Case Reports

Inhaled Nitric Oxide for Acute Right-Ventricular Dysfunction After Extrapleural Pneumonectomy

Evans R Fernández-Pérez MD, Mark T Keegan MRCPI, and Barry A Harrison FANZCA FRACP

Increased pulmonary vascular pressure and decreased right-ventricular performance may occur following pneumonectomy. Inhaled nitric oxide decreases right-ventricular afterload and improves cardiac index by selectively decreasing pulmonary vascular resistance without causing systemic hypotension. We report the use of inhaled nitric oxide in a patient with acute right-ventricular dysfunction after extrapleural pneumonectomy.

Key words: pulmonary vascular pressure, ventricle, pneumonectomy, inhaled nitric oxide, afterload, cardiac index, pulmonary vascular resistance, hypotension. [Respir Care 2006;51(10):1172–1176. © 2006 Daedalus Enterprises]

Introduction

Malignant pleural mesothelioma is associated with a high mortality rate.¹ Extrapleural pneumonectomy, which, in addition to pneumonectomy, involves extensive resection of lymph nodes, pericardium, diaphragm, and chest wall, offers potential for cure. Hemodynamic complications associated with pneumonectomy are still a major problem.²⁻⁴ The literature has consistently shown acute right-ventricular dysfunction to be an important risk factor for early postoperative morbidity.⁵⁻⁷ Postoperative acute right-ventricular dysfunction can be minimized by prompt diagnosis and optimizing right-ventricular work by selectively decreasing pulmonary vascular resistance. This report discusses the pathophysiology and the role of inhaled nitric oxide (INO) in the treatment of acute right-ventricular dysfunction after extrapleural pneumonectomy.

Case Summary

A 41-year-old woman presented with a malignant pleural mesothelioma. Five months of gemcitabine and cisplatin chemotherapy led to tumor shrinkage. She had a history of non-Hodgkin’s lymphoma, treated 20 years previously with chemotherapy and radiotherapy to the chest. A stent had been placed in the left subclavian vein, because of an occlusion secondary to extrinsic compression by mesothelioma. Transthoracic echocardiogram showed normal left and right ventricular function, with normal right-ventricular and pulmonary-artery pressures (Fig. 1A). Pulmonary function testing showed only a mild restrictive defect. Imaging techniques showed the tumor to be resectable, and the patient underwent a left thoracotomy. Because of pleural, pericardial, and chest-wall involvement, an extrapleural pneumonectomy was performed. The surgery lasted 6 h, and the estimated blood loss was 700 mL, which was replaced with a combination of crystalloid and colloid. Despite intraoperative episodes of hypotension related to hypovolemia and great-vessel compression, the patient was extubated following completion of the procedure.

Her postoperative electrocardiogram showed postpericardiotomy changes, without evidence of myocardial ischemia. She was transferred to a monitored intermediate-care area. Anticoagulation with warfarin was begun on the third postoperative day, because of the presence of the left subclavian stent. On postoperative day 9 the patient developed progressive dyspnea. A chest radiograph showed a large left hydrothorax. A left chest tube was inserted, which drained 1,700 mL of serosanguinous fluid. Despite initial relief, 4 h later the patient became increasingly short of breath and subsequently became unresponsive. Cardiopulmonary resuscitation was started for pulseless electrical activity arrest. The patient was intubated and ventilated, and responded to chest compressions, intravenous fluids, and pressor medications,
including epinephrine. After transfer to the intensive care unit, arterial and pulmonary-artery catheters were inserted. The pulmonary-artery catheter showed high pulmonary vascular resistance and low cardiac index. An epinephrine infusion was used to maintain blood pressure as volume was being administered. Four units of packed red blood cells were administered for a hemoglobin concentration of 6 mg/dL, and 4 units of fresh frozen plasma, for an international normalized ratio of 2.6. A chest radiograph showed a clear right lung and small left-sided pleural effusion (Fig. 2). Myocardial enzymes and electrocardiogram did not indicate myocardial infarction. An emergency transthoracic echocardiogram showed the right heart to be massively enlarged, with marked reduction in right-ventricular systolic function (Fig. 1B). The entire right-ventricular wall was akinetic. The right atrium was also enlarged. The tricuspid signal was so diffuse that right-ventricular pressure could not be measured. There was no left-ventricular or other valvular abnormality, and, in fact, the left ventricle was hyperdynamic. There was no evidence of a patent foramen ovale. Because of the right-ventricular dysfunction, we started INO (at 20 ppm) to decrease the right-ventricular afterload. Pulmonary vascular resistance decreased...
and cardiac index increased with INO. Intravenous dobutamine was also initiated to increase right-ventricular function. The epinephrine infusion that had been started on arrival to the intensive care unit was continued, for inotropic and pressor effects.

Table 1 shows the initial response to INO and the progressive improvement in the patient’s hemodynamics. The patient was weaned from the epinephrine infusion over the next 24 h, and the INO was discontinued approximately 60 h after initiation. Other pressor medications were weaned over the course of the next few days. A thoracic duct leak, pericardial and pleural effusions, and respiratory failure ultimately requiring tracheostomy further complicated the patient’s course, but she eventually left the hospital approximately 6 weeks after the surgery. A transthoracic echocardiogram performed 3 weeks after her cardiac arrest showed normal right-ventricular size and function (see Fig. 1C).

Discussion

Acute right-ventricular dysfunction results from right-ventricle infarction and/or increase in right-ventricular af-
terload. Compared to the left heart, the right heart is at increased risk of failure in response to an increase in afterload. The right ventricle is anatomically adapted for the generation of a sustained low-pressure perfusion, which is possible because of the low resistance and high compliance of the pulmonary vascular bed. Increased right-ventricular afterload prolongs the isovolumetric contraction phase and ejection time and augments wall-tension and myocardial oxygen consumption. Acute right-ventricular dilatation, with a resultant shift of the intraventricular septum, causing compression of the left ventricle, results in a decrease in left-ventricular end-diastolic volume. Eventually, left-ventricular failure will result because of ventricular interdependence.

The post-pneumonectomy state plays an important role in the etiology of right-ventricular failure when a patient is hypovolemic. After a pneumonectomy, the right heart is dysfunctional. This dysfunction, thought to be due to increased afterload, worsens in the first 3 postoperative days. In an animal model of hemorrhagic shock, the post-pneumonectomy state led to higher mortality than in animals without pulmonary resection. The higher mortality was due to right-ventricular dysfunction and increased pulmonary vascular resistance. In our patient, hypovolemia (caused by the removal of serosanguinous fluid from the left chest) coupled with mediastinal shift that may have kinked the great vessels, causing right-ventricular dysfunction, led to acute right-heart failure and cardiac arrest.

Treatment of acute right-heart syndrome consists of optimizing preload in an attempt to maximize forward flow out of the right ventricle, to support the function of the right ventricle and decrease right-ventricular afterload. In the operating room, percutaneous cardiopulmonary bypass has been used to provide mechanical support to the right ventricle. Additionally, inotropic agents, such as dobutamine and milrinone, may be useful in the support of the failing right heart. In an animal model of acute right-heart failure and hypotension, norepinephrine increased right-ventricular blood flow and contractility while decreasing pulmonary vascular resistance.

INO is a selective pulmonary vasodilator. The pulmonary vascular relaxant action of this compound results from binding to the heme moiety of cytosolic guanylate cyclase, activating guanylate cyclase and increasing intracellular levels of cyclic guanosine monophosphate, which reduces intracellular calcium concentration in vascular smooth muscle and leads to vasodilation. INO decreases pulmonary vascular resistance, offloading and improving the right-ventricular stroke work.

INO has been approved by the United States Food and Drug Administration for the treatment of hypoxic respiratory failure with associated pulmonary hypertension of the term and near-term newborn. Although there is no compelling data to justify advocating INO for other indications, a European expert panel identified a variety of medical conditions in which INO is a reasonable rescue treatment in patients with severe acute pulmonary hypertension and/or severe refractory arterial hypoxemia. INO has been effective in “off-label” treatment of right-ventricular dysfunction. In the case of a patient with idiopathic pulmonary fibrosis who developed severe right-ventricular failure following a perioperative cardiac arrest, INO improved oxygenation and hemodynamic variables, and the patient survived. When administered to hemodynamically stable patients with acute respiratory distress syndrome, INO reduced right-ventricular end-diastolic volume and increased right-ventricular ejection fraction and mixed venous oxygen saturation.

Bhorade et al reported the use of INO in 26 patients in the intensive care unit with acute right-heart failure with subsequent increase in cardiac output and stroke volume related to decreases in pulmonary vascular pressure and resistance.

In a retrospective review, a group of 17 post-cardiac-surgery patients with pulmonary hypertension treated with INO showed a significant decrease in pulmonary-artery pressure and improvement in right-ventricular work. Similarly, INO has proven useful in the management of patients with chronic obstructive pulmonary disease and pulmonary hypertension, pulmonary embolism, post-pneumonectomy pulmonary edema, and post-traumatic pneumonectomy.

In conclusion, the influence of a pneumonectomy on the development of acute right-ventricular failure, especially in the setting of hypovolemia, is important and challenging. As an addition to conventional medical and surgical support of the right ventricle, the use of INO to reduce right-ventricular afterload is based on sound scientific principles and might be helpful in the management of patients with acute right-ventricular failure after pneumonectomy.

REFERENCES