algorithms have limitations, particularly in the low pH ranges, where there is substantially more 

uncertainty in the actual pH, seen in the limits of agreement as well as in the Bland-Altman Plots.    

We specifically developed this model using data from children with lung injury. We felt it important to 

start with this population because it represents a more difficult scenario:  as children with lung injury have 

dynamic and changing degrees of dead space.  It is likely that both models which assume no change in 

dead space (such as the AVDSF model) and those that try to capture surrogates for changing dead space 

(i.e. MGP model) would perform even better in children with minimal or no lung injury.   This should, of 

course, be tested.  The median AVDSF in these two datasets were about 0.23, in line with our previous 

publication on AVDSF which demonstrates that such values are independently associated with mortality
9
.  

As such, these datasets represent the lung-injured children we often take care of in our intensive care 

units, in whom lung protective ventilation has the potential to improve outcomes.  

While the predictive ability of the MGP algorithm is fair, it is not ready for a closed loop system (where 

the provider’s feedback is not required to change the ventilator), and will not replace blood gases.  In fact, 

these models are reliant upon blood gasses for their development and calibration, and are meant to 

facilitate decision making at times between blood gasses.  This analysis was meant as a first step, the 

model must be refined with additional data and tighter prediction intervals, before the loop on ventilation 

is ready to be closed.   
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To our knowledge, this is the first application of Gaussian processes, a machine learning technique, to 

predict pH or PaCO2.  However, machine learning techniques have been used extensively in medicine 
21

 

for gene expression studies 
22-24

,  classification of cardiac arrhythmias 
25

, predicting morbidity after 

coronary artery bypass surgery 
26

, and predicting when weaning from ventilator support should begin 
27

.  

Gaussian processes have been applied in adults with ALI to model the pressure-volume curve to titrate 

PEEP 
28

.  These techniques have been used in industries outside of medicine for years and while the 

methods may appear complicated, the algorithms are not computationally challenging.  Therefore, they 

can easily be applied in most ICUs, using basic computers. 

 There are limitations to our analysis. First, this represents secondary analysis of data, which is inherently 

limited in reliability and accuracy.  Second, the algorithms performed worse when trained on the multi-

center dataset and tested on the single center dataset.  We believe this is a function of the simultaneous 

assessments of SPO2, ETCO2 and ABG values in the prospective multi-center dataset, as compared to the 

retrospective single-center dataset.  Because the real-time application of this will be with controlled, 

continuously available data, we believe that the algorithm will more likely perform as it did with the 

multi-center data. This of course needs to be tested.  Third, we elected not to split the multi-center dataset 

into training and testing data, because we were worried about sample size.   Fourth, the testing dataset 

was relatively small (84 patients), and the algorithm should be evaluated in another group of patients. 

Fifth, there was no hemodynamic data, which will also affect changes in dead space. Sixth, the MGP 

model had a more visible proportional bias on Bland Altman analysis than AVDSF, and may perform 

differently when applied to a different validation dataset. This should be tested. Seventh, although 

application of such an algorithm may have an intention to reduce the frequency of blood gasses, it is 

possible that the early phases of deployment of such an algorithm may prompt clinicians to get more 

blood gases, to verify what the algorithm is displaying.  In all likelihood such a phenomenon would be 

transient, and once clinicians became more comfortable with its accuracy, they would draw fewer blood 

gases.   
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We may be able to improve model accuracy with temporally continuous values for ETCO2 and SpO2, but 

this may require alternative analytic methodologies to reduce the dimensionality of the data. We may also 

be able to improve the accuracy by incorporating hemodynamic variables such as heart rate and blood 

pressure.  Finally, these algorithms will likely perform better in less acute phases of mechanical 

ventilation, such as weaning, when dead space changes less frequently.  These hypotheses need to be 

tested.   

Conclusions 

Continuously available, non-invasive measurements and ventilator settings may be helpful for predictive 

algorithms which estimate PaCO2 and pH for children with hypoxemic respiratory failure.  The current 

level of accuracy offers some applications, particularly for standardizing decisions for decreasing 

ventilator support in line with lung protective strategies when the pH or PaCO2 is predicted to be normal 

or over-ventilated. With continued model refinement, it is possible that these algorithms can be used for 

decision support by incorporating them into computer ventilator protocols.  These algorithms should be 

refined and tested with additional prospectively gathered data from mechanically ventilated children with 

a wide range of severity of lung injury and hemodynamic support.  
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Figure Legends 

 

Figure 1a: Observed versus predicted values of PaCO2 based on the AVDSF equation to estimate PaCO2 

from the current value of ETCO2, knowing the previous relationship between PaCO2 and ETCO2.  Red 

bounds are the 80% prediction intervals of +/- 7 mmHg and green bounds are the 95% prediction intervals 

of +/- 13 mmHg. Shaded boxes represent the low, normal, and high bins. The points which lie in the 

shaded boxes would be classified into the correct bin (89% agreement, kappa = 0.76). 

Figure 1b: Observed versus predicted values of PaCO2 based on the MGP model to estimate PaCO2 from 

the ETCO2, ventilator support, and previous known values of pH and PaCO2. Red bounds are the 80% 

prediction intervals of +/- 6 mmHg and green bounds are the 95% prediction intervals of +/- 11 mmHg. 

Shaded boxes represent the low, normal, and high bins. The points which lie in the shaded boxes would 

be classified into the correct bins (91% agreement, kappa = 0.80). 

Figure 2a: Bland-Altman plot demonstrating mean bias and 95% limits of agreement as a function of each 

PaCO2 bin for the AVDSF model.  For PaCO2 <35 mean bias was -2.69 (95% Limits of Agreement (LA) 

+/-11.8); for PaCO2 between 35-60 mean bias was -0.5 (95%LA +/-11.1); for PaCO2 >60 mean bias was 

0.6 (95% LA +/-19.5).   

Figure 2b: Bland-Altman plot demonstrating mean bias and 95% limits of agreement as a function of each 

PaCO2 bin for the MGP model.  For PaCO2 <35 mean bias was -4.0 (95% Limits of Agreement (LA) +/-

9.0); for PaCO2 between 35-60 mean bias was -0.8 (95%LA +/-8.7); for PaCO2 >60 mean bias was 2.1 

(95% LA +/-16.6).   

Figure 3a: Observed versus predicted values of pH based on the AVDSF equation to estimate PaCO2, and 

using the previous calculated bicarbonate value to plug into the Henderson-Hasselbalch equation. Red 

bounds are the 80% prediction intervals of +/- 0.07 and green bounds are the 95% prediction intervals of 

+/- 0.13. Shaded boxes represent the low, normal, and high bins. The points which lie in the shaded boxes 

would be classified into the correct bins (70% agreement, kappa = 0.48). 

Figure 3b: Observed versus predicted values of pH based on the MGP model to estimate pH from the 

ETCO2, ventilator support, and previous known values of pH and PaCO2.  Red bounds are the 80% 

prediction intervals of +/- 0.05 and green bounds are the 95% prediction intervals of +/- 0.10. Shaded 

boxes represent the low, normal, and high bins. The points which lie in the shaded boxes would be 

classified into the correct bins (72% agreement, kappa = 0.49). 

Figure 4a: Bland-Altman plot demonstrating mean bias and 95% limits of agreement as a function of each 

pH bin based using  the AVDSF equation to estimate PaCO2, and the previous calculated bicarbonate 

value to plug into the Henderson-Hasselbalch equation to estimate pH.  For pH <7.3 mean bias was -

0.017 (95% Limits of Agreement (LA) +/-0.17); for pH between 7.3-7.45 mean bias was 0.001 (95%LA 

+/-0.115); for pH≥ 7.45 mean bias was 0.015 (95% LA +/-0.113).   
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Figure 4b: Bland-Altman plot demonstrating mean bias and 95% limits of agreement as a function of each 

pH bin for the MGP model.  For pH <7.3 mean bias was -0.059 (95% Limits of Agreement (LA) +/-0.13); 

for pH between 7.3-7.45 mean bias was 0.001 (95%LA +/-0.078); for pH≥ 7.45 mean bias was 0.032 

(95% LA +/-0.072).   
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 Training 

Dataset 

Testing 

Dataset 

Patients (n) 274 83 

Observations (n) 2386 658 

Observations per Patient  5 (2,11) 4 (2,8) 

Age (mo) 17 (8,36) 36 (5,134) 

Weight (kg) 4.6 (1.1,11.6) 13.5 (5.0,35.9) 

Gender (Female) 115 (42%) 27 (33%) 

Arterial Blood Gas 

pH 7.37 (7.30,7.44) 7.42 (7.35,7.46) 

PaCO2 49 (41,60) 51 (44,63) 

PaO2 72 (61,88) 69 (61,81) 

Time between ABGs (hrs) 6.4 (3.6, 11.7) 6.5 (2.0,12.4) 

Non-Invasive Support 

SpO2 95 (92,97) 94 (92,96) 

ETCO2 38 (31,45) 40 (35,47) 

Time between ETCO2 and ABG (min) 28 (20,46) Simultaneous 

Ventilator Settings 

PIP 30 (25, 35) 30 (26,37) 

PEEP 10 (6,12) 8 (5,10) 

Mean Airway Pressure 16 (12,20) 16 (13,20) 

FiO2 0.60 (0.41,0.80) 0.55 (0.43,0.63) 

VTE (ml/kg) 7.2 (5.8,8.8) 9 (7,11) 

Ventilator Rate 20 (16,26) 18 (16,24) 

Lung Disease Severity 

Oxygen Saturation Index (OSI) 10 (6, 16) 9.5 (6.2, 14) 

Oxygenation Index (OI) 12.6 (6.7,22.0) 12.6 (7.7,18.8) 

SpO2/FiO2 (SF) Ratio 162 (119,218) 166 (145,216) 

PaO2/FiO2 (PF) Ratio 127 (86,192) 130 (95, 178) 

Alveolar Dead Space Fraction 

(PaCO2-ETCO2)/PaCO2 

0.24 (0.14,0.34) 0.22 (0.15,0.30) 

Table 1: Descriptive statistics of Training and Testing Datasets.  Data is presented as median and inter-

quartile range, unless otherwise specified. 
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a 

        

Predicted 

PaCO2 

Actual PaCO2 Total 

< 35 35-60 >60  

<35 13 

(52%) 

12 

(48%) 

0 25 

(4%) 

35-60 5  

(1%) 

402 

(93%) 

26 

(6%) 

433 

(66%) 

>60 0 30 

(15%) 

170 

(85%) 

200 

(30%) 

Total 18 444 

 

196 

 

658 

 

 

b 

        

Predicted 

PaCO2 

Actual PaCO2 Total 

< 35 35-60 >60  

<35 8 

 (73%) 

3 

(27%) 

0 11 

(2%) 

35-60 10  

(2%) 

426 

(92%) 

30 

(6%) 

466 

(71%) 

>60 0 15 

(8%) 

166 

(92%) 

181 

(30%) 

Total 18 

 

444 

 

196 

 

658 

 

Table 2 (a, top) and (b, bottom): Observed versus predicted bins of PaCO2 generated from the AVDSF 

model for PaCO2 (a, top) and the MGP model for PaCO2 (b, bottom).  Overall agreement for the AVDSF 

model was 89% with a kappa of 0.76, compared to 91% with a kappa of 0.80 for the MGP model.  The 

percentages in each cell are calculated across the rows, to represent the percentage of predicted values in 

which the actual PaCO2 fell in each bin. For example, for the AVDSF model, PaCO2 was predicted to be 

between 35 and 60 mmHg 433 times and 402 (93%) of these times the actual PaCO2 was also between 35 

and 60 mmHg. The MGP model has better agreement between observed and predicted PaCO2 bins than 

the AVDSF model, particularly when PacO2 is estimated to be < 35 or > 60 mmHg.  
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 AVDSF Model MGP Model 

Predicted PaCO2  80% PI 95% PI 80% PI 95% PI 

<35 mmHg 6 12 3 4 

35-60 mmHg 6 12 5 10 

>60 mmHg 9 17 8 15 

 Henderson-Hasselbalch  Model  MGP model 

Predicted pH 80% PI 95% PI 80% PI 95% PI 

< 7.30 0.12 0.24 0.10 0.15 

7.30-7.44 0.06 0.10 0.05 0.10 

≥ 7.45 0.06 0.12 0.05 0.07 

Table 3: The 80 and 95% prediction intervals for the AVDSF model and MGP model to predict PaCO2 

and the AVDSF model using Henderson-Hasselbalch and MGP model to predict pH.  For the AVDSF 

model, when PaCO2 is between 35-60 mmHg, 80% of predicted values for PaCO2 would fall within + or – 

6 mmHg of the observed values.   For the MGP model, the prediction intervals are narrower than the 

AVDSF model in all 3 ranges of predicted PaCO2.  For the AVDSF model using Henderson-Hasselbalch, 

when pH is between 7.30-7.44, 80% of predicted values for pH would fall within + or – 0.06 of the 

observed values.   For the MGP model, the prediction intervals are narrower than the Henderson-

Hasselbalch model in all 3 ranges of predicted pH. 
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Predicted 

pH 

Actual pH Total 

< 7.3 7.3-7.44 ≥7.45  

< 7.3 58 

(60%) 

36 

(38%) 

2 

(2%) 

96 

(14%) 

7.3-7.44 20 

(6%) 

264 

(73%) 

76 

(21%) 

360 

(55%) 

≥7.45 2 

(1%) 

63 

(31%) 

137 

(68%) 

202 

(31%) 

Total 80 

 

363 

 

215 

 

658 

 

        

Predicted 

pH 

Actual pH Total 

< 7.3 7.3-7.44 ≥7.45  

< 7.3 49 

(77%) 

15 

(23%) 

0 

(0%) 

64 

(10%) 

7.3-7.44 30 

(7%) 

305 

(71%) 

93 

(22%) 

428 

(65%) 

≥7.45 1 

(1%) 

43 

(26%) 

122 

(73%) 

166 

(25%) 

Total 80 

 

363 

 

215 

 

658 

 

Table 4 (a, top) and (b, bottom): Observed versus predicted bins of pH generated from the AVDSF model 

using Henderson-Hasselbalch for pH (a, top) and the MGP model for pH (b, bottom).  Overall agreement 

for the AVDSF model using Henderson-Hasselbalch was 70% with a kappa of 0.48, compared to 72% 

with a kappa of 0.49 for the MGP model.    The percentages in each cell are calculated across the rows, to 

represent the percentage of predicted values in which the actual pH fell in each bin. For example, from the 

AVDSF model using Henderson-Hasselbalch, pH was predicted to be between 7.3 and 7.44 360 times 

and 264 (73%) of these times the actual pH was also between 7.3 and 7.44.  The MGP model has better 

agreement between observed and predicted pH bins than the AVDSF model, particularly when pH is 

estimated to be < 7.3 or > 7.45.   
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Figure 1a: Observed versus predicted values of PaCO2 based on the AVDSF equation to estimate PaCO2 
from the current value of ETCO2, knowing the previous relationship between PaCO2 and ETCO2.  Red 

bounds are the 80% prediction intervals of +/- 7 mmHg and green bounds are the 95% prediction intervals 

of +/- 13 mmHg. Shaded boxes represent the low, normal, and high bins. The points which lie in the shaded 
boxes would be classified into the correct bin (89% agreement, kappa = 0.76).  
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Figure 1b: Observed versus predicted values of PaCO2 based on the MGP model to estimate PaCO2 from the 
ETCO2, ventilator support, and previous known values of pH and PaCO2. Red bounds are the 80% prediction 
intervals of +/- 6 mmHg and green bounds are the 95% prediction intervals of +/- 11 mmHg. Shaded boxes 

represent the low, normal, and high bins. The points which lie in the shaded boxes would be classified into 
the correct bins (91% agreement, kappa = 0.80).  
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Figure 2a: Bland-Altman plot demonstrating mean bias and 95% limits of agreement as a function of each 
PaCO2 bin for the AVDSF model.  For PaCO2 <35 mean bias was -2.69 (95% Limits of Agreement (LA) +/-
11.8); for PaCO2 between 35-60 mean bias was -0.5 (95%LA +/-11.1); for PaCO2 >60 mean bias was 0.6 

(95% LA +/-19.5).    
100x71mm (150 x 150 DPI)  
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Figure 2b: Bland-Altman plot demonstrating mean bias and 95% limits of agreement as a function of each 
PaCO2 bin for the MGP model.  For PaCO2 <35 mean bias was -4.0 (95% Limits of Agreement (LA) +/-9.0); 
for PaCO2 between 35-60 mean bias was -0.8 (95%LA +/-8.7); for PaCO2 >60 mean bias was 2.1 (95% LA 

+/-16.6).    
100x71mm (150 x 150 DPI)  
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Figure 3a: Observed versus predicted values of pH based on the AVDSF equation to estimate PaCO2, and 
using the previous calculated bicarbonate value to plug into the Henderson-Hasselbalch equation. Red 

bounds are the 80% prediction intervals of +/- 0.07 and green bounds are the 95% prediction intervals of 

+/- 0.13. Shaded boxes represent the low, normal, and high bins. The points which lie in the shaded boxes 
would be classified into the correct bins (70% agreement, kappa = 0.48).  
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Figure 3b: Observed versus predicted values of pH based on the MGP model to estimate pH from the ETCO2, 
ventilator support, and previous known values of pH and PaCO2.  Red bounds are the 80% prediction 
intervals of +/- 0.05 and green bounds are the 95% prediction intervals of +/- 0.10. Shaded boxes 

represent the low, normal, and high bins. The points which lie in the shaded boxes would be classified into 
the correct bins (72% agreement, kappa = 0.49).  
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Figure 4a: Bland-Altman plot demonstrating mean bias and 95% limits of agreement as a function of each 
pH bin based using  the AVDSF equation to estimate PaCO2, and the previous calculated bicarbonate value 
to plug into the Henderson-Hasselbalch equation to estimate pH.  For pH <7.3 mean bias was -0.017 (95% 

Limits of Agreement (LA) +/-0.17); for pH between 7.3-7.45 mean bias was 0.001 (95%LA +/-0.115); for 
pH≥ 7.45 mean bias was 0.015 (95% LA +/-0.113).    
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Figure 4b: Bland-Altman plot demonstrating mean bias and 95% limits of agreement as a function of each 
pH bin for the MGP model.  For pH <7.3 mean bias was -0.059 (95% Limits of Agreement (LA) +/-0.13); for 
pH between 7.3-7.45 mean bias was 0.001 (95%LA +/-0.078); for pH≥ 7.45 mean bias was 0.032 (95% LA 

+/-0.072).    
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