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Summary

Patient-ventilator synchrony is a popular topic of research on mechanical ventilation. This

review puts this research into both contemporary and historical perspective. Five areas of

research are described: literature reviews, manual detection of synchrony problems, automated

detection of synchrony problems, modes for improving synchrony, and effects of sedation. We

note that this type of research lacks a standardized vocabulary and associated taxonomy, which

generates difficulty in communication among students and researchers, as well as in comparison

of results. Hence, we conclude this paper with some suggestions for improvement in that regard.

[Respir Care 2020;65(4):558–572. © 2020 Daedalus Enterprises]

Introduction

Although there are any number of indications for the ini-

tiation of mechanical ventilation, there are only 3 basic

goals after initiation: safety (ie, adequate gas exchange with

avoidance of ventilator-induced lung injury), comfort (ie, op-

timum patient-ventilator synchrony with adequate support

for the work of breathing), and liberation (ie, the shortest

possible duration of ventilation with avoidance of adverse

events). Arguably, the goal of safety is the subject of the

most intensive current research; although patient-ventilator

synchrony is a popular research topic, we are still not certain

whether synchrony problems have a causative or associative

relationship to overall patient outcomes.1,2 Synchrony prob-

lems are common, occurring in perhaps as many as 25% of

patients receiving invasive ventilation and up to 80% of

patients receiving noninvasive ventilation.2

A Note About Nomenclature

The nomenclature describing abnormal patient-ventilator

synchrony is not consistent in the literature. For now, we
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will use the terminology used by the authors in the cited

papers without giving their definitions. We do this to avoid

any misinterpretation of the authors’ work and to give the

reader an appreciation for the variance in the terms

used. We will address the issue of a taxonomy based on

a standardized vocabulary at the end of this review. We

offer a tentative list of definitions for synchrony prob-

lems in Table 1.3 Note that all mechanical patient-

ventilator interactions can (and should) be described in

terms of the parameters and variables in the equation of

motion (described in the next section) and in reference

to the patient signal.

Brief Historical Perspective

Some landmark articles in the development of the con-

cept of patient-ventilator synchrony problems are summar-

ized here to provide some context to the current articles

that comprise the main section of this review.

In 1995, Fabry et al4 reported that desynchronization dur-

ing ventilation with pressure support (identified using

esophageal pressure as a reference signal) may be due to

(1) inspiratory response delays caused by the inspiratory

triggering mechanisms and the demand flow characteristics

of the ventilator; (2) a mismatch between the patient’s com-

pletion of the inspiration effort and the ventilator’s criterion

for terminating pressure support; and (3) restriction of expi-

ration due to resistance from patient’s airways, endotra-

cheal tube, and expiratory valve.

In 1985, Marini et al5 were the first to report that, during

volume control ventilation, work performed by the subject

increased substantially when flow from the machine was

insufficient to meet demand—what we now call work shift-

ing. Later, in 1997, MacIntyre et al6 were probably the first

to use the term patient-ventilator flow asynchrony and to

offer the suggestion that asynchrony can be improved by

increasing ventilator flow delivery. These authors also

noted that pressure control modes would be a better

Table 1. Taxonomy for Discordant Patient-Ventilator Interactions

Alternative Name Definition Cause

Asynchrony

False trigger Auto-triggering, double-

triggering, multiple-

triggering

Triggering by a signal other than Pmus Trigger threshold set too low (ie, high sensitivity),

or circuit leak, secretions, cardiac oscillations,

water in circuit, etc.

Failed trigger Ineffective effort,

missed trigger

Patient trigger signal fails to start Pvent Trigger threshold set too high (ie, low sensitivity) or

autoPEEP higher than Pmus

Dyssynchrony

Early trigger Reverse-triggering Pvent starts before Pmus (or surrogate) Sedation, brain injury, pleural irritation

Late trigger Delayed triggering Clinically important delay in start of

Pvent after Pmus (or surrogate)

Trigger threshold set too high (ie, low sensitivity) or

slow ventilator response time

Early cycling Premature cycling Clinically important advance in Pvent

return to baseline before Pmus return

to baseline

Neural inspiratory time longer than waveform

inspiratory time; flow cycle threshold set too high

or inspiratory time set too short; may be clinically

appropriate

Late cycling Delayed cycle, runaway

phenomena

Clinically important delay in Pvent

return to baseline after Pmus return to

baseline

Neural inspiratory time shorter than waveform

inspiratory time; flow cycle threshold set too low

or inspiratory time set too long; may be clinically

appropriate

False cycle None Pvent return to baseline due to a signal

other than Pmus

Pressure over-shoot activating alarm (eg, pressure

rise time set too short)

Work balance

Work shifting Flow starvation Decrease in Pvent with constant tidal

volume or increase in tidal volume

with constant Pvent resulting in

increased patient work relative to

total inspiratory work

High inspiratory effort due to anxiety, pain, acidosis;

may be clinically appropriate

Expiratory work None Increase in tidal volume above passive

expiration

Nonpassive expiration due to anxiety, acidosis, pain,

bronchospasm, or cough

Pvent ¼ ventilator pressure associated with inspiratory flow

Pmus ¼ muscle pressure due to inspiratory effort

Trigger ¼ start of inspiratory flow from ventilator

Cycle ¼ start of expiratory flow from ventilator
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approach for matching patient flow demands than volume

control modes.

In 1989, Flick et al7 noted that during “breaths initiated

by the ventilator, there is no electromyographic activity

present except when the delivered tidal volume approaches

the patient’s spontaneous tidal volume. At low tidal vol-

umes, controlled breaths are assisted late in the breath.” In

a 2005 study, Kallet et al8 also reported this observation

and clarified the concept by saying, “In several cases,

spontaneous breathing during (volume control ventilation)

was stimulated by the ventilator, and patient effort com-

menced only toward the end of the mechanical breath . . . .”

Much later, in 2013, Akoumianaki et al9 described this

phenomenon in detail and gave it the name reverse-trig-

gered breaths. In 1997, Chao et al10 described trigger

asynchrony during prolonged ventilation with volume

control (identified with esophageal pressure as a refer-

ence signal) and noted that it was associated with poor

outcomes.

In 2003, Kondili et al11 first described patient-ventilator

synchrony problems in terms of the equation of motion.

There are many forms of the equation, and these authors

used Pmus þ Pvent ¼ (Ers � V) þ (Rrs � V̇), where Pmus is

the muscle pressure generated by the patient’s inspiratory

effort, Pvent is the airway pressure relative to PEEP gener-

ated by the ventilator, Ers is the elastance of the respiratory

system, V is the volume change relative to end-expiratory

lung volume, Rrs is the resistance of the respiratory system

and artificial airway, and V̇ is the flow (positive is inspira-

tion, negative is expiration). This equation makes explicit

the concept that there are two “pumps” that must function

in harmony, ie, the ventilatory muscles (Pmus) and the venti-

lator (Pvent). These authors point out that harmony depends

on the physician, suggesting that the ventilator should

match the patient’s demands, rather than forcing the patient

to conform to ventilator performance.

Continuing the work of Kondili et al,11 in 2006

Georgopoulous et al12 were the first to provide a theoreti-

cal framework for interpreting ventilator waveforms

based on several different versions of the equation of

motion. This work emphasizes that ventilator waveforms

are simply graphical representations of the equation of

motion. Understanding the theory makes explaining vir-

tually every patient-ventilator interaction much more

logically consistent.

Also in 2006, Thille et al13 were the first to describe an

asynchrony index, defined as the number of asynchrony

events divided by the total breathing frequency computed

as the sum of the number of ventilator cycles (patient-trig-

gered or not) and wasted efforts: asynchrony index ¼
number of asynchrony events/total breathing frequency

(ventilator cycles þ wasted efforts) � 100 (expressed as a

percentage). They also defined a “high” incidence of

asynchrony as an asynchrony index > 10%.

In 2007, Younes et al14 reported on Younes’ invention

of the mode called proportional assist ventilation.15 As a

spinoff of this technology, Younes also invented a patient-

ventilator interaction monitor that was never commercial-

ized. In 2010, Kondili et al16 gave detailed descriptions of

the monitor’s performance in terms of actually measuring

Pmus.

In 2007 and 2009, Mulqueeny and colleagues17,18 re-

ported the first automated system for detecting ineffective

trigger efforts. Compared to human experts, the system

achieved a 95% overall accuracy rate. In 2013, Sinderby et

al19 described a sophisticated, automated, standardized sys-

tem to report what they called the NeuroSync Index, based

on the electrical activity of the diaphragm (EAdi) signal

from a ventilator equipped to deliver neurally-adjusted ven-

tilatory assist (NAVA). The system provides real-time

detection and quantification of ineffective triggering, dou-

ble-triggering, auto-triggering, early cycling, and delayed

cycling. These authors were the first to emphasize the util-

ity of discriminating between dyssynchony (ie, ventilator

out of phase with a reference signal, eg, EAdi) and asyn-

chrony (ie, one signal missing).

Year in Review

The articles reviewed here are all those published on the

topic in 2019, with some from 2018 if they are of particular

interest. They are grouped according to topic: literature

reviews, manual detection of synchrony problems, auto-

mated detection of synchrony problems, modes for improv-

ing synchrony, effects of sedation, and the taxonomy of

patient-ventilator synchrony.

Literature Reviews

Bruni et al2 conducted a review of all studies published

on patient-ventilator synchrony in the last 25 years. They

reviewed 62 studies overall, which included 1,747 subjects.

They noted that 75% of the studies reported only major

asynchronies (ie, ineffective triggering or wasted efforts,

auto-triggering, and double-triggering), while 42% also

reported minor asynchronies (ie, premature cycling and

prolonged or delayed cycling). As we will see, this is an

incomplete list of synchrony problems. These authors

included pressure, flow, and EAdi waveforms for represen-

tative examples of ineffective triggering, auto-triggering,

double-triggering, premature cycling, and delayed cycling.

Ineffective triggering was reported in 92% of the studies,

and the most common causes of ineffective triggering were

(1) weak inspiratory effort secondary to heavy sedation, ex-

cessive ventilatory support, or diaphragm dysfunction; (2)

high intrinsic PEEP; or (3) an excessively low trigger sensi-

tivity. Auto-triggering was reported in 73% of the studies,

with reported mechanisms of (1) cardiac oscillations, (2) air
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leaks, (3) water in the ventilator circuit causing pressure or

flow oscillations, (4) copious airway secretions, and (5)

high trigger sensitivity. Double-triggering was reported in

73% of the studies, with the following possible mecha-

nisms: (1) a high respiratory drive or (2) a low respiratory

system compliance causing premature cycling during venti-

lation with pressure support with a high flow cycle thresh-

old. Minor asynchronies were reported in 42% of the

studies, but methods for detecting synchrony problems

were not consistent among studies. Three categories were

described. First, clinical detection was the most common

method reported (39% of studies), and this involved visual

inspection of pressure and flow waveforms displayed by

the ventilator. Second was the detection of adjunctive sig-

nals, such as EAdi (used in 73% of the studies), esophageal

pressure (used in 15% of the studies), and transdiaphrag-

matic pressure (12% of the studies). The third category was

the detection by automated algorithms, as proposed by 8%

of the studies; such methods included analysis of the expir-

atory flow waveform to detect ineffective inspiratory

efforts. A more sophisticated method, described by Younes

et al,14 calculates a real-time signal representing ventilatory

Pmus. Mulqueeny et al17 described a system that could

detect both ineffective triggering and double-triggering.

Gutierrez et al20 applied spectral analysis (ie, fast Fourier

transform) to the air-flow signal during the expiratory phase

to calculate the asynchrony index, which is defined as the

number of asynchrony events divided by the total breathing

frequency (computed as the sum of the number of ventilator

cycles, triggered or not, and of wasted efforts), as proposed

by Thille et al.13 This asynchrony index was used in 65% of

the studies, although there was no consistency in how the

index was calculated. The ineffective trigger index, calcu-

lated by dividing the number of ineffectively triggered

breaths by the total number of breaths, both triggered and

ineffectively triggered,21 was mentioned in 8% of the stud-

ies. A relationship between patient-ventilator asynchrony

and one or more clinical outcomes was reported in 26%

of the studies. Outcomes included weaning success, dura-

tion of mechanical ventilation, sleep quality, and com-

fort. However, a shortage of randomized controlled trials,

inconsistency in reporting the rate of asynchronies, heter-

ogeneity of outcomes measured, and a low number of

enrolled subjects prevented pooled data analysis. The

authors concluded, somewhat surprisingly, that “defini-

tion and classification of patient-ventilator asynchronies

are quite standardized. Conversely, the indexes for quan-

tification of asynchronies are various and unevenly cal-

culated.”2 They suggest that future studies be designed to

ascertain unequivocally whether the relationship between

asynchrony and worsened outcomes is causative or just

associative.

The review article by de Haro et al22 aimed to summarize

what is known about patient-ventilator interaction and

asynchronies in mechanical ventilation, to show its effects

on outcomes, and to describe new directions in research

about these questions. They also provided representative

pressure, volume, and flow waveforms to illustrate ineffec-

tive trigger efforts, double-cycling, reverse-triggering, and

inspiratory flow asynchrony. They explained that patient-

ventilator asynchrony occurs when there is a mismatch

between ventilator assistance and patient demand, noting

the classification system based on this idea by Pham et al.23

This paper goes into great detail about the physiologic con-

sequences of the listed asynchronies and, in particular,

about reverse-triggering. There is also a comprehensive

section on heart-lung interaction in patients with asynchro-

nies, giving details of how they affect preload and afterload.

In a section on how asynchronies affect patient outcomes,

the authors cited references indicating worse prognosis,

increased need for sedation, prolongation of mechanical

ventilation, increased ICU and hospital length of stays, and

increased mortality. The authors reviewed many studies

that provide some data that asynchronies affect outcomes.

Their review of neuropsychological outcomes is particu-

larly interesting. Nevertheless, they cautioned that a causal

relation between patient-ventilator synchrony problems and

worse outcomes has yet to be convincingly demonstrated.

They suggested that to determine such a causal relationship,

future studies must identify and quantify asynchronies

throughout the entire period of mechanical ventilation. In

this regard, the authors pointed out that ventilated patients

generate huge amounts of data (eg, 173 million data points

per day, and as many as 1 billion over the average duration

of ventilation), yet most of these data are never used. As a

result, they stated that most physicians perform poorly when

it comes to managing patient-ventilator interactions, and

even the most highly skilled clinicians can observe only a

small portion of the available data. This situation motivates

the desire to develop artificial intelligence tools to mine the

big data and provide automated asynchrony detection. This

paper provides a unique table that compares some auto-

mated methods described in the literature, showing the type

of asynchronies detected, the algorithms used, and accuracy

specifications. They also describe emerging systems that

use big data solutions to support daily clinical decision mak-

ing and improve patient care.

Holanda et al24 provide a more comprehensive descrip-

tion of different asynchronies including ineffective trigger-

ing, double-triggering, reverse-triggering, auto-triggering,

premature cycling, delayed cycling, insufficient flow, and

excessive flow. They illustrate them with pressure, volume,

and flow waveforms generated by a subscription-based

online patient-ventilator simulator (https://xlung.net/en,

Accessed February 14, 2020). We believe this is a much

more useful approach than using ventilator waveforms

because the ventilatory Pmus waveform, which is the refer-

ence signal for defining asynchrony, can be shown along
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with airway pressure, volume, and flow waveforms. EAdi

and esophageal pressure signals are difficult to simulate. At

Cleveland Clinic, we developed a free simulator that can be

used to generate similar waveforms (https://app.box.com/s/

djt9adrbqlkz98qaiodt1jzxus8vrjur, Accessed February 14,
2020). An even better approach is to use a physical simulator

(eg, IngMar ASL 5000 breathing simulator or Hans Rudolph

series 1101 Breathing Simulator) connected to a real ventila-

tor. In this regard, it is important to select realistic simulation

parameters.25

Garofalo et al1 give a review of patient-ventilator asyn-

chronies and how they are detected, quantified, and clas-

sified. They include ineffective effort, auto-triggering,

double-triggering, premature cycling, delayed cycling,

and triggering delay, and they provided pressure, flow,

and EAdi signals to illustrate these asynchronies. This

paper is unique in that it has separate sections for adult

and neonatal/pediatric papers under broader categories

of invasive and noninvasive ventilation (NIV).1 Unlike

the papers mentioned above, this paper has a detailed

section on managing patient-ventilator asynchrony.

The authors concluded that clinically relevant asyn-

chronies are common both in invasive ventilation and

NIV and are observed not only in adults but also in pe-

diatric subjects and in long-term treatment for chronic

respiratory failure. Furthermore, detection of asynchro-

nies is problematic, and software for automated detec-

tion and use of adjunctive signals such as EAdi and

esophageal pressure is helpful. Patient-ventilator syn-

chrony can be improved with proper adjustment of ven-

tilator settings, cautious administration of sedatives,

and use of modes with that provide continuous sponta-

neous ventilation with servo targeting (ie, inspiratory

pressure proportional to inspiratory effort26,27). As other

authors have done, they assert that high rates of asyn-

chrony are associated with worse outcomes, but causa-

tion has yet to be demonstrated.1

A paper by Bulleri et al28 is the only one we have seen

that is directed at nurses. The aims of the paper were to iden-

tify asynchronies, to describe how they affect patient out-

comes, and, notably, to investigate the levels of nursing

skill in detecting them. The asynchronies included were

ineffective effort and trigger delay, premature cycling

and double-triggering, auto-triggering, reverse-trigger-

ing, delayed cycling, and flow starvation. These were

illustrated with pressure, flow, and EAdi waveforms. The

authors noted that published studies about nurses’ knowl-

edge and skills in ventilator graphic interpretation are scarce

(they found only 4).28 One paper reported that nurses, if

adequately trained, can detect patients’ ineffective efforts

with the same accuracy as expert clinicians; a second paper

indicated that nurses retained knowledge about ventilator

graphics interpretation 6 months after training; the third

paper evaluated the effects of education of nurses and

respiratory therapists, and results showed an increase in

knowledge but failed to demonstrate a reduction of ventila-

tion duration.28

Manual Detection of Synchrony Problems

Akoumianaki et al9 in 2013 were the first to report

reverse-triggering in adult subjects. In 2019, Blokpoel et al29

reported the phenomenon in a mechanically ventilated

11-month-old infant. Sedation was managed with propofol

targeting a COMFORT behavior scale of 10.30 They pro-

vided a set of waveforms showing airway pressure and flow

along with EAdi, intercostal muscle, and abdominal electro-

myography signals.29

In a letter published in a 2019 issue of Intensive Care
Medicine, Su et al31 described a method of identifying

reverse-triggering using the Campbell diagram based on

esophageal pressure. Of 56 subjects, 17 (30%) exhibited

reverse-triggering. Reverse-triggering was observed in

171 of 3,849 breaths (4%) over 145 min of recording.

Diaphragmatic contraction started in late inspiration for

41% of instances and in early expiration in 59%. Reverse-

triggering resulted in significantly larger tidal volumes

(593 mL vs 414 mL, but the mode of ventilation was not

stated). Maximum transpulmonary pressure fluctuation was

23 cm H2O. The authors noted that, although reverse-trig-

gering may contribute to ventilator-initiated lung injury,32 it

may also act as a miniature recruitment maneuver.

Soilemezi et al33 described a method of understanding

patient-ventilator asynchrony using diaphragmatic ultraso-

nograpy. They observed a striking concordance of esopha-

geal pressure and M-mode diaphragmatic displacement

tracings. They believe this provides a rationale for using di-

aphragmatic motion sonography to assess patient-ventilator

asynchrony.34 The article illustrates double-triggering, inef-

fective efforts, and reverse-triggering. The authors noted

that the major limitation of this technique is the inability to

perform continuous monitoring.

Automated Detection of Synchrony Problems

Most of the articles reviewed on automated detection of

synchrony problems were published in 2018. Sottile et al35

conducted a single-center prospective study and developed

an accurate computerized algorithm to detect ventilator

asynchrony. They sought to determine whether asynchrony,

as detected with this algorithm, was associated with large

tidal volumes and whether this asynchrony improved with

deeper sedation or the use of neuromuscular blockade.

Subjects were admitted to a medical ICU at risk for or with

ARDS and requiring mechanical ventilation. Continuous

ventilator data (ie, pressure, flow, and volume measure-

ments along with mode and settings) were collected using a

laptop computer connected to the ventilator and using
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Hamilton DataLogger 5.0 software. The modes used were

pressure control continuous mandatory ventilation with ei-

ther set-point or adaptive targeting.26 Data were collected

until extubation or for up to 7 d per subject. The algorithm

for detecting ventilator asynchrony was developed using

Python and the SciPy scientific stack, an open-source pro-

graming and scientific analysis toolset with machine learn-

ing and validation features. The algorithm was designed to

detect double-triggered, flow-limited, premature ventilator-

terminated, or ineffective-triggered breaths, although these

were not specifically defined. The term flow-limited is par-

ticularly puzzling; it suggests volume control (ie, pre-set

tidal volume and inspiratory flow), but the data were

recorded only during pressure control ventilation. From a

cohort of 62 subjects, 4.26 million breaths were recorded.

The performance of the algorithm was analyzed with re-

ceiver operating characteristic curve (ROC) analysis.

Double-triggered, flow-limited, and synchronous breaths

demonstrated an ROC of > 89%, whereas ineffective trig-

gered breaths had an ROC of 91%. Premature ventilator-

terminated breaths could not be accurately assessed. For

subjects not on neuromuscular blockade agents, 34% of

breaths were dyssynchronous. When analyzed by subject,

the median percentage of dyssynchronous breaths was

47%, and all subjects had some dyssynchronous breaths.

By type of ventilator asynchrony, 29%were premature ven-

tilator-terminated breaths, 25% were ineffective triggered

breaths, 14% were flow-limited breaths, and 3% were dou-

ble-triggered breaths; the authors noted that different types

were not mutually exclusive. Despite the use of adaptive

targeting with a tidal volume target averaging 6 mL/kg,

double-triggered and flow-limited breaths were consistently

associated with larger mean delivered tidal volumes (12

mL/kg) compared to synchronous breaths. Despite the use

of low tidal volume ventilation, > 10% of all breaths

recorded were associated with ventilator asynchrony and

resulted in tidal volumes > 10 mL/kg. Deep sedation

reduced but did not eliminate the frequency of all breaths

showing ventilator asynchrony.

Gholami et al36 addressed the issue of how to replicate

human expertise of waveform analysis for detecting cy-

cling asynchrony (ie, delayed termination, premature

termination, or none). They described a pilot study

involving 11 invasively ventilated subjects in the ICU.

A machine-learning algorithm was used to detect cy-

cling asynchrony based on waveform analysis. A panel

of 5 experts with experience in patient-ventilator asyn-

chrony examined 1,377 breaths from 11 subjects. They

labeled each breath according to cycling asynchrony

type. The algorithm accurately detected the presence or

absence of cycling asynchrony with sensitivity (speci-

ficity) of 89% (99%), 94% (98%), and 97% (93%) for

delayed termination, premature termination, and no cy-

cling asynchrony, respectively. The system showed

strong agreement with human experts as reflected by

the kappa coefficients of 0.90, 0.91, and 0.90 for

delayed termination, premature termination, and no cy-

cling asynchrony, respectively. The authors concluded

that the algorithm provided waveform analysis equiva-

lent to a human expert.

Chiew et al37 used an iterative airway pressure recon-

struction algorithm to represent asynchronous airway pres-

sure waveforms to better match passive breathing airway

waveforms using a single compartment model. The recon-

structed pressure enabled estimation of the respiratory

mechanics of an airway pressure waveform essentially free

from asynchrony. This allowed real-time breath-to-breath

monitoring and quantification of the magnitude of the asyn-

chrony. Over 100,000 breaths from ventilated subjects with

known asynchronous breathing were analyzed. The algo-

rithm was able to reconstruct different types of asynchronous

breathing. The resulting respiratory mechanics estimated by

the algorithm were more consistent with smaller interquar-

tile range compared to respiratory mechanics estimated

using asynchronous pressure. Comparing reconstructed pres-

sure with asynchronous pressure waveforms quantifies the

magnitude of asynchronous breathing, which has a median

value for the entire dataset of 3.8%. The authors concluded

that this method is capable of identifying asynchronous

breaths and improving respiratory mechanics estimation

compared to conventional model-based methods. It provides

an opportunity to automate real-time quantification of asyn-

chronous breathing frequency and magnitude that was previ-

ously limited to invasive methods.

Sousa et al38 described a plan for a study they call

EPISYNC that uses the Better Care artificial intelligence

system to evaluate patient-ventilator synchrony.39,40 The

Better Care system detects ineffective inspiratory efforts,

double-triggering, short cycling, and prolonged cycling.

The authors believe that the EPISYNC study will provide

important insights into the association between baseline

patient characteristics (including mechanics) and the inci-

dence of patient-ventilator asynchrony analyzed during the

entire period of mechanical ventilation. They also plan to

provide further insight into the association between asyn-

chrony and clinical outcomes such as ventilator-free days

and ICU and hospital length of stay.

Marchuk et al41 developed a model to predict the likeli-

hood of asynchronies occurring. They analyzed 10,409,357

breaths from 51 critically ill subjects on mechanical ventila-

tion using the Better Care system. Based on discrete time-

series data representing the total count of asynchronies,

they defined 4 levels of risk (very low to very high). A

Poisson hidden Markov model42 was used to predict the

probability of each level of risk occurring in the next pe-

riod. Long periods with very few asynchronies (and very

low risk) were more likely than periods with many events

(ie, very high risk). Subjects entering states with a high
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number of asynchronies were very likely to continue in that

state. Whereas other studies detected asynchronies once

they have happened,17,20,39,43 this was the first study to pre-

dict asynchrony events before they happened. The authors

speculated that this novel approach is a first step in devel-

oping smart alarms so clinicians can consider actions to

improve synchrony.

Rehm et al44 developed a machine-learning-based classi-

fier to detect abnormal waveform events. They focused on

detecting injurious subtypes of patient-ventilator asyn-

chrony. Using a dataset of breaths recorded from 35 patients,

they created computational models to automatically detect

and classify 2 types of injurious asynchrony, double-trigger-

ing and breath-stacking. The resulting classifier was able

to accurately detect double-triggering at a sensitivity of

0.96 and specificity of 0.98. Breath-stacking was identi-

fied with sensitivity of 0.94 and specificity of 0.99.

Nonasynchronous events were identified with a sensitiv-

ity of 0.97 and specificity of 0.98. The authors concluded

that it is possible to create a high-performing machine-

learning-based model for detecting patient-ventilator

asynchrony from mechanical ventilator waveforms in

spite of both intrapatient and interpatient variability in

waveforms patterns and the presence of artifacts like

coughing and suction procedures.

Modes for Improving Synchrony

To understand how mode selection affects patient-venti-

lator synchrony, we must first review some basic concepts

of mode taxonomy.26 Given that the purpose of mechanical

ventilation is to support some fraction of the work of

breathing, we first recall that work, in terms of the physics

of mechanical ventilation, is a function of pressure and vol-

ume. It follows that the 2 broad categories of ventilatory

modes are volume control and pressure control. These are

defined in terms of the equation of motion. Volume control

means the operator sets both tidal volume and inspiratory

flow; pressure, the dependent variable, will change in rela-

tion with patient effort, elastance, and resistance. In con-

trast, pressure control means that the operator sets the

parameters of the airway pressure waveform or the ventila-

tor automatically makes inspiratory pressure proportional

to inspiratory effort, thus making volume and flow depend-

ent variables.

Breaths delivered by the ventilator can be either sponta-

neous (triggered and cycled by the patient) or mandatory

(triggered or cycled by the machine). With spontaneous

breaths, the timing of the breath is under substantial control

of the patient’s brain, hence synchrony is maximized. With

mandatory breaths, some (or all) of the timing is under the

control of the ventilator, which is seldom in synchrony with

the patient’s demand (although even a broken clock is right

twice a day). It follows that modes are comprised of 3

different breath sequences: continuous mandatory ventila-

tion (ie, all breaths are mandatory), intermittent mandatory

ventilation (ie, spontaneous breaths may occur between

mandatory breaths), and continuous spontaneous ventila-

tion (ie, all breaths are spontaneous). Obviously, modes

classified as continuous spontaneous ventilation should

provide the highest level of synchrony. This is the reason

that the mode called pressure support is so popular for

spontaneous breathing trials. Pressure support uses a set-

point targeting scheme, meaning that the inspiratory pres-

sure target is preset by the operator. That target may be too

high or too low, however, which can lead to synchrony

problems. In contrast, the modes called proportional assist

ventilation and NAVA use servo targeting, meaning that

the ventilator automatically adjusts inspiratory pressure

dynamically in proportion to the patient’s inspiratory effort

(ie, it amplifies the muscle pressure). Other modes, incor-

porating a variety of technical features to serve the goals

of safety, comfort, and liberation, span a range of poten-

tial synchrony issues. Of the currently available modes,

volume control continuous mandatory ventilation (also

known as volume assist/control) has the least amount of

features that serve the goal of comfort.27

That said, it should not be surprising that almost all of

the articles reviewed studied NAVA. Pettenuzzo et al45 per-

formed a systematic review and meta-analysis of the effect

of NAVA on patient-ventilator interaction in mechanically

ventilated adults. In several different clinical scenarios,

NAVA was associated with significantly reduced asyn-

chrony index (mean difference �8 but very low quality of

evidence) and reduced severe asynchrony (odds ratio 0.4,

moderate quality of evidence) compared to pressure sup-

port. Other measures of asynchrony were consistently

improved, including the NeuroSync Index (defined by

Sinderby et al19), trigger and cycle delay, and ineffective

triggering. There was no difference in auto-triggering, but

double-triggering was higher with NAVA. Furthermore,

the consequences of double-triggering are very different

between NAVA, pressure support, and volume control

modes. In volume control, over-assist is most severe

because a second tidal volume is forced on top of the one

just delivered. In pressure support, inspiratory pressure im-

mediately rises to the preset level and assists the continuing

inspiratory effort, but with the result of less over-assist. In

NAVA, the breath starts out at baseline pressure and gradu-

ally rises in proportion to the effort, so over-assist appears

to be less pronounced; however, the effects of NAVA on

clinical outcomes remain uncertain. One limitation of this

article is that they did not define asynchrony index and, as

we have seen, there is little consistency among studies

about how it is calculated.

Chen et al46 performed a meta-analysis of clinical trials

comparing NAVA with pressure support in adults including

clinical outcomes. Asynchrony index was lower in NAVA
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(ie, �13). In contrast to the other meta-analyses, these

authors defined asynchrony index, stating that it is calcu-

lated as the number of asynchrony events divided by the

sum of respiratory cycles including wasted efforts (ie, inef-

fective trigger efforts). Auto-triggering and premature trig-

gering were significantly lower with NAVA than with

pressure support. There was no difference in double-trig-

gering, ineffective trigger efforts, mean airway pressure,

peak airway pressure, tidal volume, minute ventilation, and

ventilatory muscle unloading. For clinical outcomes,

NAVA resulted in lower duration of ventilation, but there

was no difference in ICU mortality, ICU length of stay, and

length of hospital stay.

Karikari et al47 performed a meta-analysis of published

pediatric studies to compare ventilatory end points between

NAVA and conventional ventilation. Asynchrony was 17%

lower, peak inspiratory pressure was 2 cm H2O lower, and

SpO2
was 1% greater with NAVA. There were no statisti-

cally significant differences in PEEP, mean airway pressure,

breathing frequency, pH, PaO2
, or PaCO2

. Again, a weakness

of the analysis is that there is little consistency among stud-

ies on how asynchrony is defined. The authors concluded

that there is likely minimal clinical importance of these find-

ings because of the small absolute differences. As with the

other meta-analyses, the lack of consistency in the definition

of asynchrony index makes comparison of these results

uncertain (eg, the data given are �8, �13, and �17,

whereas we would have expected percentages).

The study by de Waal et al48 described the incidence of

patient-ventilator asynchrony in preterm infants treated

with nonsynchronized intermittent positive-pressure ven-

tilation delivered through nasal prongs attached to a venti-

lator. They studied 21 preterm infants (mean gestational

age 26 weeks and mean birthweight 905 g). Ventilator pres-

sure and flow along with transcutaneous electromyography

of the diaphragm were recorded for 1 h. Asynchronies

were calculated and classified into 4 types: early infla-

tion (ie, the timing of the mechanical inflation is > 33%

before the spontaneous inflation), late mechanical infla-

tion (ie, the timing of the mechanical inflation is > 33%

after the spontaneous inspiration), early termination of

the mechanical inflation (ie, the timing of the mechani-

cal inflation’s termination is > 33% before the spontane-

ous expiration), and late termination of the mechanical

inflation (ie, the timing of the mechanical inflation’s ter-

mination is > 33% after the spontaneous expiration).49

Furthermore, they calculated an inspiratory asynchrony

index calculated as (100� asynchronous inspirations/total

inspirations) and an expiratory asynchrony index (100 �
asynchronous expirations/total expirations). The mean

inspiratory asynchrony index was 68%, and the mean

expiratory asynchrony index was 67%. In addition to

asynchronous breaths, unsupported breaths and extra

mechanical breaths were quite common. The authors

concluded that nonsynchronized nasal intermittent posi-

tive-pressure ventilation results in high patient-ventilator

asynchrony in this population. Further research is needed

to determine adverse effects and to develop new methods

of synchronizing nasal intermittent positive-pressure

ventilation.

Longhini et al50 conducted 30-min trials of NAVA

using a helmet or pressure support with a face mask in 10

subjects with COPD exacerbation. They assessed subject

comfort, breathing frequency, respiratory drive, arterial

blood gases, pressure-time product, inspiratory trigger

delay, and asynchrony index. Asynchronies detected

were ineffective efforts, auto-triggering, and double-trig-

gering. The index was calculated as the total number of

asynchronies divided by the number of breaths, and an

asynchrony index $ 10% was considered clinically im-

portant.49 They reported that NAVA improved comfort

and that respiratory drive was slightly decreased. Gas

exchange and pressure-time product did not differ, but

trigger performance, patient-ventilator interaction, and

synchrony were improved with NAVA.

Lamouret et al51 compared ventilator synchrony between

pressure support and NAVA in tracheostomized subjects.

They categorized asynchronies into 2 groups; macro-asyn-

chronies (ie, ineffective triggering, double-triggering, and

auto-triggering) and micro-asynchronies (ie, inspiratory

trigger delay, premature cycling, and late cycling). This

was a prospective, sequential, nonrandomized, single-cen-

ter study in an ICU in France. Analysis of ventilator wave-

forms was performed by 2 independent physicians using

data recorded for 16 min per subject. Breathing frequency

was determined from the EAdi signal, and an asynchrony

index was calculated as (100 � total number of asynchro-

nies/breathing frequency). An asynchrony index was also

calculated for each subtype of asynchrony. The total asyn-

chrony index was lower for NAVA than for pressure sup-

port (2% vs 14%), and an asynchrony index > 10% was

less frequent for NAVA. Among the macro-asynchronies

there was no difference in auto-triggering and ineffective

triggering between the 2 groups, although there was more

double-triggering in NAVA. For micro-asynchronies, there

were fewer of each type in NAVA. The tidal volume was

lower with NAVA than with pressure support (5.8 vs 6.2

mL/kg). The breathing frequency was higher with NAVA

(28 vs 26 breaths/min). The authors claimed that this was

the first study to compare NAVA and pressure support and

suggest that more research is needed to determine the

effects of NAVA on clinical outcomes in this population.

Grieco et al52 compared conventional pressure support

with SmartCare/PS, a mode classified as pressure control

continuous spontaneous ventilation with intelligent target-

ing, meaning use of artificial intelligence.26 This targeting

scheme automatically adjusts the inspiratory pressure target

to keep the patient within a comfort zone defined as a
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breathing frequency of 15–30 breaths/min (< 34 for neuro-

logical patients), tidal volume above a minimum threshold

established from the patient’s height, and end-tidal CO2 <
55 mm Hg (65 mm Hg for patients with COPD). These

authors defined the criteria for identifying the following

asynchronies: auto-triggering (ie, ventilator cycle without

prior decrease in airway pressure), wasted efforts (ie, depres-

sion in the airway pressure signal $ 0.5 cm H2O associated

with an abrupt rise in expiratory flow but not followed by

flow delivery from the ventilator), double-cycling (ie, 2 ven-

tilator cycles separated by less than one half the mean inspir-

atory time, with the first cycle being subject-triggered), and

short cycling (ie, inspiratory time shorter than one half the

mean inspiratory time). They provided pressure and flow

waveforms to illustrate these asynchronies. They calculated

an asynchrony index as the number of asynchronies divided

by the sum of ventilator breaths, wasted efforts, and double

cyclings. The asynchrony index was lower with SmartCare

than with pressure support (5 vs 7), but there was no differ-

ence in the proportion of subjects with asynchronies.

The inspiratory pressure target varied more with

SmartCare, but the average level was not different

between the 2 modes. In subjects with baseline inspira-

tory pressure target < 12 cm H2O, tidal volume was lower

with SmartCare. The authors concluded that during difficult

weaning, SmartCare improved patient-ventilator interac-

tions by lowering tidal volume and enhancing inspiratory

pressure target variability.

One might expect there to be more studies on the effect of

proportional assist on synchrony, but we found only 2 in the

last 2 years. Zang et al53 published a paper in RESPIRATORY

CARE comparing patient-ventilator interaction during differ-

ent levels of noninvasive proportional assist ventilation with

noninvasive pressure support. This was a study of 15 subjects

with severe COPD and hypercapnia. The proportional assist

and pressure support levels were set by subject comfort. To

evaluate patient-ventilator interaction, the neural respiratory

drive, respiratory muscle effort, flow, and airway pressure

signals were measured. Results indicated that the expiratory

cycle delay, calculated as the time between the end of dia-

phragm electromyogram (EMGdi) signal and the end of the

inspiratory flow, progressively increased with increasing

assist level in both modes. However, the delay was longer in

each assist level during proportional assist. The runaway

phenomenon was observed with proportional assist ventila-

tion, with runaway defined as the ventilator being unable to

accurately assess lung mechanics and continuing to increase

the inspiratory pressure until the high pressure alarm is acti-

vated. Consistent runaway means the mode has failed. The

time between the peak of the EMGdi signal and the maxi-

mum value of the flow signal and the time difference

between the peak EMGdi and peak inspiratory pressure were

significantly increased with increasing assist level in propor-

tional assist ventilation.

Amargiannitakis et al54 conducted a study in an attempt

to validate an algorithm for titrating assistance in propor-

tional assist ventilation previously described by Carteaux

et al.55 Data from 26 subjects ventilated with proportional

assist ventilation were used to compare the estimated peak

Pmus (from the algorithm) with measurements of trans-

diaphragmatic pressure and derived pressure-time product.

The sensitivity and specificity of estimated peak Pmus to

predict the range of actual inspiratory effort were 81% and

58%, respectively. In 49% of cases, the level of assist indi-

cated by the algorithm differed from that indicated by the

transdiaphragmatic pressure and pressure-time product.

The authors concluded that the algorithm had limited accu-

racy in indicating the appropriate level of support.

Effects of Sedation

de Haro et al56 conducted a prospective, multicenter

observational study on the effects of sedatives and opioids

on trigger and cycling asynchronies in critically ill subjects.

They used the Better Care system to continuously monitor

ineffective trigger efforts, double-cycling, and asynchrony

index as well as modes of ventilation. The Better Care sys-

tem identifies modes using concepts from our ventilator

mode taxomony.26,40 In 79 subjects, 14,166,469 breaths

were recorded during 579 d of ventilation. Overall asyn-

chronies were not different in days classified as sedative-

only and sedatives plus opioids and were more prevalent in

days classified as no-drugs than in those classified as seda-

tives plus opioids, irrespective of the mode of ventilation.

However, on days classified as sedative plus opioids, higher

sedative doses and deeper sedation resulted in more ineffec-

tive trigger efforts and higher asynchrony index. Opioid

dosing was inversely associated with overall asynchronies.

The authors concluded that sedatives alone or with opioids

do not decrease asynchronies beyond what can’t be

achieved with opioids alone, independently of the mode of

ventilation. Hence, optimal titration of opioids might

improve patient-ventilator interaction while avoiding the

deleterious effects of sedatives.

Toward a Taxonomy for Patient-

Ventilator Synchrony

Any sufficiently advanced science eventually become

useless without a taxonomy (ie, a classification system)

based on a standardized vocabulary. Without this, we are in

the unfortunate position of requiring the learner to “under-

stand what I mean, not what I say.” We found only one arti-

cle that addressed this topic.

Gonzalez-Bermejo et al57 created a conceptual frame-

work for systematic analysis of polygraphic recordings of

subjects undergoing noninvasive ventilation. Definition,

description, pathophysiologic mechanisms, and classification
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of patient-ventilator asynchrony were the result of consensus

of clinicians after visual inspection of polygraph tracings.

These were then reproduced using a breathing simulator.

The authors defined 9 different asynchronies, in 2 broad cat-

egories, all confirmed by reproduction on the simulator. The

first category was rate asynchronies, defined as a mismatch

between ventilator and patient rates. When the ventilator rate

was above the subject rate, the following events were identi-

fied: double-triggering, auto-triggering, and uncoupling.

Uncoupling had 2 varieties, isolated uncoupling and reverse-

triggering (this one they were unable to reproduce on the

simulator). When the subject rate was above the ventilator

rate, they identified ineffective efforts. When subject and

ventilator rates were completely dissociated, they described

it as prolonged uncoupling. The second major category was

intracycle asynchronies, defined as distortions of the flow

and pressure waveforms during both inspiration and expira-

tion. When a distortion of the inspiratory waveforms

occurred during inspiration or lasted for the entire cycle, they

defined it as intracycle under-assistance. When the end of

the pressure and flow waveforms were out of phase with the

signals from the thoracic or abdominal belts, they defined it

as delayed cycling or premature cycling. They noted that no

asynchrony is specific or pathognomonic of a given patho-

physiological situation.

We conclude that the subject of patient-ventilator inter-

action taxonomy has not been adequately addressed in the

literature to date. Taxonomies have 2 components: a set of

definitions relevant to the topic (ie, a standardized vocabu-

lary) and a hierarchical organizational structure using key

definitions (ie, the taxonomy).58 Regarding a standardized

vocabulary, we can see some minor inconsistencies in the

literature. For example, authors use ineffective triggering

synonymously with ineffective trigger efforts. If we accept

the definition of triggering as the start of the inspiratory

time, signaled by the start of flow from the ventilator, then

ineffective triggering is illogical: something that did not

occur can neither be effective nor ineffective. Also, if we

accept cycling to mean the end of the inspiratory time sig-

naled by the start of expiratory flow, then using double-

cycling as synonymous with auto-triggering is simply

inconsistent. Of more concern is the common usage of

the term asynchrony. To understand this we must first

review some basics of signal analysis and develop a dis-

tinction between asynchrony and asynchrony.

As stated above, patient-ventilator interactions are de-

scribed with multiple names. The following definitions are

based on published literature and general physics defini-

tions. In the interaction of 2 systems, the patient and the

ventilator, there must be one that serves as a reference for

the other. The reference waveform is the one that represents

the “true” signal, which any other waveform should match

for synchrony to occur. The reference waveform, in the

patient-ventilator relationship, is the signal generated by

the patient’s breathing efforts. Ideally, we would acquire

this signal directly from the brain.59 In practice, however,

we currently start with the phrenic nerve activation of the

diaphragm (EAdi). Upon muscle activation, changes in

transpulmonary pressure are detected as changes in pres-

sure and flow. With the introduction of NAVA, EAdi allows

for a fairly accurate reference signal for assessing patient-

ventilator synchrony as a surrogate for Pmus. A practical al-

ternative would be an esophageal pressure signal. A method

of calculating Pmus itself as a reference signal has been

described but never commercialized.14,16 It follows that, in

making a definition, we must use the true reference stand-

ard. In practice, we often do not have a direct measurement

of the reference standard. Thus we make inferences on the

patient breathing efforts from the changes in the pressure

waveform (if in volume control mode) or the flow wave-

form (if in pressure control mode).

We can define patient-ventilator synchrony as a near-

zero phase difference between the patient signal (eg, esoph-

ageal pressure or EAdi) and ventilator response. A phase

difference will always exist if for no other reason that the

ventilator cannot respond instantaneously (ie, in zero time).

Hence, we must use the terms near-zero phase difference or

clinically unimportant phase difference to describe syn-

chrony. An adequate description of phase and phase differ-

ence is beyond the scope of this article, but many good

resources are available on the Internet. One thing to remem-

ber is that when we describe the respiratory system as a sin-

gle compartment model (eg, using the equation of motion),

pressure, volume, and flow signals are always out of phase

in proportion to the system impedance, dependent on resist-

ance and compliance. Hence, it is important to compare

similar signals when describing synchrony (eg, pressure vs

pressure, flow vs flow). This is a concept from basic circuit

analysis.

Dyssynchrony (from dys-, meaing difficult, abnormal,

bad) is a clinically important phase difference between

patient demand and ventilator response. In this circum-

stance, both waveforms exist, yet their timing is signifi-

cantly out of phase. In contrast, asynchrony (from a-,
meaing absence of) is the absence of either a patient signal

(ie, demand or inspiratory effort) or a ventilator response.

In these circumstances, there can be no synchrony because

either the reference signal or the ventilator signal is not

present.

Notice that synchrony issues, by definition, have to do

with timing. As such there are 2 defined timing points in a

breath, for the patient the beginning and end of the effort,

and for the ventilator the trigger and cycle of inspiration. If

we focus on these discrete events, there are only 5 possibil-

ities in terms of timing, which apply to both triggering and

cycling: (1) normal, (2) early in reference to the patient, (3)

late in reference to the patient, (4) missed the patient signal,

and (5) false signal (a non-Pmus signal).
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During inspiration (ie, the period between trigger and

cycle) and expiration (ie, the period between cycle and

next trigger), the main issues are not related to timing

but to work of breathing. Indeed, we look at these peri-

ods to identify patient-ventilator interactions, but these

periods also contain a fair amount of information in

terms of work of breathing. The equation of motion can

be modified to calculate the work of inspiration (in

joules, J) or work per unit of tidal volume (J/L) by inte-

gration of the pressure terms with respect to volume.60

For passive ventilation (Pmus ¼ 0), the ventilator does

all the work. For example, in the simplest case where

Pvent is held constant, work is just Pvent � tidal volume.

On the other hand, when ventilatory assistance is zero

(eg, CPAP), then all the work is done by the patient (ie,

Pmus generates the tidal volume).

Recall that work is defined as force acting through a dis-

tance or, in physiology, as pressure used to deliver a vol-

ume to the respiratory system. If we define a ventilator as

an automated system that supplies some portion of the

work of breathing, then it makes sense that the 2 main con-

trol variables for the taxonomy of modes are volume and

pressure. When Pvent and Pmus are active together, some

portion of the total work is done by the ventilator and some

by the patient. We call this situation work shifting. We can

create a simple work shifting index (WSI) to indicate the

amount of total work (Wtot) shifted from the ventilator to

the patient (Wpt): WSI¼ (Wpt/Wtot)� 100.

Hence, if the ventilator does all the work, the WSI ¼
0%; if the patient does all the work, the WSI ¼ 100%, and

if the work is shared equally between the ventilator and

patient, the WSI ¼ 50%. Work shifting occurs in 4 main

patterns (Fig. 1). First, for volume controlled inspira-

tion with set-point targeting, the total work stays con-

stant because volume and flow are unaffected by Pmus.

Hence, Pvent (and ventilator work) must decrease in

exact proportion to the increase in Pmus (and patient

work) for each breath. The WSI for the example shown

in Figure 1 goes from 0% to 6% to 12% as maximum

Pmus increases from 0 to 3 to 6 cm H2O, respectively. It

would be recognized graphically as an increasing dis-

tortion of the pressure-time waveform (Fig. 2). The

extreme of work shifting is when the patient generates

high levels of Pmus, and Pvent decreases below baseline

(PEEP). In this case, the patient is actually doing work

on the ventilator system. This extreme is called flow

starvation and is most commonly seen during volume

control ventilation with set-point targeting.

Second, during pressure controlled ventilation with

adaptive targeting (eg, Pressure Regulated Volume Con-

trol), the average tidal volume (over several breaths) is the

result of the combined average work of Pmus and Pvent to

deliver volume. Hence, as Pmus increases, Pvent must

decrease (similar to volume controlled ventilation) to keep

the average tidal volume at the preset target value. This

effect is similar to that during volume controlled ventila-

tion, but in the simulation shown in Figure 1 it is an even

more extreme case of work shifting. The difference is that

the total work increases because the tidal volume increases.

The WSI for the example shown in Figure 1 goes from 0%

to 8% to 17% as maximum Pmus increases from 0 to 3 to

6 cm H2O, respectively.

Third, for pressure controlled inspiration with set-point

targeting, Pvent remains unaffected by Pmus while volume

and flow increase as Pmus increases (Fig. 3). Because pres-

sure, volume, and flow all increase, the total work increases

while the relation between ventilator work and patient work

(expressed as work per liter) stays relatively constant.

Again, work shifts as the patient accounts for more of the

total work. The WSI for the example shown in Figure 1

goes from 0% to 8% to 15% as maximum Pmus increases

from 0 to 3 to 6 cm H2O, respectively.

0
0

1

1.5

2

2.5

3
A B

0.5

0.10 0.20
Patient work (J/L)

Ve
nt

ila
to

r w
or

k 
(J

/L
)

0.30 0.40 0.50 0
0

1

1.5

2

2.5

3

VC-CMVs
PC-CMVa
PC-CMVs
PC-CSVr

0.5

0.10 0.20
Patient work (J/L)

To
ta

l w
or

k 
(J

/L
)

0.30 0.40 0.50

Fig. 1. Comparison of work shifting between volume control continuous mandatory ventilation with set-point targeting (VC-CMVs, eg volume
assist/control), pressure control continuous mandatory ventilation with adaptive targeting (PC-CMVa, eg, Presssure Regulated Volume

Control), pressure control continuous mandatory ventilation with set-point targeting (PC-CMVs, eg, pressure assist/control), and pressure con-
trol continuous spontaneous ventilation with servo targeting (PC-CSVr, eg, proportional assist ventilation). Maximum inspiratory effort (Pmus) set
at 0, 3, and 6 cm H2O. For VC-CMVs and PC-CMVa, the tidal volume target is 0.400 L. For PC-CSVr, the tidal volume target was set at 0.200 L

and at 0.400 L, and the ventilator work was set at 75% of total work.
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The forth pattern is no work shifting. Proportional assist

ventilation was invented to keep the relation between venti-

lator and patient work constant and controllable.61 These

situations are illustrated in Figure 1.

If we can agree on a standardized vocabulary for

patient-ventilator interactions, then we need to develop

a standardized approach for analyzing the waveforms. In

practice, we have relied on bedside recognition of pat-

terns in the waveforms by human experts to diagnose

synchrony problems, but no method has yet been

accepted as a standard. Indeed, ventilators have only

recently been able to provide precise waveform display

and analysis tools, and clinicians generally have not

been trained to use them for diagnostic purposes. Contrast

this with the success story of electrocardiograms (ECGs).

Caregivers are expected to be able to read or at least draw a

normal ECG waveform. We are trained to read waveform

landmarks, in a particular order, starting with the P, Q, R, S,
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Fig. 3. Work shifting due to active inspiratory effort in pressure controlled ventilation. Red lines are muscle pressure (Pmus), representing inspira-

tory effort.

max Pmus = 0

Pr
es

su
re

Vo
lu

m
e

Fl
ow

Time Time Time

max Pmus = 3 cm H2O max Pmus = 6 cm H2O

Fig. 2. Work shifting due to active inspiratory effort in volume controlled ventilation. Red lines are muscle pressure (Pmus), representing inspira-
tory effort.
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T, and then to reach a diagnosis. The ventilator waveforms

carry as much information as ECG waveforms, if not more. It

follows, then, that to describe the patient-ventilator interac-

tions, we must interpret waveforms in a systematic fashion.

In clinical practice, we do not always have esophageal pres-

sure or EAdi signals available for reference. Therefore, we

must rely on the ventilator airway waveforms (pressure, flow,

and volume) to infer the effects of Pmus.

Table 1 outlines the types of patient-ventilator interac-

tions, alternative names, and definitions, and Table 2 out-

lines the potential types of interactions according to phase

of the breath. The reader will note that one can progress

through each one of the breath phases and describe different

patient-ventilator interactions in a single breath. We

suggest consideration of 2 ideas. The first is that we

need to move away from just thinking about pattern

recognition. For example, multiple-triggering, also

known as double-triggering, is a pattern that has multi-

ple causes (eg, false triggering, early triggering, early

cycle), yet it does not help identify the type of discord-

ance. Consider the problem of defining reverse-trigger-

ing. If we use the proposed method, and we use the

definition of reverse-triggering as a form of early trig-

ger (ie, Pvent starts before Pmus), the practitioner can

now understand that it often leads to early cycling

because Pmus is just getting under way when Pvent
ceases. Early cycling, due to the early trigger, is a com-

mon cause of double-triggering, making early cycling a

necessary but not sufficient cause of double-triggering.

Thus the student learns that the pattern of double-trig-

ger has several causes. The second idea is that having a

specific interpretation method helps organize the way

we read the waveforms so that important things are not

missed. Eventually pattern recognition emerges as a

key skill, but the method takes us beyond simple mem-

orization into a deeper understanding of the physics of

patient-ventilator interaction.

Summary

Patient-ventilator synchrony is a popular topic and much

research has been conducted recently in terms of both

detecting and correcting synchrony problems. Nevertheless,

there is a lack of convincing evidence that synchrony prob-

lems affect patient outcomes in specific ways. Development

of automated detection systems may help generate the

needed data, but for such data to be of much use, we must

come to consensus on a standardized vocabulary and taxon-

omy for patient-ventilator interactions.

REFERENCES

1. Garofalo E, Bruni A, Pelaia C, Liparota L, Lombardo N, Longhini F,

et al. Recognizing, quantifying and managing patient-ventilator asyn-

chrony in invasive and noninvasive ventilation. Expert Rev Respir

Med 2018;12(7):557-567.

2. Bruni A, Garofalo E, Pelaia C, Messina A, Cammarota G, Murabito P,

et al. Patient-ventilator asynchrony in adult critically ill patients.

Minerva Anestesiol 2019;85(6):676-688.

3. Mireles-Cabodevila E, Chatburn RL. The challenge of patient-ventila-

tor interactions and technological solutions. AARC Times 2017;41

(6):9-14.

4. Fabry B, Guttmann J, Eberhard L, Bauer T, Haberthür C, Wolff G. An

analysis of desynchronization between the spontaneously breathing

Table 2. A Method to Read Ventilator Waveforms

Patient-Ventilator Interaction What To Look For

Phase 1: Trigger

Normal Triggering within 300 ms of patient trigger signal

Early Machine triggering followed by patient trigger signal within the same inspiration

Late Trigger delay > 300 ms after patient trigger signal

False Measured breathing frequency higher than set rate with no evidence of patient triggering

Missed Patient effort fails to trigger ventilator, expiratory flow waveform deflected toward baseline

Phase 2: Inspiration

Normal Passive (no inspiratory effort) or clinically unimportant work shifting

Work shifting Compared to passive inflation, decreased mean inspiratory pressure in volume control or increased flow and

volume in pressure control; due to inspiratory effort

Phase 3: Cycle

Normal No evidence of early or late cycling

Early Distortion of early peak expiratory flow (toward baseline)

Late Rise in pressure at end inspiration

False Spike in inspiratory pressure activates high pressure alarm and ending breath

Missed Ventilator fails to recognize patient cycling signal (eg, in proportional assist ventilation, runaway)

Phase 4: Expiration

Normal Passive (no inspiratory effort) or clinically unimportant expiratory work

Expiratory effort Increased expiratory flow compared to passive expiration

PATIENT-VENTILATOR SYNCHRONY

570 RESPIRATORY CARE � APRIL 2020 VOL 65 NO 4



patient and ventilator during inspiratory pressure support. Chest 1995;

107(5):1387-1394.

5. Marini JJ, Capps JS, Culver BH. The inspiratory work of breathing

during assisted mechanical ventilation. Chest 1985;87(5):612-618.

6. MacIntyre NR, McConnell R, Cheng KC, Sane A. Patient-ventilator

flow dyssynchrony: flow-limited versus pressure-limited breaths. Crit

Care Med 1997;25(10):1671-1677.

7. Flick GR, Bellamy PE, Simmons DH. Diaphragmatic contraction dur-

ing assisted mechanical ventilation. Chest 1989;96(1):130-135.

8. Kallet RH, Campbell AR, Dicker RA, Katz JA, Mackersie RC. Work

of breathing during lung-protective ventilation in patients with acute

lung injury and acute respiratory distress syndrome: a comparison

between volume and pressure-regulated breathing modes. Respir Care

2005;50(12):1623-1631.

9. Akoumianaki E, Lyazidi A, Rey N, Matamis D, Perez-Martinez N,

Giraud R, et al. Mechanical ventilation-induced reverse-triggered

breaths: a frequently unrecognized form of neuromechanical coupling.

Chest 2013;143(4):927-938.

10. Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M. Patient-ventilator

trigger asynchrony in prolonged mechanical ventilation. Chest 1997;

112(6):1592-1599.

11. Kondili E, Prinianakis G, Georgopoulos D. Patient-ventilator interac-

tion. Br J Anaesth 2003;91(1):106-119.

12. Georgopoulos D, Prinianakis G, Kondili E. Bedside waveforms inter-

pretation as a tool to identify patient-ventilator asynchronies. Intensive

Care Med 2006;32(1):34-47.

13. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-

ventilator asynchrony during assisted mechanical ventilation. Intensive

Care Med 2006;32(10):1515-1522.

14. Younes M, Brochard L, Grasso S, Kun J, Mancebo J, Ranieri M, et al.

A method for monitoring and improving patient: ventilator interaction.

Intensive Care Med 2007;33(8):1337-1346.

15. Younes M. Proportional assist ventilation, a new approach to ventila-

tory support: theory. Am Rev Respir Dis 1992;145(1):114-120.

16. Kondili E, Alexopoulou C, Xirouchaki N, Vaporidi K, Georgopoulos

D. Estimation of inspiratory muscle pressure in critically ill patients.

Intensive Care Med 2010;36(4):648-655.

17. Mulqueeny Q, Ceriana P, Carlucci A, Fanfulla F, Delmastro M, Nava

S. Automatic detection of ineffective triggering and double triggering

during mechanical ventilation. Intensive Care Med 2007;33(11):2014-

2018.

18. Mulqueeny Q, Redmond SJ, Tassaux D, Vignaux L, Jolliet P, Ceriana

P, et al. Automated detection of asynchrony in patient-ventilator inter-

action. Conf Proc IEEE Eng Med Biol Soc 2009;2009:5324-5327.

19. Sinderby C, Liu S, Colombo D, Camarotta G, Slutsky AS, Navalesi P,

et al. An automated and standardized neural index to quantify patient-

ventilator interaction. Crit Care 2013;17(5):R239.

20. Gutierrez G, Ballarino GJ, Turkan H, Abril J, De La Cruz L, Edsall C,

et al. Automatic detection of patient-ventilator asynchrony by spectral

analysis of airway flow. Crit Care 2011;15(4):R167.

21. de Wit M, Pedram S, Best AM, Epstein SK. Observational study of

patient-ventilator asynchrony and relationship to sedation level. J Crit

Care 2009;24(1):74-80.

22. de Haro C, Ochagavia A, Lopez-Aguilar J, Fernandez-Gonzalo S,

Navarra-Ventura G, Magrans R, et al. Patient-ventilator asynchronies

during mechanical ventilation: current knowledge and research prior-

ities. Intensive Care Med Exp 2019;7(Suppl 1):43.

23. Pham T, Telias I, Piraino T, Yoshida T, Brochard LJ. Asynchrony con-

sequences and management. Crit Care Clin 2018;34(3):325-341.

24. Holanda MA, Vasconcelos RDS, Ferreira JC, Pinheiro BV. Patient-

ventilator asynchrony. J Bras Pneumol 2018;44(4):321-333.

25. Arnal JM, Garnero A, Saoli M, Chatburn RL. Parameters for simula-

tion of adult subjects during mechanical ventilation. Respir Care

2018;63(2):158-168.

26. Chatburn RL, El-Khatib M, Mireles-Cabodevila E. A taxonomy for

mechanical ventilation: 10 fundamental maxims. Respir Care 2014;59

(11):1747-1763.
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