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Summary

Pulmonary hypertension is a rare disease in neonates, infants, and children, and is associated with
substantial morbidity and mortality. An adequate understanding of the controlling pathophysio-
logic mechanisms is lacking. Moreover, a minority of research is focused specifically on neonatal
and pediatric populations. Although therapeutic options have increased over the past several de-
cades, they remain limited. In advanced pulmonary hypertension, progressive pulmonary vascular
functional and structural changes ultimately cause increased pulmonary vascular impedance, right-
ventricular failure, and death. Management includes the prevention and/or treatment of active
pulmonary vasoconstriction, the support of right-ventricle function, treatment of the underlying
disease (if possible), and the promotion of regressive remodeling of structural pulmonary vascular
changes. Most currently available therapies augment or inhibit factors, or mediators of their
downstream signaling cascades, that originate in the pulmonary vascular endothelium. These path-
ways include nitric-oxide/cyclic guanosine monophosphate (cGMP), prostacyclin, and endothelin-1.
The ability to reverse advanced structural changes remains an as yet unattained goal. This paper
reviews the epidemiology, pathophysiology, current treatments, and emerging therapies related to
neonatal and pediatric pulmonary hypertension. Key words: pulmonary hypertension; pediatric; neo-
natal; children; infants; endothelium; pulmonary vascular disease; rho kinase; ROCK. [Respir Care
2011;56(9):1314-1339. © 2011 Daedalus Enterprises]
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Introduction

Pulmonary hypertension (PH) is defined as a mean pul-
monary artery pressure (PAP) of = 25 mm Hg at rest. This
straightforward hemodynamic definition belies the diver-
sity of conditions that can cause or contribute to the de-
velopment of PH in neonates, infants, and children (Ta-
ble 1). Unfortunately, an adequate understanding of the
controlling pathophysiologic mechanisms for most forms
of PH is lacking. Moreover, a minority of PH research is
focused specifically on neonatal and pediatric populations,
in whom outcomes depend on the etiology. Although ther-
apeutic options have increased over the past several de-
cades, they remain limited. In addition, clinically relevant
pulmonary vascular dysfunction that precedes a substan-
tial increase in PAP may be important in subsets of pa-
tients. Therefore, when reviewing recent advances in the
management of PH, it is useful to place the discussion
within the context of an expanding appreciation of the
underlying pulmonary vascular biology, since perhaps the
most promising advances are just emerging.

Clinical Classification and Etiology

As evident by the evolution of clinical classification
schemes over the past 40 years, PH is not a single entity.
The initial classification endorsed by the World Health
Organization (WHO) in 1973 divided PH into only 2 cat-
egories: primary and secondary. The most recent classifi-
cation, which followed the 4th world symposium on PH in
2008, divided PH into 5 groups and 27 subgroups (see
Table 1).! The rationale for the increasing subdivisions
was to group patients who are similar in terms of clinical
and pathophysiologic features and response to therapy.

The prevalence of PH in pediatric patients is not known
precisely. A recent report from the United Kingdom Pul-
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monary Hypertension Service for Children described 64
children with idiopathic PH.? From that cohort, the inci-
dence of idiopathic PH was estimated to be 0.48 cases per
million children per year, with a prevalence of 2.1 cases/
million. Survival was reported to be 89%, 84%, and 75%
at 1 year, 3 years, and 5 years, respectively. Factors pre-
dicting decreased survival included WHO functional class,
and failure to thrive (based on height and weight z-score)
at presentation. A French registry that captured 50 chil-
dren, with a mean age of 8.9 years, between 2005 and
2006, estimated the prevalence of PH to be 3.7 cases/
million.? In that cohort, 60% had idiopathic PH, 24% had
PH associated with congenital heart disease, and 10% had
familial PH.3 An earlier report from the United Kingdom
Pulmonary Hypertension Service for Children, from 2001
to 2006, described 216 children with PH.# In that cohort,
28% of the patients had idiopathic PH, with a mean age at
presentation of 7.37 years. Of those with associated PH
(72%, mean age at presentation 7.9 years), 31% had Eisen-
menger physiology, 30% had postoperative PH, 19% had
PH associated with lung disease, 9% had PH associated
with miscellaneous disorders (including human immuno-
deficiency virus [HIV]), bone marrow transplant, and met-
abolic disease, 6% had connective-tissue disease, and 5%
had PH associated with complex un-operated or palliated
congenital heart disease.* Between 1999 and 2005, a Swiss
registry enrolled patients with PH and identified 23 pa-
tients ages 0 to 18 years, with a mean age at diagnosis of
3 years.> Of those patients, 52% had PH associated with
congenital heart disease, 35% had idiopathic PH, and 13%
had PH associated with pulmonary diseases. Similarly, 2
relatively large series (one European, the other 2 in the
United States) that enrolled pediatric PH patients for drug-
treatment trials described similar PH classification distri-
butions.®7?

In the neonatal population, persistent pulmonary hyper-
tension of the newborn (PPHN) warrants particular atten-
tion. The incidence of PPHN is approximately 2 per 1,000
live births.® PPHN can be a primary disorder of the fetal
pulmonary circulation, or secondary to pathologic pro-
cesses that cause a maladaptive transition from the fetal to
the neonatal circulation, such as meconium aspiration or
surfactant deficiency, or diseases that result in abnormal-
ities of lung development, such as congenital diaphrag-
matic hernia.’

In addition, there is an association between pulmonary
arterial hypertension (PAH) and chronic hemolytic ane-
mia, especially sickle-cell disease. The distinction between
PAH and PH related to elevated pulmonary venous pres-
sure, however, is less clear. Estimates of PAP based on
echocardiographic measurements of tricuspid regurgitation
jet velocity have indicated that approximately 30% of pa-
tients with sickle-cell disease have PH.!0.11 However, cath-
eter-based data indicated that almost half of the patients
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Table 1.  Clinical Classification of Pulmonary Hypertension

1. Pulmonary Arterial Hypertension
1.1 Idiopathic pulmonary arterial hypertension
1.2 Heritable
1.2.1 Bone morphogenetic protein receptor 2 (BMPR2)
1.2.2 Activin-like kinase type-1 receptor (ALK-1), endoglin
(with and without hereditary hemorrhagic telangiectasia)
1.2.3 Unknown
1.3 Drug-induced and toxin-induced
1.4 Associated with
1.4.1 Connective tissue disease
1.4.2 Human immunodeficiency virus infection
1.4.3 Portal hypertension
1.4.4 Congenital heart diseases
1.4.5 Schistosomiasis
1.4.6 Chronic hemolytic anemia
1.5 Persistent pulmonary hypertension of the newborn
1'. Pulmonary veno-occlusive disease and/or pulmonary capillary
hemangiomatosis
2. Pulmonary hypertension owing to left heart disease
2.1 Systolic dysfunction
2.2 Diastolic dysfunction
2.3 Valvular disease
3. Pulmonary hypertension associated with lung disease and/or
hypoxemia
3.1 Chronic obstructive pulmonary disease
3.2 Interstitial lung disease
3.3 Other pulmonary diseases with mixed restrictive and obstructive
pattern
3.4 Sleep-disordered breathing
3.5 Alveolar hypoventilation disorders
3.6 Chronic exposure to high altitude
3.7 Developmental abnormalities
4. Chronic thromboembolic pulmonary hypertension
5. Pulmonary hypertension with unclear multifactorial mechanisms
5.1 Hematologic disorders: myeloproliferative disorders,
splenectomy
5.2 Systemic disorders: sarcoidosis, pulmonary Langerhans cell
histiocytosis
5.3 Metabolic disorders: glycogen storage disease, Gaucher disease,
thyroid disorders
5.4 Other: tumoral obstruction, fibrosing mediastinitis, chronic renal
failure on dialysis

(Adapted from Reference 1.)

with PH had elevated pulmonary venous pressure or hy-
perkinetic states that resulted in elevated PAP with normal
pulmonary vascular resistance (PVR).!0 A recent study of
50 pediatric patients with sickle-cell disease used Doppler
echocardiography combined with respiratory mass spec-
trometry to calculate pulmonary blood flow and stroke
index, and to estimate PVR. Forty-four percent of the chil-
dren with sickle-cell disease had a tricuspid jet velocity of
= 2.5 m/s (the definition of PH in the study), compared to
6% of age-matched normal controls. However, right-ven-
tricular stroke volume was higher and PVR was lower in
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patients with sickle-cell disease and PH, compared to con-
trols.!?

Finally, it is important to recognize that patients may
have substantial pulmonary vascular disease without hav-
ing a resting PAP that meets the definition of PH.'3 For
example, patients with congenital cardiac defects resulting
in either increased pulmonary blood flow or impaired pul-
monary venous drainage are prone to episodes of acute
reactive pulmonary vasoconstriction that can result in cat-
astrophic cardiopulmonary collapse, particularly in the
postoperative period after cardiopulmonary bypass.!4!3

Pathophysiology

The pathophysiology of PH is multifactorial, complex,
and incompletely understood. Various etiologies are asso-
ciated with different particular mechanisms of disease, and
a unifying construct has not been identified. However,
several pathways common to a number of etiologies have
been elucidated and have been leveraged in the develop-
ment of novel and effective therapies.

Hemodynamics and Morphology

From a hemodynamic standpoint, the morbidity and mor-
tality associated with PH relates to increased right-ventric-
ular afterload. Over time, compensatory mechanisms fail,
leading to right-heart failure and death. It is important to
note that the tempo of this clinical sequence differs across
etiologies and individual patients. For example, right-ven-
tricular failure can develop rapidly in an infant following
cardiac surgery (ie, postoperative pulmonary hypertensive
crisis) or may progress over years in other patients (eg,
Eisenmenger syndrome).

Although right-ventricular failure is a common final out-
come in patients with PH, the pulmonary vascular changes
are more diverse and relate to the specific etiology. This is
important when considering available therapies, since ther-
apies appropriate for one patient group may be deleterious
for another. For example, inhaled nitric oxide (INO) may
be effective for patients suffering from acute pulmonary
arteriolar constriction (eg, PAH, PH owing to lung disease
and/or hypoxia), but may be entirely ineffective or even
harmful in patients with pulmonary veno-occlusive dis-
ease or left-heart failure.!¢-18

Among the various PH groups, the mechanisms that
result in increased right-ventricular afterload are best un-
derstood in PAH. However, left-heart disease is a common
cause of PH, at least in adults,!® in whom elevated PAP
relates to the transmission of elevated left-atrial pressure.
PVR may be normal. Although subsets of patients with
left-heart disease develop PAH, the associated mechanisms
are less well understood, and specific therapies for these
patients have not been adequately studied.??-23 Likewise,
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the pulmonary vascular changes associated with pulmo-
nary veno-occlusive disease, pulmonary capillary heman-
giomatosis, and congenital cardiac defects associated with
pulmonary venous obstruction are less well studied, but
there are probably important differences from pathologies
localized to the precapillary pulmonary vascular bed.24-2¢

In PAH, increased right-ventricular afterload relates to
increased PVR and decreased compliance.?”?®8 Whereas
historically hemodynamic assessments focused on mea-
suring PAP and calculating PVR in PH patients, recent
data have demonstrated value in measuring pulmonary vas-
cular impedance, which combines resistance and compli-
ance. In fact, some studies have found that impedance
better predicts outcomes in PH patients than isolated mea-
surements of PVR.29-31

Increased PVR and decreased compliance in PAH relate
to several basic mechanisms: increased pulmonary vascu-
lar reactivity, sustained pulmonary vasoconstriction, vas-
cular remodeling, and luminal obstruction due to in situ
thrombosis and/or obstructive neointimal and plexiform
lesions. Vascular remodeling involves changes of the me-
dium and small pulmonary arteries, including medial wall
hypertrophy, adventitial thickening, endothelial prolifera-
tion, and the abnormal extension of muscularization to
normally non-muscular distal pulmonary arteries. These
vascular changes tend to progress in a stepwise fashion,
and in severe disease obliterate portions of the pulmonary
circulation at the level of the distal precapillary resistance
arterioles. It is recognized that this sequence represents a
pathologic framework, but that substantial heterogeneity
exists in terms of the precise pathology of PAH.3? Fur-
thermore, the degree to which these changes are reversible
remains unclear, but probably depends in part upon the
etiology, and may be influenced by age.?? For example, in
a seminal study, Rabinovitch and colleagues demonstrated
that age at surgery, lung morphometric analysis, and the
Heath-Edwards system grade predicted the reversibility of
structural and functional pulmonary vascular changes sec-
ondary to congenital cardiac defects with increased pul-
monary blood flow after surgical repair.?* In addition, it
must be remembered that even early reversible pulmonary
vascular disease can contribute to morbidity and mortality.
An important study by Celermajer and colleagues, for ex-
ample, demonstrated that children with increased pulmo-
nary blood flow due to intracardiac shunting had impaired
endothelium-dependent pulmonary vascular relaxation be-
fore their baseline PAP or PVR had significantly in-
creased.!3

PH associated with lung disease and/or hypoxemia is
associated with vascular remodeling similar to PAH, but
advanced obstructive plexiform lesions are less common.
As expected, chronic thromboembolic PH is caused pri-
marily by intraluminal obstruction.
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Fig. 1. Some endothelial-derived factors. These factors may in-
crease and/or decrease smooth-muscle cell contraction.
PGl, = prostaglandin |,. PLA, = phospholipase A,. AA = arachi-
donic acid. COX = cyclo-oxygenase. TXA, = thromboxane A,.
L-Arg = L-arginine. L-Cit = L-citrulline. NOS = nitric oxide syn-
thase. ET-1 = endothelin-1. ECE =endothelin converting enzyme.
ET, = endothelin Areceptor. ETg = endothelin B receptor. NO = ni-
tric oxide. sGC = soluble guanylate cyclase. GTP = guanosine-
5'-triphosphate. cGMP = cyclic guanosine-3’-5" monophosphate.
AC = adenylate cyclase. ATP = adenosine-5'-triphosphate.
cAMP = cyclic adenosine-3’-5'-monophosphate. PKA = protein
kinase A. PKG = protein kinase G. PLC = phospholipase C.
AMP = adenosine monophosphate. PDE = phosphodiesterase
(type 3 and 5 shown). K* = potassium channels. DAG = diacyl
glycerol.

Pulmonary Vascular Endothelium

Over the past 3 decades, an expansive body of literature
has developed that has firmly established the central role
of the pulmonary vascular endothelium in the pathophys-
iology of PH. In 1980, Furchgott and Zawadzki demon-
strated for the first time the obligatory role of the vascular
endothelium in systemic arterial smooth-muscle relaxation
in response to acetylcholine.?> Subsequently it was shown
that systemic and pulmonary vascular endothelial cells elab-
orate a number of factors that mediate both vascular smooth-
muscle cell relaxation and constriction (Fig. 1).

It is now accepted that increased pulmonary vasocon-
striction in PH is mediated in large part by aberrant endo-
thelial function, wherein endogenous vasodilators, such as
nitric oxide and prostacyclin (PGIL,), are decreased while
endogenous vasoconstrictors, such as ET-1 and serotonin
(5-HT), are increased (see Fig. 1).34! Indeed, the majority
of approved therapies for PH target these endothelial-de-
rived factors or their signaling pathways.

Nitric oxide is produced in the vascular endothelium by
the enzyme endothelial nitric oxide synthase (eNOS), from
the precursor L-arginine. Once formed, nitric oxide dif-
fuses into the adjacent smooth-muscle cell and activates
soluble guanylate cyclase (sGC), producing guanosine-3’-
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5'cyclic monophosphate (cGMP), which results in smooth-
muscle cell relaxation through protein kinase G. cGMP is
broken down by a family of phosphodiesterases (PDE).
PDES is prominent in the pulmonary vasculature.

Arachidonic acid metabolism within vascular endothe-
lial cells results in the production of PGI, and thrombox-
ane (TXA,). PGI, activates adenylate cyclase, resulting in
increased cyclic adenosine-3'-5'-monophosphate (cAMP)
production, activation of protein kinase A, and consequent
vasodilation, whereas TXA, results in vasoconstriction via
phospholipase C signaling. PGI, also binds to platelet re-
ceptors, which inhibits their activation.

ET-1 is a 21 amino acid polypeptide that is also pro-
duced by vascular endothelial cells.*> The vasoactive prop-
erties of ET-1 are complex.*3-47 However, its most striking
property is its sustained hypertensive action. The hemo-
dynamic effects of ET-1 are mediated by at least 2 distinct
receptor populations: ET, and ETg.#34° The ET, recep-
tors are located on vascular smooth-muscle cells and me-
diate vasoconstriction, whereas the ETg receptors are lo-
cated on endothelial and smooth-muscle cells and thus
may mediate both vasodilation and vasoconstriction, re-
spectively.

An important area of active research is focused on un-
derstanding the mechanisms responsible for endothelial
injury or dysfunction in PH. Some important mechanisms
include alterations in mechanical forces (such as increased
pulmonary blood flow associated with congenital cardiac
defects, or altered flow velocities that are associated with
areas of luminal narrowing) that result in increased vas-
cular-wall shear stress, hypoxia, oxidative stress, and in-
flammation.>-58 Additional factors that contribute to en-
dothelial injury in some patients include, infection, such as
HIV and schistosomiasis, and injury from drugs or tox-
ins.59—6l

Moreover, endothelial-derived factors, such as NO, PGI,,
and ET-1, are integral to processes beyond the regulation
of vascular smooth-muscle cell tone. Nitric oxide is a key
regulator of vascular homeostasis and also has anti-throm-
botic and anti-proliferative properties. Conversely, the mi-
togenic properties of ET-1 are well described. Indeed, en-
dothelial injury or dysfunction probably contributes to
alterations in inflammatory cascades, growth factors, and
transcriptional factors that are increasingly recognized as
key mediators of the vascular remodeling associated with
PH.>8 For example, alterations in platelet-derived growth
factor (PDGF) and vascular endothelial growth factor
(VEGF) contribute to abnormal smooth-muscle cell pro-
liferation.®2-%> Experimental models indicate important in-
teractions between these factors. For example, in a rat
model, VEGF inhibition impaired lung growth and re-
sulted in PH: a result that can be reversed with nitric
oxide.°® Finally, a disrupted endothelium is probably re-
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sponsible, at least in part, for an increased propensity for
intravascular thrombosis.

Pulmonary Vascular Smooth Muscle

Considerable efforts have been made to understand the
processes responsible for the smooth-muscle cell hyper-
trophy and proliferation that accompany PH. Some known
mechanisms include increased pericyte differentiation,
smooth-muscle cell migration, endothelial cell transdiffer-
entiation, smooth-muscle cell proliferation, smooth-mus-
cle cell hypertrophy, and inflammation.®”-8 However, in-
creasing attention is now focused on also understanding
potential alterations in the mechanisms that regulate
smooth-muscle cell contraction. Myosin light chain (MLC)
regulates smooth-muscle cell contraction. Myosin light
chain kinase (MLCK) is responsible for the phosphoryla-
tion of MLC, leading to an increase in its activity, and
myosin light chain phosphatase (MLCP) is responsible for
the dephosphorylation of MLC. The activity of MLCK is
regulated by Ca”*-calmodulin binding, so an increase in
intracellular Ca®" increases smooth-muscle cell contrac-
tion. Vasoconstrictors, such as ET-1 and thromboxane,
increase inward Ca’* flux by binding to G-protein cou-
pled receptors.

In addition to Ca®>* concentration increase, contraction
can be augmented by an increase in Ca®" sensitization.
RhoA is a small G-protein that activates downstream ef-
fectors, including the Rho kinases (ROCKSs). One target of
ROCK is myosin phosphatase target subunit (MYPT-1),
which is the regulatory subunit of MLCP. Phosphorylation
of MYPT-1 results in MLCP inhibition, decreased MLC
dephosphorylation, and increased smooth-muscle cell con-
traction, at any given Ca®" concentration. Beyond con-
traction, ROCKSs appear to be important in smooth-muscle
cell differentiation, proliferation, migration, and apopto-
sis.% In fact, ROCKs have been shown to participate in
vascular endothelial processes as well.?® Interest in Rho
kinase inhibitors as a treatment for PH is increasing as
positive results have been obtained from multiple animal
studies.”0-7>

Genetics

It is now clear that underlying genetic abnormalities
participate in the development of PH in some patients.
Most prominently, mutations in bone morphogenetic pro-
tein receptor 2 (BMPR2) are associated with PAH in sub-
sets of patients with and without a family history of dis-
ease.’8! On the other hand, a minority (approximately
20%) of patients with BMPR2 mutations develops PAH,
suggesting that the mutation alone is not sufficient to cause
disease in most cases.3*:82 The bone morphogenetic pro-
teins are members of the transforming growth factor-3
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superfamily.”” The BMPR2 gene is located on chromo-
some 2q33, and multiple mutations have been identified.
Inheritance patterns indicate autosomal dominant disease
with incomplete penetrance and genetic anticipation. Es-
timates of BMPR2 mutation in pediatric PH vary, but a
recent study that included 78 children with idiopathic PH
identified 8 patients with BMPR?2 mutations, and indicated
that in adults and children BMPR2 mutations were asso-
ciated with increased disease severity.33-84 Less common
genetic associations include mutations in the activin-like
kinase type-1 receptor (ALK-1) and endoglin genes.8>-8¢

Management Strategies and Therapeutic Options

The goals of therapy depend on the clinical situation,
but basic elements of PH management can be distinguished
and applied as appropriate. These include the prevention
and/or treatment of active pulmonary vasoconstriction, the
support of right-ventricle function, treatment of the under-
lying disease (if possible), and the promotion of regressive
remodeling of structural pulmonary vascular changes. Of
course these aims are interrelated, but certain therapies
may target one aim more than another in given patients.
Table 2 summarizes the therapies described below.

Prevention and/or Treatment of Active Pulmonary
Vasoconstriction

Increased pulmonary vascular reactivity is an early fea-
ture of PH, which manifests clinically as augmented pul-
monary vasoconstriction in response to such stimuli as
hypoxia, acidosis, catecholamine-mediated «,-adrenergic
stimulation associated with pain and/or agitation, and in-
creases in intrathoracic pressure.87-8°

In critical care settings, acute life-threatening pulmo-
nary hypertensive crises are often first treated with pain
control, sedation, oxygenation, and alkalinization. Studies
in newborn lambs found dose-dependent pulmonary vaso-
dilation in response to increasing pH, from 7.30 to 7.60,
and dose-dependent response to increasing Fig , from 0.21
t0 0.50.% Indeed, recently published clinical practice guide-
lines for the hemodynamic support of pediatric and neo-
natal septic shock specifically address the risk of elevated
PAP/PVR and right-heart failure in neonates with sepsis,
and the potential need for metabolic and respiratory alka-
linization as a part of the initial resuscitation strategy.®!
However, chronically, such therapies can be detrimental.
For example, aggressive hyperventilation and oxygenation
can promote the development of secondary lung injury in
neonates with PPHN.92.93 As such, gentle ventilation, with
mild permissive hypercapnia, lower Fg , and INO with or
without high-frequency ventilation, has become accepted
practice for neonates with severe PPHN.93-95
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Acute selective pulmonary vascular relaxation may be
the primary therapeutic goal in some types of PH, such as
severe PPHN or postoperative PH. On the other hand, in
many other forms of PH, particularly chronic advanced
PH, active vasoconstriction is not a prominent pathologic
feature. For example, studies of pediatric patients with
chronic PH have found a wide range of responsiveness to
acute vasodilator testing, ranging from 7% to 40%.4°¢ The
proportion of adults with chronic PH who respond to acute
vasodilators is probably even less.?”

Endothelial-Based Therapies. The most widely used
PH therapies work by altering one of 3 endothelial signal-
ing cascades: nitric oxide-cGMP, PGI,, or ET-1. Figure 2
is a simplified depiction of the various sites of action of
the therapies.

Nitric Oxide-cGMP Cascade: Inhaled Nitric Oxide.
INO is the best-studied and most widely used agent for
acute selective pulmonary vasodilation. When delivered
via inhalation, nitric oxide diffuses across the alveolus into
the smooth muscle of the accompanying capillary, result-
ing in relaxation. Nitric oxide then diffuses into the blood
vessel, where it is rapidly inactivated by its interaction
with hemoglobin. In this way, the effects of INO are rel-
atively confined to the pulmonary circulation and to ven-
tilated areas of the lung, thus optimizing ventilation-per-
fusion matching. In large trials, INO decreased the need
for extracorporeal life support in neonates with PPHN, and
those data led to INO’s FDA approval.?3-19 Now INO is
used to treat many other forms of PH, and for diagnosis.
For example, several studies have investigated INO in
pediatric patients undergoing cardiac surgery,'>-101-104 and
found INO effective in lowering PAP and PVR in the
postoperative period, but the data were less clear about the
impact on outcome.'%> Likewise, investigators have exam-
ined the utility of INO in the particular situations of bidi-
rectional cavopulmonary connections and after Fontan pro-
cedure.!00-108 In those patients, INO decreased central
venous pressure and transpulmonary gradient, and in-
creased oxygen saturation. In addition, the pulmonary vas-
cular response to INO has been studied as a part of the
assessment for operability in patients with PH associated
with congenital heart disease.!?-!12 Those studies found
that the combination of 100% oxygen and INO (at 80 ppm)
produced maximal pulmonary vasodilation and was more
predictive than either treatment alone for postoperative
outcome.!09-112

Nitric Oxide-cGMP Cascade: PDES Inhibition. Silde-
nafil is a PDES inhibitor, so its mechanism of action is to
augment nitric oxide-cGMP signaling by inhibiting the
degradation of cGMP. Increased cGMP results in pulmo-
nary vascular relaxation. Sildenafil has both pulmonary
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Table 2.  Therapeutic Approach to Pediatric Pulmonary Hypertension

Prevent and/or Treat Pulmonary Vasoconstriction

Oxygen, alkalosis, sedation, pain control
Endothelial-based therapies
Nitric oxide/cyclic guanosine monophosphate (cGMP) cascade
Inhaled nitric oxide
Phosphodiesterase type 5 inhibition: sildenafil, tadalafil,
vardenafil
Arginine and citrulline supplementation
Direct soluble guanylate cyclase activation: riociguat
Prostanoids
Intravenous: epoprostenol, treprostinil
Inhaled: epoprostenol, iloprost, trepostinil
Subcutaneous: treprostinil
Oral: treprostinil, beraprost
Endothelin-1
Non-selective, ET ,/ETg receptor antagonist: bosentan
Selective, ET ,-receptor antagonist: ambrisentan, sitaxsentan*
Combination therapy
Epoprostenol and bosentan
Tloprost and bosentan
Treprostinil and bosentan
Epoprostenol and sildenafil
Tloprost and sildenafil
Bostenan and sildenafil
Novel therapies
Endothelial nitric oxide synthase (eNOS) coupling: cicletanine
Anti-oxidants: superoxide dismutase
Endothelial progenitor cell transfusion
Vasoactive intestinal peptide
Adrenomedullin
Smooth-muscle based therapies
Calcium-channel blockers
Rho kinase inhibition
Support the Right Heart and Improve Cardiac Output
Reduction in right-ventricular afterload

Pulmonary vasodilators (see therapies above)

Inodilators: dobutamine, milrinone, levosimendan
Optimization of right-ventricular volume
Augmentation of right-ventricular contractility

Inotropes: dopamine, epinephrine, dobutamine, milrinone,
levosimendan
Increase systemic vascular resistance

Vasopressors: norepinephrine, phenylephrine, vasopressin
Creation of right-to-left shunt: atrial septostomy, Potts anastomosis

Promote Regression of Pulmonary Vascular Remodeling

Tyrosine kinase inhibition: imatinib, sorafenib

Survivin inhibition
Statins: simvastatin, pravastatin
Peroxisome proliferator-activated receptor agonists: rosiglitazone
Novel Therapies in Development
Dichloroacetate
Gene therapy
Epidermal growth factor receptor inhibitors: PKI166
Rapamycin
Elastase inhibitors

* Off-market
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Fig. 2. Sites of action of some endothelial and smooth-muscle cell
based therapies. Arrows indicate activation. T symbols indicate
inhibition. Terms are as in Figure 1.

and systemic effects, but the importance of this is not yet
entirely clear. For example, systemic peripheral vascular
relaxation could improve cardiac output, but non-specific
pulmonary vascular relaxation could antagonize hypoxic
pulmonary vasoconstriction, worsening hypoxia. In addi-
tion, the effects of PDES inhibition may not be restricted
to the vasculature. For example, a recent study found that
PDES was up-regulated in the hypertrophied right ventri-
cle and that PDES inhibition improved contractility.!'3 Ran-
domized placebo-controlled clinical trials, with one that
included some pediatric patients, found oral sildenafil ef-
fective for the treatment of chronic PAH, in terms of im-
provements in functional outcomes (eg, 6-minute walk),
time to clinical worsening, and hemodynamics.!'4-117 A
study that enrolled 14 children with PH in an open-label
clinical trail of sildenafil found similar results.!!8

Despite limited data, the use of sildenafil in infants and
children with PH after cardiac surgery is increasing. Three
small studies found that enteral sildenafil facilitated wean-
ing from INO in pediatric patients with congenital heart
disease undergoing therapy for postoperative PH.!1-121 The
2 studies of intravenous sildenafil in pediatric patients af-
ter cardiac surgery!?>123 found both that it decreased PAP
and PVR, either to a greater extent than INO or synergis-
tically, but that its use was associated with increased in-
trapulmonary shunt and decreased systemic arterial pres-
sure.

Sildenafil has also been studied in a placebo-controlled,
randomized trial in neonates with severe PPHN.!2* Thir-
teen neonates with an oxygenation index of > 25 received
either placebo or enteral sildenafil. The oxygenation index
decreased by 30 hours in all 7 sildenafil patients, and 6 of
those 7 neonates survived. There was no systemic hypo-
tension in either group. In the placebo group, only 1 of the
6 patients survived. Likewise, in an open-label, dose-es-
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calation trial that included 36 newborns with PPHN and an
oxygenation index > 15 (most of whom were receiving
INO), a continuous intravenous infusion of sildenafil for
2-7 days improved oxygenation index by 4 hours at higher
doses. 2>

Newer PDES inhibitors (ie, tadalafil and vardenafil) of-
fer longer half-lives as the primary potential advantage. In
a recent randomized, placebo-controlled, open label study
that included patients between 12 and 65 years of age with
PAH, vardenafil improved exercise capacity and cardiac
index, and decreased PAP and PVR.!12¢6 However, to date
no studies have been published on younger pediatric PH
patients.

Nitric Oxide-cGMP Cascade: Arginine and Citrulline
Supplementation. The administration of additional sub-
strate for NOS is another approach to augmenting the ni-
tric oxide-cGMP cascade. A study that included 19 adult
patients with PAH, found that oral L-arginine supplemen-
tation improved exercise capacity and hemodynamics.'?’
These results confirmed an earlier study of 10 patients
with PAH, which found that a short-term intravenous in-
fusion of L-arginine produced a short-term decrease in
PAP and PVR.28

L-arginine and citrulline levels are decreased in neo-
nates with PPHN, in adults and children with PH related to
sickle-cell disease, and in infants and children after cardiac
surgery.'?-132 In a small study, 5 neonates with PPHN
received a single dose of intravenous L-arginine, which
decreased the oxygenation index and increased oxygen
saturation.!33 In another study, 10 patients (age range 13—
63 years) with sickle-cell disease were treated with oral
L-arginine for 5 days and had a 15% decrease in estimated
PAP.134

A study that included 20 infants with PH related to
cardiac defects with increased pulmonary blood flow ex-
amined the effects of an infusion of intravenous L-arginine
on hemodynamic variables.'3> Ten patients were studied
preoperatively and another 10 were studied 2 hours after
separating from cardiopulmonary bypass in the postoper-
ative period. PVR decreased in both groups in response to
oxygen. However, a further decrease in response to L-argi-
nine was seen only in the postoperative group.

Finally, a randomized, double-blind, placebo-controlled
trial evaluated the effects of perioperative oral citrulline
supplementation in 40 infants and children undergoing car-
diac surgery.'3¢ Citrulline level above 37 umol/L appeared
to protect against the development of postoperative PH.

Nitric Oxide-cGMP Cascade: Direct Soluble Guany-
late Cyclase Activators. Direct activation of sGC is a
novel approach that is under investigation for the treat-
ment of PH. A recent study found that sGC expression was
increased in explanted lungs of patients with PAH.'37 In
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animal models of PH, sGC expression was similarly up-
regulated, and direct sGC activation improved hemody-
namics and vascular remodeling.!37-13° A proof-of-concept
study was conducted that included 19 adult patients with
PH (either PAH or chronic thromboembolic PH) who re-
ceived the new drug riociguat (BAY 63-251).140-141 That
study suggested that riociguat was safe and found that
pulmonary hemodynamics and cardiac output improved in
a dose-dependent fashion.!#? A subsequent phase II study
that included 75 adult patients with PAH or chronic throm-
boembolic PH found that riociguat improved exercise ca-
pacity and decreased PVR.!42

Clinical studies in pediatric PH patients are not yet avail-
able. However, because these novel agents can activate
sGC independent of NO, they are promising, since a de-
crease in bioavailable NO appears to be central to the
pathophysiology of some forms of PH. In addition, NO
binding to sGC is impaired when the heme group on sGC
is oxidized.!#3 Interestingly, these agents can function when
sGC is in the oxidized state,'** which may be important,
given growing evidence of the role of oxidative stress in
many forms of PH.

Prostanoids. Higenbottam and colleagues first described
the long-term use of intravenous PGI, for the treatment of
PH almost 30 years ago.'*> Despite the many recent ad-
vances in therapy, intravenous PGI,, epoprostenol, remains
the best-proven and most effective therapy for chronic
PH.'46-148 Yung and colleagues recently described a group
of 35 children with idiopathic PAH treated with epopros-
tenol.'# In that cohort, survival at 1 year, 5 years, and
10 years was 94%, 81%, and 61%, respectively. This is
particularly important given that the median survival in
children with primary PH has been reported to be as low
as 10 months without treatment.!>° Interestingly, studies
indicate that patients without an initial vasodilating re-
sponse to PGI, often gain important long-term benefit,
which suggests that effects beyond vasodilation, such as
anti-platelet effects, cAMP-mediated inhibition of smooth-
muscle cell growth, or other unknown mechanisms may be
responsible for the treatment effect.”¢ Complications asso-
ciated with long-term epoprostenol are well known and
include thrombosis and infection secondary to the required
indwelling central venous catheter, the need for dose es-
calation, and life-threatening rebound PH after abrupt dis-
continuation of the infusion.

In addition to epoprostenol, treprostinil is another PGI,
analog that was recently approved for intravenous admin-
istration.!>! Data are not available to compare the efficacy
of intravenous epoprostenol to treprostinil. However, Ivy
and colleagues reported the successful transition of 13
children from intravenous epoprostenol to treprostinil with-
out changes in exercise capacity or intolerable adverse
effects.!>2
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Less is known about the use of intravenous prostanoids
in pediatric patients with PH secondary to other condi-
tions. Rosenzweig and colleagues reported on the use of
long-term epoprostenol in 20 children with PH secondary
to congenital cardiac defects. PAP and PVR decreased,
and cardiac output and exercise capacity increased after
one year of therapy.!>3

Given the success of intravenous epoprostenol, recent
efforts have focused on developing additional agents and
delivery approaches, in large part to address the compli-
cations and limitations associated with long-term intrave-
nous infusions. To achieve selective pulmonary vascular
relaxation, various investigations have focused on deliv-
ering prostanoids via inhalation.!5#15¢ In a report on 4
newborns with PPHN refractory to INO, Kelly and col-
leagues described improved oxygenation with inhaled
epoprostenol.’>> Tloprost is a PGI, analog that is FDA
approved for administration via nebulization. Ivy and col-
leagues studied iloprost in 22 children with PH.!57 They
found that inhaled iloprost decreased PAP to a degree
equivalent to INO with oxygen. A minority of patients
(35%) demonstrated improved functional class, but up to
10% experienced acute bronchoconstriction. Likewise, Ri-
mensberger and colleagues administered inhaled iloprost
and INO, alone and in combination, to 15 children with
PH secondary to congenital cardiac defects.!>3 Both agents
decreased the PVR/SVR ratio to a similar degree, and
there was no added benefit from a combination of the
treatments. Furthermore, in an interesting study by Lim-
suwan and colleagues, in Thailand, which has less access
to INO, inhaled iloprost decreased mean PAP and increased
systemic saturation without decreasing systemic blood pres-
sure in 8 children suffering from acute PAP increases after
repair of congenital heart disease.'> In addition, trepros-
tinil, which was initially approved by the FDA for subcu-
taneous delivery, was recently approved for delivery via
inhalation. Several studies have indicated that inhaled
treprostinil improves exercise capacity and decreases PVR
and PAP in adults with chronic PH.'¢0-162 More recently, a
randomized controlled trial that included 212 adult pa-
tients with PH who were being treated with either bosen-
tan or sildenafil, found that the addition of inhaled trepro-
stinil improved exercise capacity, quality of life, and
N-terminal pro-brain natriuretic peptide (NT-proBNP) lev-
els, without changing pulmonary hemodynamics.'®3

Other dosing strategies for prostanoids include subcu-
taneous and oral administration. A number of studies, in-
cluding randomized, placebo-controlled clinical trials have
demonstrated the efficacy of subcutaneous treprostinil in
improving exercise capacity in adults with PH.!104-109 In
children, a primary impediment to the use of subcutaneous
treprostinil relates to pain at the injection site. Nonethe-
less, subcutaneous treprostinil has been used successfully
in pediatric patients.!”%!7! Finally, oral prostanoid thera-
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pies are being developed. These include beraprost, which
is a PGI, analog, and an oral formulation of treprostinil.
Results with beraprost have been mixed: several clinical
trials have shown initial improvement in exercise capacity
that may not be sustained over the long term.!72-174

Endothelin-1. Unlike augmentation of the NO/cGMP
and prostanoid cascades, inhibition of endothelin-1 (ET-1)
signaling does not reliably cause acute pulmonary vascular
relaxation. However, in a small study that included 7 in-
fants who had undergone surgical repair of left-to-right
intracardiac shunt, Schulze-Neick and colleagues demon-
strated that an intravenous infusion of a selective ET -
receptor antagonist resulted in an acute decrease in PVR.175
Notably, the addition of INO had no effect, and the de-
crease in PVR correlated with left-atrial ET-1 level. But,
currently, intravenous ET-receptor antagonists are largely
restricted to experimental settings.

Bosentan is an oral dual ET-receptor antagonist. Several
double-blind, placebo-controlled, randomized clinical tri-
als have confirmed the efficacy of bosentan in adult pa-
tients with PAH.!76-178 These studies found, variously, that
bosentan improved pulmonary hemodynamics, exercise ca-
pacity, and cardiac output while lengthening the time to
clinical worsening.

In a study of 40 children with idiopathic or associated
PAH, Maiya and colleagues found that bosentan improved
exercise capacity and weight-gain in children with asso-
ciated PAH, but in only 40% of children with idiopathic
PAH.!'7® Rosenzweig and colleagues performed a retro-
spective study that included 86 children with idiopathic or
associated PAH,? and bosentan was associated with im-
proved WHO functional class in 46% of the patients.

ET, receptors are located on vascular smooth-muscle
cells and mediate constriction, but ETy receptors may me-
diate relaxation or constriction, depending on whether they
are located on endothelial or smooth-muscle cells, respec-
tively. In addition, ETj receptors are involved in the clear-
ance of ET-1. Therefore, there is rationale for ET ,-spe-
cific receptor antagonism for the treatment of PH. However,
the degree to which ETy receptors mediate constriction or
relaxation relates to the density of receptors on the smooth-
muscle or endothelial cells, and this is a dynamic process.
For example, in a lamb model of increased pulmonary
blood flow, created by a systemic to pulmonary shunt,
ETg localization to smooth-muscle cells increased by
8 weeks of age, with an associated increase in ETg-recep-
tor-mediated pulmonary vasoconstriction.!8¢ Moreover,
Bauer and colleagues found that ETg-receptors were se-
lectively up-regulated and appeared to be localized to the
hypertrophied medial layer of pulmonary arteries in 14
patients undergoing pulmonary thromboendarterectomy for
chronic thromboembolic PH.!8!
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Two oral ET ,-receptor antagonists have been studied
for the treatment of PH: sitaxsentan and ambrisentan. Sev-
eral studies demonstrated that sitaxsentan was efficacious
for the treatment of idiopathic and associated PAH.!82-185
Unfortunately, sitaxsentan has been taken off of the mar-
ket, due to concern about hepatic toxicity in some patients.
In fact, potential hepatic toxicity is associated with both
bosentan and sitaxsentan, which are sulfonamide-based
agents and metabolized by cytochrome P450 en-
zymes.!80:187 Ambrisentan is a newer oral selective ET -
receptor antagonist that is metabolized by hepatic glucu-
ronidation, with less involvement of the P450 enzyme
pathway.'88 Moreover, unlike bosentan and sitaxsentan,
ambrisentan does not induce or inhibit the P450 enzymes. '8
In fact, the successful use of ambrisentan has been re-
ported in patients who discontinued bosentan and sitax-
sentan due to elevated hepatic transaminase levels.!8® Data
are not yet available on the efficacy of ambrisentan for
children under 12 years of age with PH. However, the
results of 2 double-blind, placebo-controlled, randomized
trials that were run concurrently were recently reported.'82
The studies included 202 and 192 adult patients with PAH
and found that ambrisentan therapy improved exercise ca-
pacity, cardiac index, time to clinical worsening, and Borg
dyspnea score, and decreased PAP and B-type natriuretic
peptide level.

Combination Therapy. The rationale for combination
therapy for PH stems from the discovery of multiple path-
ways that contribute to the pathophysiology of PH, the
need for dose escalation with several therapies coupled
with adverse effects at higher doses, and the relatively
modest treatment effects of monotherapy without an ac-
ceptable impact on mortality.

A number of randomized, placebo-controlled, clinical
trials have been conducted on various therapy combina-
tions. The Bosentan Randomized Trial of Endothelin An-
tagonist Therapy for PAH (BREATHE-2) study included
33 adult patients with PAH, and compared epoprostenol
with bosentan to epoprostenol alone.!*® That study found
no benefit, and a trend toward more adverse effects with
combination therapy. The STEP-1 trial included 67 adult
patients with PAH, and compared bosentan and iloprost to
bosentan alone.!®! There was an improvement in func-
tional class and a delay in time to clinical worsening, but
those results were not replicated by the Combination Ther-
apy of Bosentan and Aerosolized Iloprost in Idiopathic
Pulmonary Arterial Hypertension (COMBI) trial that com-
pared those same treatments in 40 adult PAH patients.!°1-192
Channick and colleagues investigated the effects of adding
inhaled treprostinil to bosentan therapy in 12 patients with
PAH.!% That combination improved pulmonary hemody-
namics, exercise capacity, and functional class.
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The combination of sildenafil and prostanoids has also
been investigated. The Pulmonary Arterial Hypertension
Combination Study of Epoprostenol and Sildenafil
(PACES) trial compared epoprostenol plus sildenafil to
epoprostenol alone in 267 adult patients with PAH.!*3 The
combination had favorable results, including better exer-
cise capacity, pulmonary hemodynamics, quality of life,
and a delay in time to clinical worsening. Likewise, Gho-
frani and colleagues investigated the impact of sildenafil
in 73 adult patients with PAH who were receiving inhaled
iloprost.'** The addition of sildenafil improved exercise
capacity and pulmonary hemodynamics. In a study meant
to capture patients early in the disease course, patients
with PAH at a WHO functional class of II were treated
with bosentan. A subset of patients was receiving back-
ground sildenafil, and they had better pulmonary hemo-
dynamics and time to clinical worsening.!®> Several other
trials have compared various combination therapies, and
the preliminary results suggest benefits. Unfortunately, sim-
ilar randomized trials in pediatric patients are not avail-
able, although many pediatric patients receive combina-
tion therapy.

Novel Endothelial-Based Therapies.

eNOS Coupling. A decrease in bioavailable nitric ox-
ide is an important component of endothelial dysfunction
in PH. Several factors can decrease the bioavailability of
nitric oxide, including decreased production by eNOS.
When substrate or cofactors are limited, or due to oxida-
tive stress, eNOS can become uncoupled, and then it pro-
duces superoxide anion instead of nitric oxide,>*!°¢ which
increases oxidative stress. Cicletanine improves eNOS cou-
pling, thereby increasing bioavailable nitric oxide.!'%7-198
At this point, the use of cicletanine in PH is limited to a
case report, which described a positive response in an
adult.'*®

Superoxide Dismutase. Oxidant stress is well known
to contribute to the endothelial dysfunction associated with
vascular disease, including PH.3*290 Superoxide dismu-
tase, the enzyme responsible for the clearance of superox-
ide anion, has been used clinically, including in premature
infants.201-203 Steinhorn and colleagues found that recom-
binant human superoxide dismutase decreased PVR and
was synergistic with INO in a fetal lamb model of PPHN.204

Cell-Based Therapy. In 1997, endothelial progenitor
cells (EPCs) were first isolated from human blood, and
autologous EPCs were shown to incorporate into vessels
during angiogenesis in animal models.?%> Subsequently,
therapeutic administration of EPCs was shown to amelio-
rate PH in animal models, with improved efficacy when
EPCs were transduced with eNOS.206-208 Tpn addition, sev-
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eral studies have found decreased and dysfunctional EPCs
in patients with PAH.209-210 Wang and colleagues performed
a prospective randomized trial to assess the safety and
efficacy of adding autologous EPCs infusions to conven-
tional therapy in 31 patients with idiopathic PH, with en-
couraging results.2!! Specifically, patients demonstrated
improved hemodynamics and exercise capacity, and there
were no adverse events during the study period. More
recently, that research group performed a pilot study in
which 13 children with idiopathic PAH received an infu-
sion of autologous EPCs.2!2 Twelve weeks after treatment
the children had a modest PAP decrease, a 19% PVR
decrease, increased cardiac output, improved exercise ca-
pacity, and an improvement in functional class.

An intriguing recent study by Smadja and colleagues
quantified endothelial colony-forming cells (ECFCs, also
called “late EPCs”) in 79 children with PAH. ECFCs were
increased in the 8 children treated with treprostinil, com-
pared to the rest of the cohort treated with oral ET-1 re-
ceptor antagonists and/or PDES inhibitors.?!3 In addition,
ECFC cultured from these patients demonstrated a hyper-
proliferative phenotype with increased angiogenic poten-
tial.

Novel Vasodilators. Vasoactive intestinal peptide
(VIP) and adrenomedullin are 2 peptides with potent
vasodilatory properties. A knock-out-mouse model dem-
onstrated that deletion of the VIP gene led to moderate
PAH under normoxic conditions.2!4 Moreover, Petkov
and colleagues found that VIP was decreased in the
serum and lung tissue of patients with PAH,?!> and
inhaled VIP decreased PAP and PVR, and increased
cardiac output in 8 patients with PAH. Of note, these
patients did not demonstrate a similar response to INO.
Furthermore, after 3 months of daily treatment with
inhaled VIP, these patients had improved pulmonary
hemodynamics, cardiac output, exercise capacity, and
Borg dyspnea score. Continued benefit was observed at
6 months, with further improvements in exercise capac-
ity and decreases in the Borg dyspnea index.

Kakishita and colleagues found that adrenomedullin, a
peptide with vasodilatory, angiogenic, anti-inflammatory,
and anti-proliferative properties, was increased in adult
patients with severe PH, and that adrenomedullin level
correlated with hemodynamics including right-atrial pres-
sure, stroke volume, PVR, and PAP.2!62!7 Nagaya and
colleagues examined the acute effects of inhaled adre-
nomedullin in 11 adult patients with idiopathic PH,?'8 and
adrenomedullin was associated with an acute decrease in
PAP and PVR and increase in peak oxygen consumption
during exercise.

Anticoagulation. In patients with PH, in situ thrombosis
is thought to contribute to pulmonary vascular remodeling
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and PVR elevation. Studies suggest that warfarin improves
survival in patients with PAH, perhaps particularly in those
with more advanced disease (ie, those unresponsive to
acute vasodilator testing).2!°-22! Aspirin has no proven ben-
efit, and other agents have not been adequately studied.

Smooth-Muscle-Based Therapy. Calcium-channel
blockers have long been used as a part of the evaluation
and management of PAH, although their use is decreasing.
Rich and colleagues demonstrated almost 20 years ago
that a subset of patients with idiopathic PH had an acute
vasodilatory response to calcium-channel blockers, and
that in those patients high-dose calcium-channel blockers
improved survival.22! More recent data, however, suggested
that relatively few patients with idiopathic PH gain impor-
tant long-term benefit.°” In addition, oxygen and INO have
supplanted calcium-channel blockers for acute reactivity
testing. Most recently, Montani and colleagues described
663 consecutive patients with associated PAH.??2 A mi-
nority were responsive to acute vasodilator testing, and
even fewer patients demonstrated a long-term response to
calcium-channel blockers. In addition, there was variabil-
ity between conditions. For example, there was a long-
term benefit in 9.4% of acute responders with PAH asso-
ciated with anorexigen, but less than 1% with PAH
associated with portal hypertension or connective tissue
disease. In fact, all 5 of the patients with pulmonary veno-
occlusive disease or pulmonary capillary hemangiomato-
sis who responded to acute vasodilator testing deteriorated
with calcium-channel blockers.

Rho-kinase inhibition is a novel therapeutic approach
that targets the pulmonary vascular smooth muscle. Alter-
ations in rho-kinase signaling have been demonstrated in
several animal models of PH. In addition, Guilluy and
colleagues demonstrated increased RhoA and Rho kinase
activities in the lungs, platelets, and pulmonary artery
smooth-muscle cells harvested from patients with idio-
pathic PH.?23 As opposed to endothelial-based therapies,
therapy aimed at altering Rho kinase activity has the po-
tential advantage of directly affecting the contractile ap-
paratus of the smooth-muscle cell (Fig. 3). For example, in
animal models of severe PH, Rho kinase inhibition re-
sulted in vascular relaxation in animals unresponsive to
nitric oxide or PGI, analogs.?24225

Clinical data, although limited, have been less impres-
sive. Fujita and colleagues administered fasudil, a Rho
kinase inhibitor, and INO to 15 adult patients with PAH.22¢
In that study, the effects of fasudil and INO were similar:
there was a decrease in PAP but not PVR. Li and col-
leagues investigated the acute effects of an intravenous
infusion of fasudil in 12 children (mean age 12.3 years)
with PAH associated with congenital heart disease.??” Fa-
sudil decreased PAP and PVR, and increased cardiac out-
put and mixed venous oxygen saturation. Comparisons to
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Fig. 3. The mechanism of the rho kinase inhibitor, fasudil. RhoA is
a small G-protein that activates downstream effectors, including
the rho kinases (ROCKs). One target of ROCK is myosin phos-
phatase target subunit (MYPT-1), which is the regulatory subunit
of myosin light chain (MLCP). Phosphorylation (P) of MYPT-1 re-
sults in MLCP inhibition, decreased MLC dephosphorylation, and
increased smooth-muscle cell contraction, at any given Ca?* con-
centration. By inhibiting ROCK, fasudil blocks this signaling.
GTP = guanosine-5'-triphosphate. CAM = calmodulin. MLC =
myosin light chain. MLCP = myosin light chain phosphatase.
MLCK = myosin light chain kinase.

other vasodilators were not made, however. Likewise, Ishi-
kura and colleagues administered fasudil via intravenous
infusion to 8 adult patients with PAH, and found a de-
crease in PVR and mean PAP, and increased cardiac out-
put.2?8 Finally, Fukumoto and colleagues administered fa-
sudil to 9 adult patients with PH.>>® Some patients were
receiving oral or intravenous PGI, at the time of study.
The patients underwent right-heart catheterization, which
revealed decreased PVR without a significant change in
PAP or cardiac output. Together these studies suggest po-
tential efficacy for Rho kinase inhibition in the treatment
of PH, but large controlled trials are needed.

Support of Right-Ventricular Function

Mortality from PH is most directly related to right-ven-
tricular function. The therapies outlined above may im-
prove right-ventricular function to the extent that they de-
crease right-ventricular afterload, although emerging data
suggest that some of these therapies, such as PDES inhi-
bition and ET-1 receptor antagonism, may also enhance or
impair (respectively) contractility of the hypertrophied right
ventricle.113:230 However, in addition to afterload reduc-
tion, other therapies that support the right ventricle may be
necessary, especially in acute care settings.
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Under conditions of increased afterload, the contractil-
ity of right-ventricular cardiomyocytes increases initially,
due to changes in sarcomere length/tension relationships,
increased Ca™? sensitivity, and alterations in force/fre-
quency relationships.23-232 In addition, the time course
over which right-ventricular afterload increases and the
state of the right ventricle (in particular, right-ventricular
mass) influences the degree to which the right ventricle
can compensate.?33 For example, patients with Eisenmenger
syndrome tolerate elevated right-ventricular afterload far
better than patients with normal right ventricles who suffer
an acute pulmonary embolism.?31.234

Nonetheless, over some period of time (acutely or chron-
ically) compensatory mechanisms fail, leading to eleva-
tions in right-ventricular end-diastolic volume and de-
creased output. Due to ventricular interdependence,
increases in right-ventricular end-diastolic volume result
directly in decreased left-ventricular filling and decreased
systemic output.??> In fact, diastolic ventricular interac-
tions, with decreases in left-ventricular end-diastolic vol-
ume, are more closely related to stroke volume than PAP
in patients with PAH.23¢ It is also important to recognize
that right and left-ventricular contractility are directly re-
lated. The ventricles share muscle fibers, the interventric-
ular septum, and the pericardial space. Based on studies
that used electrically-isolated right-heart preparations and
experimental aortic constriction, it is estimated that 20—
40% of right-ventricular systolic pressure is due to left-
ventricular contraction.?37-23 In addition, right coronary
artery perfusion is dependent, in large part, on the pressure
gradient between the aortic root and right ventricle.

Taken together, then, the principles of right-ventricular
support are: reduce right-ventricular afterload (ie, reduce
pulmonary vascular impedance); optimize right-ventricu-
lar volume; augment right-ventricular contractility; and
maintain left-ventricular contractility and systemic vascu-
lar resistance. Importantly, this strategy requires adequate
left-ventricular function. The physiology associated with
PH due to left-heart failure is quite different. Left-heart
failure is associated with elevated left-ventricular end-di-
astolic volume and pressure, which is the reverse situation
of right-heart failure due to PAH. Moreover, in this situ-
ation, decreased right-ventricular afterload and/or increased
systemic vascular resistance could result in clinical dete-
rioration, with pulmonary edema or impaired cardiac out-
put.'6-17.240 Interestingly, however, sildenafil has been
shown to increase cardiac output in patients with PH sec-
ondary to left-heart failure, presumably due to reductions
in pulmonary and systemic vascular resistance.?*!-242

The optimization of right-ventricular volume presents
a substantial clinical challenge, as the proper manage-
ment is dependent on the particular situation.?43-248 Al-
though volume loading may be necessary in some situa-
tions, excessive volume may provoke adverse diastolic
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ventricular interactions. Management aimed at decreasing
right-ventricular volume (eg, diuretics) may be neces-
sary,248.249

Inotropes are often necessary in order to augment right-
ventricular contractility, but it remains unclear if one agent
is superior. Although dopamine has been shown to in-
crease cardiac output in patients with PH, Liet and col-
leagues found that dopamine increased the ratio of PVR to
systemic vascular resistance in preterm infants who had a
widely patent ductus arteriosus.?>%25! Based on animal stud-
ies, epinephrine may have a superior hemodynamic profile
in the setting of PH, compared to dopamine, including a
decrease in the PVR to systemic vascular resistance ratio,
but direct clinical evidence is sparse.2>? Low-dose dobut-
amine may reduce PVR and increase right-ventricular con-
tractility. Several clinical studies have demonstrated the
efficacy of dobutamine in adult patients with PH.253-25
Likewise, milrinone, a PDE3 inhibitor and inodilator that
augments ventricular contractility while decreasing PVR
and systemic vascular resistance, improves right-ventric-
ular output in adult patients with PH.25¢-258 The decrease in
systemic vascular resistance may not be desirable and thus
may need to be addressed by the addition of a vasopressor.
Finally, the drug levosimendan, which is a Ca’" sensitiz-
ing agent and PDE3 inhibitor, holds great promise. Levo-
simendan decreases PVR and improves right-ventricular
output in adult patients with right-ventricular failure sec-
ondary to several conditions, including PH.259-263

The role of vasopressors is to increase systemic vascular
resistance to augment right-ventricular output by increas-
ing left-ventricular systolic pressure, and to maintain right
coronary perfusion. Norepinephrine has been validated as
a useful agent in several animal studies.2°+205 Tourneux
and colleagues demonstrated that norepinephrine increased
left-ventricular output, systemic arterial pressure, and pul-
monary blood flow, while decreasing the ratio of pulmo-
nary to systemic pressure in 18 newborns with PPHN.26¢
Phenylephrine increases right coronary blood flow in the
setting of increased right-ventricular pressure, but may
also increase PVR.267:268 Vagopressin, a systemic vasocon-
strictor and pulmonary vasodilator, has been advocated in
the treatment of right-ventricular failure secondary to PH,
with several positive clinical studies.?69-274

Finally, atrial septostomy as a part of the management
of chronic PH has been advocated to allow for decom-
pression of the right ventricle due to right-to-left
shunting.262:275-280 Severe hypoxemia with this approach
remains a concern. Recently, Labombarda and colleagues
described favorable results with the placement of a Potts
anastomosis (descending aorta to left pulmonary artery) in
2 children with severe idiopathic PH, thereby directing
desaturated blood to the lower body.?8!

1326

Treatment of Underlying Disease

The ability to impact the course of PH by treating as-
sociated conditions is highly variable. Early repair of con-
genital cardiac defects represents the most successful ef-
fort to alter the natural history of PH.34.87.282.283 | jkewise,
PH related to treatable left-heart disease would be ex-
pected to resolve in most cases, depending on the timing of
the repair. However, treatment for other associated condi-
tions may not decrease the incidence of PH. For example,
PH can develop with schistosomiasis and HIV infection,
despite treatment.?84.285 The reversal of PH associated with
portal hypertension after liver transplant has been described,
but not in a large series.?86-287 Likewise, the reversal of PH
associated with systemic lupus erythematosus after hema-
topoietic stem-cell transplantation has been described, but
only in case reports.?88 Steroids have been successful in
treating some patients with autoimmune disease, mixed
connective-tissue disease, POEMS (polyneuropathy, or-
ganomegaly, endocrinopathy, monoclonal gammopathy,
and skin changes) syndrome, Langerhans cell granuloma-
tosis, and sarcoidosis.?89-293 Advances in the management
of sickle-cell disease may decrease the incidence of asso-
ciated PH, but definitive studies are lacking.?*

Subsets of newborns with PPHN are often treatable, and
can ultimately survive without PH.2%> Several reports have
described the reversal of PH after tonsillectomy or ade-
noidectomy for the treatment of obstructive sleep
apnea.2?¢-2%8 In addition, PH related to high altitude can be
reversed when the patient moves to sea level.?°° Home
oxygen therapy is a relatively common treatment for pe-
diatric patients with PH or at risk for developing PH, but
the data conflict about whether oxygen therapy alters the
disease course, probably due to differences between the
diseases that have been studied.300-301

Finally, an increasing number of metabolic conditions
have been found to be associated with PH. For example,
the association between thyroid disorders and PH is now
well established and, in fact, therapy has been shown to
reverse PH in these patients.302

Promotion of Regressive Remodeling of Structural
Pulmonary Vascular Changes

Right-heart failure due to elevated pulmonary vascular
impedance is the ultimate cause of mortality in most pa-
tients with PH. The majority of patients with advanced
disease do not respond to acute pulmonary vasodilators,
and yet most available therapies either augment pathways
that cause vasodilation or inhibit pathways that cause va-
soconstriction. Taken together, it can be seen that an ap-
proach aimed at promoting the regression of structural
pulmonary vascular remodeling may be a fundamentally
more effective paradigm for patients with PH not associ-
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ated with treatable conditions or with advanced PH. For-
tunately, although such therapies are unavailable currently,
they may be on the horizon.

Recent insights into the mechanisms responsible for ad-
vanced pulmonary vascular remodeling have demonstrated
interesting similarities to neoplasia. Thus, signaling path-
ways of interest in cancer research have been studied in
models of PH. Indeed, pulmonary vascular remodeling is
known to involve abnormalities in proliferation, cell mi-
gration, and apoptosis. In addition, pulmonary vascular
remodeling also involves processes related to inflammation.

Tyrosine Kinase Inhibitors. An important recent study
examined the efficacy of imatinib mesylate, a tyrosine
kinase inhibitor, in patients with PH refractory to other
therapies.?*3 Imatinib, which was developed for the treat-
ment of leukemia, inhibits PDGF receptor, which has been
implicated in the pathobiology of advanced PAH.%3 Ima-
tinib reversed advanced PH in a monocrotaline rat model
and a chronic hypoxia mouse model,°* so Ghofrani and
colleagues evaluated oral imatinib in a 24-week random-
ized, double-blind, placebo-controlled phase II study that
included 59 adult patients with PAH.3%3 Imatinib decreased
PVR and increased cardiac output compared to placebo.
These results are intriguing, although much more work is
needed to assess the potential impact on pulmonary vas-
cular remodeling.

Likewise, sorafenib inhibits the serine/threonine kinases
Raf-1 and b-Raf, in addition to PDGF receptor, VEGF
receptor, c-Kit, and FlIt-3.3%4 Raf-1 is a key downstream
effector for mitogen-activated protein kinase signaling, and
in this way may participate in the regulation of prolifera-
tion and apoptosis. PDGF, VEGF receptors, c-Kit, and
FlIt-3 are involved in angiogenesis. Thus, sorafenib has
potential for the treatment of vascular remodeling in PH.
Indeed, in an experimental rat monocrotaline model, sorafenib
improved hemodynamics, reversed pulmonary vascular re-
modeling, and decreased right-ventricular mass to a greater
extent than both imatinib and vehicle control.3%

Survivin.  Survivin is a member of the “inhibitor of ap-
optosis” family that is ubiquitous in cancer, but not nor-
mal, cells.3%¢ Interestingly, McMurtry and colleagues, found
that survivin was expressed in the pulmonary arteries of 6
patients with PAH.397 The same study found that survivin
was similarly increased in the pulmonary arteries of rats
with a monocrotaline-induced model of PH, and that gene
therapy with a dominant-negative survivin mutant reversed
vascular remodeling, improved hemodynamics, decreased
right-ventricular hypertrophy, and prolonged survival.

Statins.  Statins, or HMG-CoA reductase inhibitors, have

been found to positively impact a number of pathways in
experimental PH. For example, in both monocrotaline and
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chronic hypoxia rodent models, statins improved pulmonary
hemodynamics and vascular remodeling by improving endo-
thelial function, decreasing inflammation, inducing apopto-
sis, and decreasing neointimal proliferation.3%8-315 Kao and
colleagues performed an open-label observational study that
included 16 adult patients with PAH treated with simvasta-
tin.3'¢ Simvastatin appeared to improve exercise capacity
and cardiac output while decreasing right-ventricular sys-
tolic pressure. Lee and colleagues performed a double-
blind trial in 53 adult patients with COPD and PH, in
which patients received pravastatin or placebo for
6 months.3!”7 Pravastatin treatment was associated with
improvements in exercise capacity and Borg dyspnea score.
Systolic PAP decreased in the treatment group. Interest-
ingly, urinary excretion of ET-1 decreased in the treatment
group and was correlated with improvements in exercise
capacity. These improvements in exercise capacity were
not replicated in a more recent trial by Wilkins and col-
leagues that included 42 patients with PAH, treated with
simvastatin for 6—12 months.3'8 However, the primary out-
come in that study was right-ventricular mass measured
via cardiac magnetic resonance imaging. Simvastatin ini-
tially reduced right-ventricular mass at 6 months in the
treatment group, but the effect was not sustained at
12 months. King and Day recently conducted an observa-
tional study that included a review of 12 children with PH
treated with simvastatin,31® and found no clear benefit from
simvastatin.

Peroxisome Proliferator-Activated Receptor Gamma.
Peroxisome proliferator-activated receptors (PPARs),
which are members of a nuclear hormone receptor super-
family, are rapidly emerging as integral mediators of a
wide array of disease processes, including vascular disor-
ders.320 Although investigations of the vasculature have
focused primarily on the systemic circulation, one study
showed that PPAR gamma (PPARY), one of the 3 PPAR
subclasses, was decreased in lung tissue taken from pa-
tients with severe PAH.32!-322 Subsequently, increasing ef-
forts have been made to evaluate PPARy as a therapy for
PH. Indeed, studies have identified interactions between
PPARYy and multiple mediators that are important in the
pathogenesis of pulmonary vascular disease, including ni-
tric oxide, ET-1, PGI,, ROCK, EPCs, asymmetric dim-
ethylarginine, insulin, oxidative stress, and the BMPR2
pathway.322-331 PPARy expression was decreased in sev-
eral studies that used rodent models of PH, and PPARy
agonist treatment attenuated pulmonary vascular remodel-
ing.332-335 In an interesting recent study, Falcetti and col-
leagues demonstrated that PPARyexpression was enhanced
in the medial layer of arteries from patients with idiopathic
PH, compared to controls.3?> Whether that finding con-
flicts with the previous description of decreased lung tis-
sue expression in advanced PH is unclear, since the initial
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study did not quantitate expression in the medial muscle
layers.3?! Moreover, those investigators demonstrated
that the PPARy agonist rosiglitazone potentiated, and
PPARvy antagonism inhibited, the anti-proliferative ef-
fects of treprostinil in pulmonary artery smooth-muscle
cells, whereas down-regulation of the IP receptor had
no effect.

Emerging Therapies. A number of approaches are
emerging that may impact vascular remodeling. Caspases
are key regulators of apoptosis and are inhibited by intra-
cellular K™. Voltage-gated K channels are decreased in
patients with PH.33¢ Recent, studies found that the tran-
scription factor nuclear factor of activated T cells (NFAT)
was increased in experimental PH, and that inhibition of
NFAT increased K* channels, inhibited apoptosis, and
reversed the PH.337 Recent studies indicate that the signal
transducers and activators of transcription (STAT) protein
family have binding sites within the promoter regions of
the major NFAT isoforms.?37 The isoform STAT3 pro-
motes the expression of the proto-oncogene, Pim1, which
has been linked to proliferation and resistance to apo-
ptosis in some cancers. Moreover, a recent study found
that Pim1 expression was increased in human PAH and
that inhibition of STAT3-Pim1-NFAT signaling by neb-
ulized Piml siRNA reversed monocrotaline-induced
PAH in rats.338

Changes in the extracellular matrix of pulmonary vas-
cular walls participate in the vascular remodeling in PH.
Cowan and colleagues showed that elastase inhibition com-
pletely reversed the hemodynamic and structural changes
in experimental PH.33° Elastase inhibitors are not available
clinically, but inhibitors of downstream mediators, includ-
ing epidermal growth factor (EGF) receptors, are used
clinically to treat cancers. That same group demonstrated
that the EGF receptor inhibitor PKI166 attenuated PH in a
rat monocrotaline PH model.340

Dichloroacetate is a drug that is used clinically to treat
mitochondrial disorders in children.?*! Interestingly, di-
chloroacetate reversed the hemodynamic and structural ab-
normalities in rodent PH models, in part through an acti-
vation of mitochondrial-dependent apoptosis.342-343

Lung Transplantation

Isolated lung transplantation, as opposed to requisite
heart and lung transplantation, is now a viable option for
children with end-staged PH. According to the registry of
the International Society of Heart and Lung Transplanta-
tion, 173 patients less than 8 years of age underwent lung
transplantation for PH between 1990 and 2006.34434> Sur-
vival in children at 3 years and 5 years was reported to be
60% and 50%, respectively, which was similar to that in
adults.?*> Moreover, this recent report suggested that out-
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comes were improving. Idiopathic PH, PH associated with
congenital heart disease (including Eisenmenger syn-
drome), and pulmonary vein stenosis or pulmonary veno-
occlusive disease are the most common diagnoses in pa-
tients who undergo lung transplantation for PH.34> The
optimal timing for lung transplantation in children with
PH is not clear. A study that included 50 children with PH
found that the value of mean right-atrial pressure multi-
plied by the indexed PVR independently estimated the
probability of death at 1 year and 3 years after cardiac
catheterization. Those authors suggested that this compos-
ite value might be useful for identifying children who
should undergo lung transplantation.34¢

Summary

Over the past several decades, fundamental advances in
pulmonary vascular biology have been translated into ef-
fective therapies that have improved the quality of life and
prolonged survival for neonates, infants, and children with
PH. The challenge remains to better characterize the dif-
ferences between the clinical conditions that cause PH, in
order to devise and tailor specific, more effective thera-
pies. Among clinicians and researchers in the field of PH
it is increasingly recognized that therapies other than en-
dothelial-based vasodilators are needed. Furthermore, it is
recognized that large gaps exist between the available pre-
clinical animal models and clinical disease. For example,
many experimental therapies have been shown to reverse
monocrotaline-induced PAH in rodents, but none of these
therapies have had similar effects on advanced structural
disease in humans.?#’ In addition, the hemodynamic com-
plexities associated with PH are now better understood,
which will result in the more routine consideration of in-
dices such as vascular shear stress and pulmonary vascular
compliance, in addition to measurements of PAP and cal-
culated PVR. Likewise, alterations in these hemodynamic
forces are not uniform throughout the pulmonary vascu-
lature, probably differing in important ways, for example,
between large proximal arteries and distal arterioles. Tech-
nological advances in imaging and improved computa-
tional modeling are emerging to address these sorts of
considerations. Further research will elucidate the mech-
anisms responsible for structural remodeling, hopefully
with the development of therapies that promote the regres-
sion of advanced structural disease. These studies are likely
to make use of multiple preclinical animal models (includ-
ing models of advanced structural disease), with more so-
phisticated determinations of cardiopulmonary hemody-
namics and morphometric analysis. A better understanding
of the genetic underpinnings of PH will hopefully lead to
the ability to tailor therapy for particular patients and eti-
ologies. It remains to be seen to what extent these ad-
vances will contribute to a unifying theory of PH as op-
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posed to a fragmentation of our current conception of PH
into distinct novel disease processes.
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Discussion

Willson: It’s like a poster for trans-
lational research: clinical care follows
the biology, and it’s very exciting. Af-
ter Flolan [epoprostenol], what’s next
in the kids that you deal with, and
how do you advance therapy in these
kids if they don’t respond at one level?

Fineman: We discuss that in the
clinic all the time. Some of us are go-
ing with the approach that if they’ve
got bad disease and are not respond-
ing, we go after all 3 cascades up front:
prostanoid, NO-cGMP, and ET-1. So
we’ll add sildenafil or tadalafil to aug-
ment cGMP, and bosentan to block
ET receptors. The issue with bosentan
is that about 5% of the time the liver-
function test results become elevated
and you have to stop it, so it requires
blood draws once a month, which can
be an important issue in a pediatric
patient.

Unfortunately, there are no data to
drive these decisions. Hopefully, fu-
ture research will identify the relative
roles of different pathobiologies in
these patients, allowing us to tailor our
choices based on the underlying patho-
biology. It is becoming clear that al-
though the end-stage anatomic
changes may be similar between pa-
tients, the underlying pathobiology
may be very different. This is clearly
a spectrum of disease.

Branson: Is there ever a reason to
have a patient on mechanical ventila-
tion getting INO and aerosolized Flo-
lan? I see it happening all the time,
and it’s an issue because the aerosol-
ized Flolan fouls the sample line on
the machine, making it difficult to use
them both at the same time.

mal models of pulmonary arterial hypertension: the hope for etio-
logical discovery and pharmacological cure. Am J Physiol Lung

Cell Mol Physiol 2009;297(6):L1013-L1032.

Fineman: 1 could see using both in
a patient who is chronically ill on ilo-
prost or inhaled prostacyclin and who
gets critically ill. You may want to
use INO in that ventilated patient and
not stop their prostanoid therapy dur-
ing that time. Without knowing if they
respond particularly well to prosta-
noids versus INO, in general a good
dose of INO is probably going to off-
set anything you can achieve with pro-
stanoids in the acute setting.

Walsh: If we initiated INO without
apositive response and then added Flo-
lan and received a positive response,
should we then consider stopping the
INO?

Fineman: Yes. Ifit’s a chronic prob-
lem and if they have a good response
to INO as well, then you could argue
to have them on sildenafil or tadalafil
long-term, to augment that cascade.
But if you saw no response to that
cascade and you start getting aresponse
with Flolan, then you could argue to
just leave them on a prostanoid.

DiBlasi: At Seattle Children’s Hos-
pital we’re conducting a study of in-
haled iloprost and our ability to wean
INO. However, it has been very dif-
ficult to enroll patients, because they
are receiving HFOV [high-frequency
oscillatory ventilation], and it is un-
clear if we can effectively deliver neb-
ulized iloprost during HFOV. I have
searched the literature and there are
virtually no data on aerosol drug de-
livery with the available aerosol de-
livery devices during HFOV. Luckily,
there are a few posters being presented
at the AARC [American Association
for Respiratory Care] OPEN ForuM this
year that might help answer that ques-
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tion. Do you have any evidence that
administering this drug—not albu-
terol, but some of the vasoactive drugs
you mentioned in your presentation—
are safe and effective during HFOV?

Fineman: No, I don’t know of any
studies that have looked at that. It’s
problematic.

Cheifetz: Jeff, that was probably the
best review of PH I have seen. You
presented numerous therapy options.
If you use your crystal ball, with ev-
erything that is in the pipeline, how
do you think chronic pulmonary hy-
pertension will be most optimally man-
aged in 5 years?

Fineman: We’re learning a great
deal about the pathobiology of PH,
and are beginning to appreciate the
spectrum of possible pathobiologies.
In particular patients, all the new ther-
apies—the kinase inhibitors, the anti-
inflammatory agents, the PPAR
gamma agonists, and the NOS cou-
plers—can be beneficial. This has
been demonstrated in isolated case re-
ports. The problem is identifying
which patients will benefit from which
agents. I am concerned that we won’t
be able to answer any of these ques-
tions. PH is a rare disease, and it’s
really hard to study these patients. It
will require a true collaborative multi-
national effort.

Willson: What about anti-
coagulation?
Fineman: Yes, we use it. Short of

there being a known underlying throm-
boembolic disease, there probably are
no great data on anti-coagulants.
Whether you use aspirin or coumadin
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often depends on the child’s age, Cheifetz:  When do you start anti- on anti-coagulation therapy and
activity level, family preference, coagulation? On the day of acute pre- they now have low output, you may
et cetera. If they have a central line, sentation, or later? want to start therapy to minimize the
you’d probably want to be more ag- Fineman: Usually on presentation. risk of thrombus formation in the
gressive with anti-coagulation. However, if they have not been heart.
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