The Concave Shape of the Forced Expiratory Flow-Volume Curve in 3 Seconds Is a Practical Surrogate of FEV₁/FVC for the Diagnosis of Airway Limitation in Inadequate Spirometry

Hao Li MM, Chunhong Liu RN, Yi Zhang MD, and Wei Xiao MD

BACKGROUND: Spirometry is important for the differential diagnosis of dyspnea. However, some patients cannot exhale for ≥ 6 s to achieve the American Thoracic Society/European Respiratory Society criteria. The aim of this study was to demonstrate the reliability of a new parameter that quantifies the degree of concavity in the first 3 s to define airway limitation as a surrogate for the FEV₁/FVC. METHODS: Four hundred spirometry test results were selected through complete random sampling. The new parameter, termed the AUC₃/AT₃, was calculated as the area under the descending limb of the expiratory flow-volume curve before the end of the first 3 s (AUC₃) divided by the area of the triangle before the end of the first 3 s (AT₃). The AUC₃/AT₃ was compared with the FEV₁/FVC using Pearson's correlation analysis. The level of agreement between the AUC₃/AT₃ and the FEV₁/FVC in the detection of airway obstruction was analyzed using the kappa statistic. We also compared the diagnostic accuracy of the new index with that of the FEV₁/forced expiratory volume in the first 3 s (FEV₃). RESULTS: There was a strong correlation (r = 0.88, P < .001) between the AUC₃/AT₃ and the FEV₁/FVC. There was also strong agreement between the AUC₃/AT₃ and the FEV₁/FVC in the detection of obstruction with kappa indices of 0.72 (Global Initiative for Chronic Obstructive Lung Disease [GOLD] criterion) and 0.67 (lower limit of normal criterion), and these values were greater than those obtained for the FEV₁/FEV₃. The AUC₄/AT₃ also exhibited acceptable sensitivity, specificity, positive predictive value, and negative predictive value. The diagnostic accuracies of the AUC₃/AT₃ were 86.3% (GOLD criterion) and 83.8% (lower limit of normal criterion), which were greater than the 76.0 and 74.0% obtained for the FEV1/FEV3, respectively. CONCLUSIONS: The AUC₃/AT₃ can be utilized as a surrogate parameter for the FEV₁/FVC when patients cannot complete a 6-s expiratory effort. Additionally, the performance of this index is better than that of the FEV₁/FEV₃ in the identification of airway limitations. Key words: respiratory function tests; spirometry; airway obstruction; maximal expiratory flow-volume curves; area under the curve; *diagnosis.* [Respir Care 0;0(0):1-•. © 0 Daedalus Enterprises]

Introduction

Lung function tests are important for the differential diagnosis of dyspnea, and FEV₁/FVC is an important index for

DOI: 10.4187/respcare.05016

identifying airway limitation. A reduced FEV₁/FVC without a decreased total lung capacity indicates an obstructive ventilatory defect, and this pattern is typically observed in patients with COPD or asthma.¹ However, complete forced expiration may require a relatively long time in patients with severe airway limitation. Specifically, some elderly patients and patients with severe cough and/or mild cognitive impairment cannot exhale for ≥ 6 s to achieve the American Thoracic Society/European Respiratory Society criteria.² Eaton et al³ demonstrated that only 28% of subjects could exhale for ≥ 6 s and that 47% could exhale for <4 s among 2,928 evaluated expiratory efforts. Allen et al⁴ demonstrated that 25% of 267 elderly subjects could reach forced expiratory volume in the first 3 seconds (FEV₃) but not FVC.

The authors are affiliated with the Department of Respiratory Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China.

This work was supported by Key Research and Development Program of Shandong Province Grant 2015GSF118064. The authors have disclosed no conflicts of interest.

Correspondence: Wei Xiao MD, Department of Respiratory Medicine, Qilu Hospital, Shandong University, No. 107, Wenhua Xi Road, Jinan, Shandong 250012, China. E-mail: xiaowei4226@163.com.

 AUC_3/AT_3 as a Surrogate for FEV_1/FVC in Inadequate Spirometry

Sometimes, FVC maneuvers are correctly established, and the patients can blow longer than 3 s but cannot satisfy the end-of-test criteria (≥ 6 s in duration or a plateau in the volume-time curve) after attempting the analysis several times. The FEV₃ has been proposed as an approximate surrogate for the FVC,⁴⁻⁶ but its reliability remains controversial.^{7,8}

The concave shape of the maximal expiratory flowvolume curve reflects slowing expiratory flow,¹ and the curvatures of maximal expiratory flow-volume curves are correlated with symptoms.⁹ Because the concavity is mostly observed during the initial time period of the maximal expiratory flow-volume curve, we sought to demonstrate the reliability of the concave shape of the maximal expiratory flow-volume curve in the first 3 s as a practical surrogate for the FEV₁/FVC for the diagnosis of airway limitation in patients who cannot complete a long exhalation.

The area under the maximal expiratory flow-volume curve has been used to describe this concave shape and has been shown to correlate well with the FEV₁. Moreover, this measure is more suitable for the evaluation of bronchial hyper-reactivity and bronchodilation than the FEV₁.¹⁰⁻¹² Furthermore, the area of obstruction is a promising parameter that is well correlated with the exercise capacity of patients with COPD.¹³ In this study, the area under the maximal expiratory flow-volume curve in the first 3 s was used to constitute a new parameter to describe the concave shape of the maximal expiratory flow-volume curve in the first 3 s.

Methods

Calculation of the New Parameter

All original data were obtained from the database of the JLab 4.67 software (CareFusion, Hoechberg, Germany) with the installed JAEGER MasterScreen PFT measuring system (CareFusion, Hoechberg, Germany) of Qilu Hospital of Shandong University. The FEV₁, FEV₃, FVC, and peak expiratory flow values were directly obtained from JLab. Quantitative values of the maximal expiratory flowvolume curves on the x and y axes were obtained from JLab via the graphic output followed by file output. Two pairs of values on the x and y axes were determined as anchoring points. The first point was the peak expiratory flow, and the second was the FEV₃. The area of the right triangle in which the 2 points were vertexes of the hypotenuse was calculated (Fig. 1). We termed this value AT_3 (ie, the area of the triangle before the end of the first 3 s). The curve between the 2 points was plotted with OriginPro 8.0 software (OriginLab, Northampton, Massachusetts), and then the area under this curve and in the right triangle was calculated with the integration command of Origin-

QUICK LOOK

Current knowledge

Spirometry tests are important in the management of respiratory diseases. However, some elderly patients and patients with severe airway limitation, cough, or mild cognitive impairment cannot exhale for ≥ 6 s to achieve the American Thoracic Society/European Respiratory Society criteria. For those subjects who can reach the forced expiratory volume in the first 3 s (FEV₃) but not ≥ 6 s, the FEV₃ has been investigated as an approximate surrogate for the FVC, although its reliability remains controversial.

What this paper contributes to our knowledge

A new parameter describing the concave shape of the maximal expiratory flow-volume curve in the first 3 s exhibited a strong correlation with the FEV₁/FVC. There was also strong agreement between this new parameter and the FEV₁/FVC in the detection of obstruction based on the fixed ratio and the lower limit of normal. The 3-s index may therefore be used as a surrogate parameter for the FEV₁/FVC when patients cannot complete a 6-s expiratory effort. The performance of this index was also better than that of the FEV₁/FEV₃.

Pro. We termed this value the AUC₃ (ie, the area under the descending limb of the maximal expiratory flow-volume curve before the end of the first 3 s). The new parameter AUC₃/AT₃ was used to describe the degree of concavity of the maximal expiratory flow-volume curve in the first 3 s.

Study Subjects and Procedures

The spirometry results of 400 subjects were randomly selected from the database of the JLab software from January 2016 to March 2016. We also randomly selected 100 healthy subjects without histories of smoking or respiratory symptoms from the health examination population. All spirometry test results were collected with the same type of spirometer. All selected results were acceptable according to the American Thoracic Society/European Respiratory Society task force guidelines.² All participants exhibited good starts (extrapolated volume <5% of the FVC or 0.15 L, whichever was greater) and satisfactory exhalation (a plateau in the volume-time curve or ≥ 6 s), and all participants met the between-maneuver repeatability criteria. Other exclusion criteria were an exhalation time of <3 s, an age >95 y, and no mention of race. The FVC and FEV₁ of each subject were obtained from the curve with the largest sum of the FVC and FEV_1 . The

 AUC_3/AT_3 as a Surrogate for FEV_1/FVC in Inadequate Spirometry

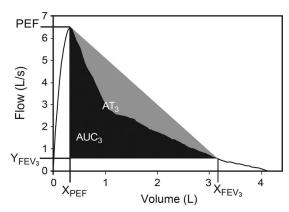


Fig. 1. Graphic explanation of the new parameter (AUC₃/AT₃). X_{PEF} indicates the expired lung volume at the peak expiratory flow. Y_{FEV3} indicates the expiratory flow at the point at which the forced expiratory volume in the first 3 s has been expired. AUC₃ was defined as the area under the descending limb of the expiratory flow-volume curve before the end of the first 3 s and in the right triangle (gray).

 AUC_3/AT_3 was calculated from the same curve and compared with the FEV₁/FVC to assess the clinical value of the AUC₃/AT₃ for the diagnosis of airway limitation. As a retrospective study, only medical data from involved patients without any identifying information were used, and the protocol was approved by the ethics committee of Qilu Hospital of Shandong University (Jinan, China).

First, we calculated the correlation between AUC_3/AT_3 and FEV_1/FVC . We then tested the new parameter against air flow limitation. Currently, there are 2 different spirometric criteria for defining airway obstruction. One criterion is a simple fixed cutoff point of the FEV₁/FVC, such as the 0.70 recommended by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) consortium (Global Strategy for the Diagnosis, Management and Prevention of COPD. GOLD 2016, http://goldcopd.org/). The other criterion is based on the lower limit of normal values for FEV₁/FVC recommended by the American Thoracic Society, European Respiratory Society, and Global Lung Function Initiative.14 Thus far, no evidence has demonstrated the superiority of either criterion in the diagnosis of obstructive airway diseases such as COPD.^{15,16} Therefore, we assessed the new index using both of these criteria. We also compared the diagnostic accuracy of the new index with that of FEV_1/FEV_3 .

The predicted values of FEV₁ and FEV₁/FVC were calculated based on age, sex, height, and ethnicity. Height was measured without shoes to the nearest centimeter. The GLI-2012 prediction equations for northeastern Asian subjects and the Excel sheet calculator (http://www.erseducation.org/guidelines/global-lung-function-initiative/ tools/excel-sheet-calculator.aspx, *Accessed April 2, 2016*) were used in this study. The lower limit of normal was defined at the 5th centile (Z score: -1.64). The new index and the FEV_1/FEV_3 were compared with the lower limit of normal of the FEV_1/FVC from the GLI-2012 reference set when using the lower limit of normal criterion.

Statistical Analysis

We chose to recommend the new parameter as an alternative if we observed a 95% certainty (ie, a probability of type-2 error of 0.05) and a sensitivity and specificity that were not ≥ 0.80 . We calculated the sample size using the formula in the publication of Arkin and Wachtel.¹⁷

The correlation between the 2 parameters was determined using a 2-tailed Pearson's correlation analysis. A kappa test was used to assess the agreements between the AUC_3/AT_3 and FEV_1/FVC and between the FEV_1/FEV_3 and FEV_1/FVC in terms of the identification of airway obstruction as defined by the GOLD or lower limit of normal criterion. The diagnostic performance of the index was evaluated based on the specificity, sensitivity, negative predictive value, positive predictive value, and diagnostic accuracy.

The statistical analyses were performed with SPSS 22 (IBM, Armonk, New York). All tests were performed at a significance level of P < .05.

Results

In total, 400 study subjects (37.3% female) and 100 healthy subjects (45% female) were included in this study. The ages of the study subjects ranged from 16.1 to 85.2 y, and the mean \pm SD age was 52.3 \pm 13.5 y. Table 1 provides the descriptive statistics for the spirometric parameters. No subject completed FVC before the end of 3 s. A total of 245 subjects (61.3%) exhibited airway obstruction (lower limit of normal criterion).

The scatter diagrams in Figure 2 illustrate the correlation of AUC₃/AT₃ and FEV₁/FVC as well as that of FEV₁/FEV₃ and FEV₁/FVC. There was a strong correlation (r = 0.88, P < .001) between AUC₃/AT₃ and FEV₁/FVC. There was also a strong correlation (r = 0.95, P < .001) between FEV₁/FEV₃ and FEV₁/FVC.

The linear regression equations of AUC₃/AT₃ and FEV₁/FEV₃ were: AUC₃/AT₃ = $1.086 \times \text{FEV}_1/\text{FVC} - 0.031$ (the residual SD was 0.080) and FEV₁/FEV₃ = $0.643 \times \text{FEV}_1/\text{FVC} + 0.321$ (the residual SD was 0.032).

There was strong agreement between AUC₃/AT₃ and FEV₁/FVC, with kappa indices of 0.72 (GOLD criterion) and 0.67 (lower limit of normal criterion), which were higher than the 0.54 and 0.51 obtained for FEV₁/FEV₃, respectively (Table 2). The sensitivities of AUC₃/AT₃ were 86.5% (GOLD criterion) and 82.4% (lower limit of normal criterion), which were higher than the 58.3 and 57.6% obtained for FEV₁/FEV₃, respectively. However, the specificities of AUC₃/AT₃ were 85.9% (GOLD criterion) and

AUC₃/AT₃ AS A SURROGATE FOR FEV₁/FVC IN INADEQUATE SPIROMETRY

	Study group $(n = 400)$		Healthy Group $(n = 100)$		
	Mean \pm SD	Range	Mean \pm SD	Range	
Male (n)	251		55		
Age, y	52.3 ± 13.5	16.1 to 85.2	54.5 ± 12.7	19.5 to 75.7	
Height (cm)	166.2 ± 7.5	140 to 185	161.4 ± 7.7	146 to 176	
Weight (kg)	68.9 ± 11.8	40.0 to 105.5	66.1 ± 10.3	42.0 to 86.0	
BMI, kg/m ²	25.5 ± 3.9	15.0 to 42.2	25.4 ± 3.6	17.9 to 32.5	
FEV_1 (L)	1.68 ± 0.71	0.48 to 3.80	2.63 ± 0.70	1.46 to 4.57	
FEV ₁ %pred	69.5 ± 31.6	16.8 to 145.0	96.3 ± 13.5	64.1 to 133.8	
FEV ₁ (z-score)	-2.84 ± 2.63	-7.80 to 3.42	-0.27 ± 1.16	-2.98 to 3.31	
FEV ₁ /FVC	0.65 ± 0.15	0.25 to 0.9	0.79 ± 0.04	0.72 to 0.89	
FEV ₁ /FVC (z-score)	-2.5 ± 1.95	-6.81 to 1.22	-0.29 ± 0.77	-2.02 to 1.13	
FEV ₁ /FEV ₃	0.74 ± 0.10	0.47 to 0.94	0.83 ± 0.03	0.74 to 0.90	
AUC ₃ /AT ₃	0.68 ± 0.18	0.22 to 1.23	0.84 ± 0.12	0.62 to 1.18	

Table 1.	Demographic	Data and	Conventional	Spirometric	Values of	of the	Subjects
----------	-------------	----------	--------------	-------------	-----------	--------	----------

BMI = body mass index

pred = predicted value

FEV₃ = forced expiratory volume in 3 second

 AUC_3 = the area under the descending limb of expiratory flow-volume curve before the end of the first 3 seconds

 AT_3 = the area of triangle before the end of the first 3 seconds

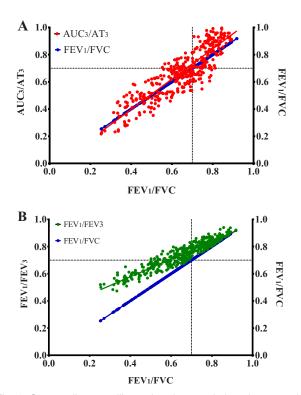


Fig. 2. Scatter diagrams illustrating the correlations between the AUC₃/AT₃ and FEV₁/FVC (A) and between the FEV₁/FEV₃ and FEV₁/FVC (B).

85.8% (lower limit of normal criterion), which were lower than the 100% obtained for FEV_1/FEV_3 according to each criterion. The positive predictive values and negative predictive values of the AUC₃/AT₃ and FEV₁/FEV₃ are provided in Table 3. The diagnostic accuracies of the AUC₃/AT₃ were 86.3% (GOLD criterion) and 83.8% (lower limit of normal criterion), which were higher than the 76.0 and 74.0% obtained for the FEV₁/FEV₃, respectively (Table 3).

Discussion

Spirometry tests are important in the management of respiratory diseases. Obstructive ventilatory impairment is defined by a reduced FEV_1/FVC . However, completing an acceptable spirometry assessment in accordance with the standards set by the American Thoracic Society/European Respiratory Society may be difficult for some patients. When the patient cannot complete an adequate forced expiration, the application form is returned to the doctor without any acceptable result.

However, it is well known that the concave shape toward the volume axis of the maximal expiratory flowvolume curve correlates with air-flow obstruction. In the early stage of COPD, this curve changes even without alterations in FEV₁ or FEV₁/FVC.¹ As the obstructive disease worsens, the concave shape becomes more obvious. Thus, the maximal expiratory flow-volume curve contains much information that can be used to diagnose airway limitation. However, it remains difficult to quantify the degree of concavity and to confirm the correlation with the current classical spirometry parameters. Some new parameters describing the concave shape have been put forward, such as the "angle beta,"^{18,19} "slope ratio,"²⁰⁻²² and the "area under the maximal expiratory flowvolume curve."^{10-12,23-26}

 AUC_3/AT_3 as a Surrogate for FEV_1/FVC in Inadequate Spirometry

Table 2.	The Agreements Between the AUC ₃ /at ₃ and FEV ₁ /FVC and Between the FEV ₁ /FEV ₃ and FEV ₁ /FVC for the Identification of Airway
	Obstruction as Defined by the Gold and LLN Criteria (Kappa Tests)

	GOLD Criterion		LLN C	17	D	
	$\overline{\text{FEV}_1/\text{FVC}} < 0.70$	$\text{FEV}_1/\text{FVC} \ge 0.70$	FEV ₁ /FVC < LLN	$FEV_1/FVC \ge LLN$	Kappa	Р
$AUC_{3}/AT_{3} < 0.70$	199	24			0.72	<.001
$AUC_3/AT_3 \ge 0.70$	31	146				
$AUC_3/AT_3 < LLN$			202	22	0.67	<.001
$AUC_3/AT_3 \ge LLN$			43	133		
FEV ₁ /FEV3 ₃ < 0.70	134	0			0.54	<.001
$\text{FEV}_1/\text{FEV}_3 \ge 0.70$	96	170				
FEV ₁ /FEV3 ₃ < LLN			141	0	0.51	< 0.001
$FEV_1/FEV3_3 \ge LLN$			104	155		

FEV₃ = forced expiratory volume in 3 second

 AUC_3 = the area under the descending limb of expiratory flow-volume curve before the end of the first 3 seconds

 AT_3 = the area of triangle before the end of the first 3 seconds

GOLD = Global initiative for Chronic Obstructive Lung Disease

LLN = lower limit of normal

Table 3.Sensitivity, Specificity, PPV, NPV and DiagnosticAccuracy of the AUC₃/at₃ for the Diagnosis of AirwayObstruction Based on the Two Criteria

Sensitivity	Specificity	PPV	NPV	DA
86.5%	85.9%	89.2%	82.5%	86.3%
58.3%	100%	100%	63.9%	76.0%
82.4%	85.8%	90.2%	75.6%	83.8%
57.6%	100%	100%	52.1%	74.0%
			curve before	the end
	86.5% 58.3% 82.4% 57.6% ve values ive values cy the descending I	86.5% 85.9% 58.3% 100% 82.4% 85.8% 57.6% 100% ve values ive values ccy the descending limb of expiratory	86.5% 85.9% 89.2% 58.3% 100% 100% 82.4% 85.8% 90.2% 57.6% 100% 100% ve values ive values ive values	86.5% 85.9% 89.2% 82.5% 58.3% 100% 100% 63.9% 82.4% 85.8% 90.2% 75.6% 57.6% 100% 100% 52.1% ve values ive values cy the descending limb of expiratory flow-volume curve before

 AT_3 – the area of thangle before the end of the first 5 LLN = lower limit of normal

GOLD = Global initiative for Chronic Obstructive Lung Disease

The purpose of this study was to identify a method to discriminate airway obstruction from normal expiration in subjects with an incomplete spirometry of >3 s but <6 s. The above parameters require complete exhalation, so we constructed a new parameter that is independent of FVC to describe the maximal expiratory flow-volume curve pattern. Our study results demonstrate that this new AUC₃/AT₃ parameter is strongly correlated with the FEV₁/FVC, and the difference between the 2 indices is minimal, as demonstrated in the scatter diagram (Fig. 2A). Our study further demonstrated strong agreement between the AUC₃/AT₃ and FEV₁/FVC in the detection of airway obstruction based on the fixed ratio or the lower limit of normal. Thus, the AUC₃/AT₃ offers a good practical value for patients who cannot complete a full expiration.

However, this surrogate parameter should be applied appropriately. The FEV₁/FVC remains the accepted standard criterion for defining airway limitation, and we should encourage patients to achieve satisfactory spirometry FVC maneuvers (we should even ask patients to return for second measurements when full exhalation may be possible). Technician training can also contribute to the quality of spirometry.³ The major merit of the new 3-s index is its reasonable accuracy in interpreting incomplete spirometry results from subjects who cannot blow for ≥ 6 s after their best attempts. Among the 100 healthy subjects, none had an $FEV_1/FVC < 0.70$, but there were 2 subjects with FEV_1/FVC values below the lower limit of normal. The diagnostic accuracies were 100% (GOLD criterion) and 98% (lower limit of normal criterion) between the FEV₁/FEV₃ and FEV₁/FVC and 96% (GOLD criterion) and 95% (lower limit of normal criterion) between the AUC₃/AT₃ and FEV₁/FVC. In our study, there were 25 subjects who exhibited expirations of <6 s with a valid expiratory plateau. These subjects were primarily young people or subjects with restrictive ventilatory defects. The FEV₁/FVC values of these 25 subjects were much greater than 0.70 or their own lower limits of normal. The diagnostic accuracy was 100% between the FEV₁/FEV₃ and FEV₁/FVC, but this value was 96% between the AUC₃/AT₃ and FEV₁/FVC according to the GOLD criterion. Thus, this new parameter exhibited no advantage over the FEV1/FEV3 among healthy subjects and the subjects whose expirations were objectively < 6 s.

There were 215 subjects with FEV_1/FVC values that ranged between 0.60 and 0.80. In this group, the sensitivity and specificity of the AUC₃/AT₃ were 74.5 and 78.0%, respectively, according to the GOLD criterion. It is common for sensitivity or specificity of any diagnostic index to be low when it is assessed separately for the area near the cutoff

point for any diagnostic index. The results near the cutoff point require careful interpretation by practitioners.

Additionally, the completeness of expiration is difficult to judge in some situations. The expiratory flows of some patients with severe airway obstruction are so slow that the FVC is likely to be under-recorded.¹ A lower than anticipated FVC leads to a larger FEV₁/FVC, which may represent a false negative. Townsend et al7 demonstrated that subjects with severe obstructions are misclassified even after 6 s of expiration. For the 4 subjects with low FEV₁/FVC values (0.504 ± 0.058) , the mean FEV₁/FVC values were overestimated as 0.693 (after 3 s), 0.590 (after 6 s) and 0.541 (after 10 s).7 The AUC₃/AT₃ also can be used as a reference index to detect an incomplete exhalation. When the FEV₁/FVC is significantly greater than the AUC₃/AT₃, the slow vital capacity or total lung volume should be measured. Currently, the FEV₃ and the expiratory flow-volume area can be recorded with many spirometers. Therefore, the AUC₃/AT₃ can also be calculated automatically and reported with the help of the manufacturers of spirometers. Thus, we encourage these manufacturers to include the option of reporting the AUC₃/AT₃, and we encourage the analysis of existing spirometry databases to establish normal values and lower limits of normal for the AUC₃/AT₃.

Although the correlation between the FEV₁/FEV₃ and FEV₁/FVC was very strong, this finding resulted from the derivation of the 2 indices from the same data. The FEV₃ is inevitably less than or equal to the FVC, and it differs more in subjects with severe obstructive air-flow limitation (Fig. 2B). Townsend et al⁷ demonstrated that the FEV₁/FVC is overestimated when using the FEV₃ instead of the FVC, and this deviation increases with the severity of obstruction. Mehrparvar et al⁸ also demonstrated the low sensitivity of the FEV₁/FEV₃ when used as a surrogate for the FEV₁/FVC in the diagnosis of airway obstruction. We reached the same conclusion in the present study. However, the FEV₁/FEV₃ could serve as an exclusion index due to its high specificity.

The present study has some limitations. First, the proportion of subjects with airway obstruction in our study was obviously greater than that in the general population because our population comprised people who visited the hospital with dyspnea. Therefore, the negative predictive value was lower and the positive predictive value was higher than the values in the general population. These differences should be considered if the AUC₃/AT₃ is to be used as a screening index. Second, some subjects who could complete expiration also exhibited incomplete inhalations, and the influence of these cases on the AUC₃/AT₃ was not investigated in this study. Thus, subgroup analysis is required in further studies. Third, the index defined by 3 s seems to be more repeatable in subjects than the FEV₁/FVC because it provides a more explicit end, and

the test becomes less physically demanding. However, the within-subject repeatability for the new index requires further prospective study.

Conclusions

The AUC₃/AT₃ can be utilized as a surrogate parameter for the FEV₁/FVC when patients cannot complete a 6-s expiratory effort. This index is more effective than the FEV₁/FEV₃ in the identification of airway limitation.

REFERENCES

- Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J 2005;26(5):948-968.
- Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J 2005;26(2):319-338.
- Eaton T, Withy S, Garrett JE, Mercer J, Whitlock RM, Rea HH. Spirometry in primary care practice: the importance of quality assurance and the impact of spirometry workshops. Chest 1999;116(2): 416-423.
- Allen S, Yeung P, Janczewski M, Siddique N. Predicting inadequate spirometry technique and the use of FEV₁/FEV₃ as an alternative to FEV₁/FVC for patients with mild cognitive impairment. Clin Respir J 2008;2(4):208-213.
- Lutfi MF. Acceptable alternatives for forced vital capacity in the spirometric diagnosis of bronchial asthma. Int J Appl Basic Med Res 2011;1(1):20-23.
- Ioachimescu OC, Venkateshiah SB, Kavuru MS, McCarthy K, Stoller JK. Estimating FVC from FEV₂ and FEV₃: assessment of a surrogate spirometric parameter. Chest 2005;128(3):1274-1281.
- Townsend MC, Du Chene AG, Fallat RJ. The effects of underrecorded forced expirations on spirometric lung function indexes. Am Rev Respir Dis 1982;126(4):734-737.
- Mehrparvar AH, Rahimian M, Mirmohammadi SJ, Gheidi A, Mostaghaci M, Lotfi MH. Comparison of FEV₃, FEV₆, FEV₁/FEV₃ and FEV₁/FEV₆ with usual spirometric indices Respirology 2012;17(3): 541-546.
- Wildhaber JH, Sznitman J, Harpes P, Straub D, Möller A, Basek P, Sennhauser FH. Correlation of spirometry and symptom scores in childhood asthma and the usefulness of curvature assessment in expiratory flow-volume curves. Respir Care 2007;52(12):1744-1752.
- Majak P, Cichalewski L, Ożarek-Hanc A, Stelmach W, Jerzyńska J, Stelmach I. Airway response to exercise measured by area under the expiratory flow-volume curve in children with asthma. Ann Allergy Asthma Immunol 2013;111(6):512-515.
- Zapletal A, Hladíková M, Chalupová J, Svobodová T, Vávrová V. Area under the maximum expiratory flow-volume curve: a sensitive parameter in the evaluation of airway patency. Respiration 2008; 75(1):40-47.
- Seppälä OP. Reproducibility of methacholine induced bronchoconstriction in healthy subjects: the use of area under the expiratory flow-volume curve to express results. Respir Med 1990;84(5):387-394.
- Lee J, Lee CT, Lee JH, Cho YJ, Park JS, Oh YM, et al. Graphic analysis of flow-volume curves: a pilot study. BMC Pulm Med 2016; 16:18.
- 14. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age

Copyright (C) 2016 Daedalus Enterprises ePub ahead of print papers have been peer-reviewed, accepted for publication, copy edited and proofread. However, this version may differ from the final published version in the online and print editions of RESPIRATORY CARE

AUC₃/AT₃ AS A SURROGATE FOR FEV₁/FVC IN INADEQUATE SPIROMETRY

range: the global lung function 2012 equations. Eur Respir J 2012; 40(6):1324-1343.

- Mohamed Hoesein FA, Zanen P, Lammers JW. Lower limit of normal or FEV₁/FVC < 0.70 in diagnosing COPD: an evidence-based review. Respir Med 2011;105(6):907-915.
- Wollmer P, Engström G. Fixed ratio or lower limit of normal as cut-off value for FEV₁/VC: an outcome study. Respir Med 2013; 107(9):1460-1462.
- 17. Arkin CF, Wachtel MS. How many patients are necessary to assess test performance? JAMA 1990;263(2):275-278.
- Kapp MC, Schachter EN, Beck GJ, Maunder LR, Witek TJ Jr. The shape of the maximum expiratory flow volume curve. Chest 1988; 94(4):799-806.
- Schachter EN, Kapp MC, Maunder LR, Beck G, Witek TJ. Smoking and cotton dust effects in cotton textile workers: an analysis of the shape of the maximum expiratory flow volume curve. Environ Health Perspect 1986;66:145-148.
- Omland O, Sigsgaard T, Pedersen OF, Miller MR. The shape of the maximum expiratory flow-volume curve reflects exposure in farming. Ann Agric Environ Med 2000;7(2):71-78.

- Kraan J, van der Mark TW, Koëter GH. Changes in maximum expiratory flow-volume curve configuration after treatment with inhaled corticosteroids. Thorax 1989;44(12):1015-1021.
- Mead J. Analysis of the configuration of maximum expiratory flowvolume curves. J Appl Physiol Respir Environ Exerc Physiol 1978; 44(2):156-165.
- 23. Vermaak JC, Bunn AE, de Kock MA. A new lung function index: the area under the maximum expiratory flow-volume curve. Respiration 1979;37(2):61-65.
- Trzaska-Sobczak M, Pierzchala W. [Prediction of exercise capacity in chronic obstructive pulmonary disease patients on the basis of maximum expiratory flow-volume curve]. Pneumonol Alergol Pol 2007;75(3):213-218.
- 25. Struthers AD, Addis GJ. Respiratory function measurements in clinical pharmacological studies including an assessment of the area under the MEFV curve as a new parameter in chronic bronchitic patients. Eur J Clin Pharmacol 1988;34(3):277-281.
- Kawamoto H, Kimura T, Kambe M, Miyamura I, Kuraoka T. [Significance of area under the flow volume curve: useful index of bronchial asthma]. Arerugi 1999;48(7):737-740.