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The electronic health record allows the assimilation of large amounts of clinical and laboratory

data. Big data describes the analysis of large data sets using computational modeling to reveal pat-

terns, trends, and associations. How can big data be used to predict ventilator discontinuation or

impending compromise, and how can it be incorporated into the clinical workflow? This article will

serve 2 purposes. First, a general overview is provided for the layperson and introduces key con-

cepts, definitions, best practices, and things to watch out for when reading a paper that incorporates

machine learning. Second, recent publications at the intersection of big data, machine learning, and

mechanical ventilation are presented. Key words: big data; data science; machine learning; mechani-
cal ventilation; neural network. [Respir Care 2020;65(6):894–910. © 2020 Daedalus Enterprises]
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Introduction

Artificial intelligence and machine learning are tailored

to identify complex, nonlinear relationships in large vol-

umes of data. The typical patient admitted to the ICU is

likely to be connected to a physiologic monitor, a mechani-

cal ventilator, and various medication infusion pumps and

to receive a number of tests, all of which generate a vast

amount of data. These data, when combined with informa-

tion obtained by bedside clinicians and entered into the

electronic health record, make the ICU an extremely data-

rich environment. However, utilizing these data to their

fullest extent is difficult. Further, many aspects of care in

the ICU are not informed by high-quality, large, random-

ized controlled trials (RCTs), and practice variability

among providers can be high.1,2 The sheer volume of data,

the complexity of individual patients, and variability in

practice represent an opportunity to apply big data techni-

ques, artificial intelligence, and machine learning to pro-

vide solutions to important clinical problems. Such

solutions may involve predicting clinical deterioration,

automated identification of patients who are ready to extu-

bate, early warning signs of important conditions such as

sepsis to permit early intervention, and providing decision

support to clinicians to optimize mechanical ventilation.3

Types of Clinical Data

For a subject admitted to the ICU and receiving mechani-

cal ventilation, there are disparate data types that must be

considered when storing, accessing, and deriving informa-

tion from the data. Structured data elements are those that

document patient information using controlled vocabulary

rather than a text narrative or other unstructured means.4

An example would be a flow sheet row in the medical re-

cord where a clinician records breathing frequency. Data

from drop-down lists, such as those utilized to document

breath sounds, or capnographic data are also examples of

structured data. In most cases, structured data are preferred

because the data are relatively easy to query, manipulate,

and process.

The term “unstructured data” has gained popularity in

recent years and goes hand-in-hand with big data. These

are data that cannot be readily mapped to a specific field

with known characteristics. Unstructured data often are

stored without a clear purpose for later use, or it is very diffi-

cult or impossible to impose a structure on it. Examples

include clinical notes in which a clinician can enter free text,

most imaging information, and a few other sources that typi-

cally come from outside the electronic health record.

There is a need to integrate these data types to achieve

the maximum clinical, quality, and business value.5-7 There

are efforts in the field to adopt standards that facilitate the

flow of data. One such effort is clinical document architec-

ture, which is an important standard in the United States

that seeks to incrementally structure data and provide inter-

operability.8 As these standards are implemented, the hope

is that individual institutions, departments, and teams will

be able to more readily access and extract value from these

data.

Data Collection and Warehousing

Data collection at the bedside is particularly daunting,

especially because a single subject can be connected to sev-

eral devices that output different types of data at different

frequencies. First and foremost, the admission-discharge

transfer feed, which contains important patient identifiers,

is used to associate the patient with the bed space, medical

record, and other data sources. A data warehouse is a cen-

tral location for all data that an enterprise or hospital col-

lects.9 These data can include those stored directly in the

electronic health record (including the medication adminis-

tration record, physiologic data, treatments, notes), data

incorporated into the admission-discharge transfer, continu-

ous physiologic data from medical devices (eg, monitors,

mechanical ventilators, radiologic or ultrasound imaging),

billing, and other sources. Increasingly, institutions are

implementing data architecture that streamlines the col-

lection of data from multiple locations to a central reposi-

tory for patient care, quality improvement, and research.

Data Mining and Data Science

As the field of artificial intelligence has progressed over

the past 30 y, data mining has been of prominent interest

among researchers in the field.10 Data science is the science

of extracting useful information from data sets, and it spans

several disciplines, including statistics, data management,

artificial intelligence, machine learning, and pattern recog-

nition among others.11 A researcher engaged in data mining

will address data collection, storage and retrieval, data

cleaning, data reduction, visualization, algorithm develop-

ment, machine learning, and statistical analysis, and will

also need to balance statistical and computational issues.12

Some common data science terminology is provided in

Table 1.
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The role of the data scientist is one that spans various

industries and all levels of enterprise decision making.

A data scientist works at the intersection of substantive

expertise (domain knowledge), mathematics and ap-

plied statistics, machine learning, and coding skills

(https://berkeleysciencereview.com/2013/07/how-to-become-

a-data-scientist-before-you-graduate, Accessed August
22, 2019). On one hand, all scientists deal with data,

and one could bestow the title of data scientist upon

anyone dealing with data and statistics. However, for

our purposes, this is referred to as traditional research.

As more data are collected, knowledge of machine

learning and coding skills are required to extract the

maximum value from patient data. It is in the best inter-

est of the field of medicine to have people with exten-

sive substantive expertise (eg, respiratory therapists,

doctors, nurses, and other clinicians) gain the skills

needed to become data scientists. One of the issues fac-

ing a data scientist with little knowledge of a given field

is solving problems that either don’t exist or are obvious

to clinicians in the field. Data scientists with keen

awareness of clinical practice, especially as it pertains

to mechanical ventilation, will be in an excellent

position to achieve insight into pathophysiology and de-

velopment of useful decision-support tools that will

have a clinical impact.

Big Data

The origin of the term “big data” is not clear. The term

itself is very broad, is debated loudly, and often is not help-

ful in conversation. The most clear and helpful definition is

that ‘big data’ is a high-volume, high-velocity, and high-va-

riety information asset that demands cost-effective, innova-

tive forms of information processing for enhanced insight

and decision making. A part of the definition includes the 3

Vs: volume (quantity of data), velocity (rate at which data

are generated and collected), and variety (various types of

data and sources). In general, big data are the ocean in

which a variety of specific data tasks are found.

Artificial Intelligence

The definition of artificial intelligence can be controver-

sial depending on the applied domain (eg, computer sci-

ence, data science, statistics, science fiction). Alan Turing,

Table 1. Key Concepts and Common Terminology

Area Term Definition

General Big data High-volume (quantity of data), high-velocity (rate at which data are generated and collected), and high-

variety (various types of data and sources) information asset that demands cost-effective,

innovative forms of information processing for enhanced insight and decision making

Artificial intelligence The branch of computer science dealing with the simulation of intelligent behavior in computers and the

capability of a machine to imitate intelligent human behavior

Machine learning A subset of artificial intelligence that provides a mechanism to learn from data and improve through ex-

perience without being explicitly programmed

Data science The science of extracting useful information from data sets, spans several disciplines, including

statistics, data management, artificial intelligence, machine learning, pattern recognition, and others

Data mining Skills needed to address data collection, storage and retrieval, data cleaning, data reduction,

visualization, and algorithm development; at times, machine learning needs to balance statistical and

computational issues

Data Structured data Data elements that document information using controlled vocabulary rather than a text narrative or

other unstructured means

Unstructured data Data that cannot be readily mapped to a specific field with known characteristics; often stored without a

clear purpose for later use; often is very difficult or impossible to impose a structure on it

Features (predictor

variables)

Information computed to describe an element of a variable (eg, a feature of heart rate is computing the

maximum recorded measurement over a 24-h time period, or the slope of spontaneous breathing

frequency for the last hour)

Target A known outcome that can be binary (eg, died in the ICU), categorical (eg, length of stay < 2 d,

2–5 d, or > 5 d), or continuous (eg, mean blood pressure following a fluid bolus)

Learning Supervised learning The type of machine learning used to approach a problem where a discrete outcome is known

Unsupervised learning The machine learning task of uncovering hidden structure or relationships within an unlabeled data set

Semisupervised learning Type of machine learning where input data are a mix of both labeled and unlabeled data

Model Model training Process through which a machine learning algorithm’s performance is optimized based on available data

Model validation Process of assessing model performance and gauging performance

Overfitting A model that too closely reflects a specific dataset and will therefore be unable to make accurate future

predictions
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English mathematician and widely recognized father of ar-

tificial intelligence, devised what is known as the Turing

Test of computer intelligence.13 Turing proposed that if a

computer could mimic human behavior, and in so doing

fool a human into believing they were interacting with a

human, that computer could be defined as possessing intel-

ligence. More broadly, artificial intelligence is defined as

the branch of computer science dealing with the simulation

of intelligent behavior in computers and the capability of a

machine to imitate intelligent human behavior (https://

www.britannica.com/technology/artificial-intelligence, Ac-
cessed August 22, 2019).

Machine Learning

Machine learning is a subset of artificial intelligence

that provides a mechanism for a computer algorithm to

learn from data and improve through experience without

being explicitly programmed.14 This is particularly useful

in the context of medicine because it may not be com-

pletely necessary to explain (and program) all of the var-

iance in a given subject to get a reasonable approximation

of system performance or subject health in an effort to

provide individualized care. In general, there are 2 princi-

pal types of learning utilized within machine learning that

a researcher can employ to extract knowledge from a

given dataset: supervised learning and unsupervised

learning.

Supervised Learning. Supervised learning describes a

problem where a discrete outcome is known a priori.

Techniques within supervised learning utilize a labeled

dataset that has 2 components: (1) a set of inputs (typically

a vector of data containing either continuous variables, cat-

egorical variables, or a combination of both) and (2) a tar-

get or outcome. This is collectively referred to as the

training data and is used to train the machine learning

algorithm.

Unsupervised Learning. Unsupervised learning is the

machine learning task of uncovering hidden structure or

relationships within an unlabeled dataset.15 An unlabeled

dataset is one where no target or outcome exists. An exam-

ple of unsupervised learning is the application of a cluster-

analysis technique to detect distinct phenotypes of subjects

with a common clinical diagnosis.16 In this case, this infor-

mation may reveal differences in clinical characteristics

and prognosis for a given diagnosis, such as bronchiectasis.

Semisupervised Learning. A third type of learning is called

semisupervised learning. Semisupervised learning occurs

when input data are a mixture of both labeled and unlabeled

cases. In this case, the prediction problem is composed of

identifying the organizational structure of the data as well

as the predictions. Often, these algorithms extend the func-

tionality of other methods.

Some examples of machine learning algorithms seen in

the medical literature included tree-based methods, dis-

criminant analysis, regression models (multiple and logis-

tic), support vector machine, k nearest neighbor, and neural
networks. An important aspect of applying machine learn-

ing in health care is the interpretability of the algorithm.

Tree-based algorithms, discriminate analysis (depending

upon the discriminant function), and support vector

machines (depending on the function used) are generally

preferred for their improved interpretability.17 Support vec-

tor machines and discriminate analysis have been applied

to research problems in the ICU and during mechanical

ventilation.18-20 Selecting a machine learning algorithm

should be a balance of overall performance (accuracy), du-

ration of time needed for training, and interpretability.17,21

Classification and Regression

In general, machine learning is utilized to make a predic-

tion or observation about a variable. Machine learning can

be divided broadly into regression problems and classifica-

tion problems.11 A regression problem is one where the out-

put is a continuous variable in either space or time. During

mechanical ventilation, it may be desirable to predict SpO2

and PaCO2
of a patient continuously during or after a clinical

intervention. In the context of a regression, an algorithm

could be constructed to predict the SpO2
and PaCO2

of a

patient at any point in time; for example, if PEEP is

increased, SpO2
and PaCO2

are predicted to be 93% and 42

mm Hg, respectively. On the other hand, a classification

approach may involve simply categorizing a PEEP change

as generally good or generally bad (either a positive or neg-

ative response). It is important to note that many problems

can be posed as either a regression problem or a classifica-

tion problem (each with benefits and drawbacks). It is

essential to understand the clinical problem, the objective

of the decision-support tool you are developing, and the sta-

tistical performance of the algorithm when deciding which

methodology is most appropriate.

Need for RCTs

Big data and applied machine learning will not com-

pletely replace the need for RCTs. A well-designed and

well-conducted RCT has the advantage of making causal

inferences based on the random assignment of subjects to

different treatment groups. In any investigation, there are a

number of known and unknown factors that can have an

impact on outcomes outside of the treatment assignment.

So long as these factors are distributed randomly between

the treatment and control groups, statistical differences in

outcomes can be attributed to the treatment. Suppose one
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has access to a large amount of clinical data (ie, big data).

Could a study be designed and applied retrospectively to

detect treatment causation? One such retrospective design

that relies upon big data is the case-matched controlled

study. The degree to which cases are matched depends

largely on the dimensionality of the data (ie, the number of

variables describing each subject or case): the more data

available to match patients, the higher the probability of the

findings being valid. Certainly, a high-quality retrospective

case-matched controlled study will provide important

details, but we caution against equating retrospective big

data studies as equal to an RCT. That said, there are a num-

ber of disadvantages to an RCT: high cost, study population

is often too narrow to make broad conclusions, and the time

between study commencement and translation to clinical

practice is very long. Therefore, a role for a fast, low-cost,

and effective investigation tool is needed to bridge the gap

and to help inform best practice and refine hypotheses for

RCTs that may have a higher probability of positive results.

Best Practice (What to Look Out for When Reading a

Paper That Includes Machine Learning)

It’s unnecessary for the average clinician or respiratory

researcher to be an expert in the fields of big data, artificial

intelligence, and machine learning. However, as these

methods are more frequently applied in the literature, it is

helpful to be familiar with some best practices that can help

distinguish between good and poor study design. In general,

the goal of any prediction model is to obtain the best per-

formance that permits good generalizability. A handful of

issues to watch out for are discussed below.

Great Data (and an Outcome That You Care About). Like

any high-quality scientific work, one must begin with high-

quality data. For a database to be sufficient and to be

deemed high-quality, several elements are required: accu-

rate data, sufficient size (ie, number of cases or subjects),

sufficient dimensions (ie, number of predictor variables),

labeled cases (ie, the outcome measure, which can be con-

tinuous, binary, or categorical).

Of particular interest is selecting an outcome measure

that is clinically meaningful. One of the pitfalls that can be

observed in the field of applied machine learning in health

care is that some studies are conducted with an irrelevant

clinical target, are based on data that are not routinely avail-

able to others, or do not meet acceptable sensitivity and

specificity to justify clinical implementation. Put another

way, it’s very possible to spend a lot of time, energy, and

resources solving a problem that either does not exist (ie,

isn’t important enough to proceed to clinical utility) or does

not offer a significant improvement over existing practices

or existing clinician proficiency.

All About the Numbers. Machines require a lot of data to

“learn,” but humans do not. A respiratory therapy student

can have a bedside teacher explain the relationship between

dead-space ventilation and the PaCO2
/PETCO2

gradient a

single time (or perhaps a handful of times) to understand

the principal and foresee possible clinical implications.

Machines need to see hundreds, thousands, or millions of

cases to identify the concept. Therefore, any project in the

area of machine learning should have a relatively large

number of cases. This number can range anywhere from a

few hundred cases to thousands of cases to many more. The

higher the number of cases, the higher the probability that

the model can identify a process that actually exists.

Testing (Not Just for Professional Cyclists). The purpose of

testing is to assess the ability of a model to make predic-

tions on data that were not used to train the model.11 The

easiest type of testing to conceptualize is a holdout scheme.

After data have been compiled, a specific portion of the

cases will be randomly assigned to a training data set and a

testing data set. Typical ratios of training and testing cases

are anywhere from 50/50 to 80/20 (ie, 80% of cases are

used to train the model and 20% are used solely to test the

model and to compute performance statistics). Other ac-

ceptable methods of testing include some type of cross-vali-

dation. Cross-validation is typically performed 5–10 times

(ie, 5-fold cross-validation). At each step, a portion of the

data are used to train the model, and the other portions are

used to compile performance statistics.22 An example of a

5-fold cross-validation is depicted in Figure 1.

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

TrainTest Train Train Train

TestTrain Train Train Train

TrainTrain Test Train Train

TrainTrain Train Test Train

TrainTrain Train Train Test

Fig. 1. Illustration of 5-fold cross-validation. In the first iteration, a
portion of the data (one fifth of all cases) is assigned to testing, with

the remaining data being available for training the machine learning
model. In the second iteration, a different portion of the data (but still

one fifth of all data) is assigned to testing. This process continues
until all cases have been used for training and for testing. Summary
statistics are compiled from each iteration, and the final results that

are communicated in a paper reflect the average results from each
iteration.
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The training and testing of machine learning models is

also necessarily based on data from the past. This fact is not

necessarily bad, but one must be mindful that these data

may include information about medical practices that are

not ideal, or the cohort may be affected by selection bias. In

general, past performance cannot guarantee future success.

As was mentioned earlier in this review, it is unlikely that

the field of data science and machine learning in health

care will completely replace RCTs. However, in many

cases, pragmatism (ie, not enough money or time) will

force us to conduct studies on retrospective data and not go

through with an RCT before implementing something new

in clinical practice. On the other hand, a reasonable path

forward in many other cases would be to compile historical

data, ensure its quality, apply appropriate statistical and

machine learning techniques to extract an accurate model,

and test this model prospectively in a well-designed, pro-

spective clinical study.

Overfitting (Some Things Just Don’t Fit Anymore). Over-

fitting refers to a model that produces predictions that too

closely or exactly fit a particular data set and therefore fails

to generalize performance to other data.23 Overfitting can

occur if careful attention is not paid to study design, espe-

cially as it pertains to training and testing scheme (Fig. 2).24

The curse of dimensionality refers to a number of

adverse phenomena that occur when analyzing data that

have a high dimensional space; dimensions in this con-

text are variables or inputs). Simply put, the higher the

number of inputs, the lower the accuracy of the model to

make future predictions. Methods that can mitigate the

curse of dimensionality include feature selection and

dimensionality reduction. Both of these methods seek

to reduce the overall number of features such that the

model yields both good prediction performance and

generalizability.

Model Selection (Choose Wisely.). Machine learning is

not a goal but a tool. One should not apply a neural net-

work when a logistic regression model will do the job.

In the medical literature, it is desirable to understand

the relationship between individual variables and the

outcome of interest for important reasons: understand-

ing underlying pathophysiology, identifying mecha-

nisms of action, and hypothesizing possible clinical

interventions. That said, the simplest and easiest to

interpret model is always preferred if there is not a sig-

nificant difference in performance compared to a more

complicated model. Neural networks offer no explana-

tory power. Other models like decision trees or support

vector machines provide the capability to examine rela-

tionships among predictor variables and the outcome of

interest. It is important, therefore, when reading a paper

that applies a black box model (ie, one which cannot be

x

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

Model
True function
Samples

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

Degree 15
MSE = 1.83e+08(+/- 5.48e+08)

y

x

y

x

y

Model
True function
Samples

Model
True function
Samples

Fig. 2. Example of overfitting. The true function is depicted by an orange line, and samples are shown as circles. The 3 panels show the result
of adding degrees to a polynomial prediction model (blue line). In the left panel, a polynomial of 1 degree (ie, linear) is shown. This does not

adequately describe the sample data and is said to be underfit. In the right panel, a polynomial of 15 degrees is shown. This model is exactly
fit to each sample in the training set, and one may be prone to believe that, because the model exactly fits the training samples, it must be

the best model; however, this is an example overfitting because the model does not match the true function, which is shown by the orange
line. If research offered no out-of-sample validation, the ability of the model to make future predictions is unknown and the model could be
overfit, which may make future performance quite bad. In the middle panel, a polynomial of 4 degrees is applied. The model does not exactly

predict each sample but the general relationship between the predictor variable (x) and outcome (y) is adequately described, and the accu-
racy of future predictions made on data that are unknown at this time would be quite good. From Reference 24, with permission. MSE ¼
mean squared error.
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examined, like a neural network) with no rationale or

benchmarking against other interpretable models.

Mechanical Ventilation

Mechanical ventilation is an essential clinical interven-

tion applied to > 800,000 patients/y and to �40% of

patients in the ICU.25 More than any other single device in

the ICU, the mechanical ventilator offers a large amount of

data in the form of settings, measured parameters, alarm

status, and waveform data. When these data are coupled

with the fact that patients who receive mechanical ventila-

tion account for a disproportionate amount of health care

spending, a large number of opportunities exist in this area

to improve the efficacy, efficiency, and safety of care by

implementing machine learning.

ARDS

ARDS is the result of a number of disparate risk factors

that occur either locally or systemically.26 ARDS occurs in

10.4% of ICU admissions and is commonly underrecog-

nized, undertreated, and associated with a high mortality

rate.27,28 However, identifying patients who are likely to de-

velop ARDS in the ICU remains an important challenge

because timely diagnosis and appropriate treatment can

improve outcomes.

Afshar et al29 sought to develop a computable phenotype

for ARDS using natural language processing and machine

learning. A computable phenotype is a method used to define

a condition, disease, clinical event, or other patient character-

istic using only data available to and processed by a com-

puter.30 The authors reported that, combined with their best

natural language processing model, accuracy of the identified

computable phenotype was 83% (95% CI 58.3–76.3). This

result was superior to the benchmark algorithm tested, but it

still leaves much room for improvement. Certainly, future

studies should not be limited to only text data but should

include physiologic data such as blood gas values, oxygen sat-

uration, FIO2
, and other elements of ventilation. The work of

Afshar et al,29 however, is an important step forward because

it seeks to determine objective and reproducible methods of

diagnosing ARDS that depend less on human factors.

Apostolova et al31 sought to predict the development of

ARDS by combining structured and unstructured data.

Their structured data included available diagnosis codes,

physiologic monitor data, and laboratory data; unstructured

data included clinical notes. The salient feature of this work

is the combination of structured and unstructured data. The

authors applied a deep learning approach to build a patient

context vector that contains summary information about the

patient’s current condition. The patient context vectors

could then be combined with the structured data (eg, labs,

vitals, etc.) and a prediction model was trained to predict

ARDS. The top model was a gradient-boosted machine that

demonstrated an area under the receiver operating charac-

teristic curve of 0.93. The top 5 features in the model were

minimum tidal volume, Glasgow coma score, respiratory

rate, PaO2
, and age.31

In a secondary analysis of 2 multi-center RCTs from 44

hospitals, Zhang32 conducted a study in the same area.

However, rather than predict development of ARDS, the

author sought to predict mortality following diagnosis of

ARDS and to provide risk stratification in an effort to help

clinicians choose appropriate treatment. A genetic algorithm

was utilized to identify features of importance in the avail-

able data, and a neural network was trained to perform the

prediction. Although used in other fields, genetic algorithms

have not been frequently applied to clinical data. A genetic

algorithm is based on the concept of natural selection and

performs an adaptive heuristic search.33 From 88 candidate

variables (including demographics, details of the admission,

laboratory data, physiologic data and information from the

mechanical ventilator), 7 variables were identified to be

most important: age, history of acquired immunodeficiency

syndrome, leukemia, metastatic tumor, hepatic failure, low-

est albumin, and FIO2
. A graphical representation of the

genetic algorithm is depicted in Figure 3. Indeed, any reason-

ably informed clinician would likely generate a similar list

because each of these factors could be independently associ-

ated with increased mortality. Nonetheless, the area under

the receiver operating characteristic curve for the neural net-

work was 0.82 (95% CI 0.75–0.89), which outperformed the

APACHE III score of 0.67 (95% CI 0.59–0.74). Although

interesting, the ability of the algorithm to be extrapolated to

other populations remains an open question. The methods by

which important variables were identified nonetheless

remain an important contribution of this work by Zhang.32

Toward Precision-Guided Recruitment Maneuvers

Despite sound physiologic rationale, recruitment maneu-

vers are not routinely recommended for patients with

ARDS.34,35 Although recruitment has been shown to be det-

rimental among all patients with ARDS, there may be a

small subgroup of patients who respond positively and

would receive an important benefit. Identifying this sub-

group, however, has been difficult. Zampieri et al36 con-

ducted a post hoc analysis to examine whether a portion of

ARDS patients could benefit from early alveolar recruit-

ment. Because traditional methods of subgroup analysis

failed to identify a subgroup of subjects for whom recruit-

ment could be beneficial, the authors applied a machine

learning method of clustering known as k-mean cluster-

ing. A k-mean clustering algorithm is a type of unsuper-

vised learning that seeks to identify groups in the data.

The variable k refers to the number of groups identified.

The clustering method identified a cluster that exhibited
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an association between recruitment maneuvers and

PEEP titration with increased probability of harm. In

Figure 4, the 3 clusters that were identified with the

machine learning method are depicted. Importantly, this

method provides a probability distribution of each clus-

ter and whether they are more likely to benefit from

standard ARDSNet ventilation without recruitment or

care with the addition of alveolar recruitment. Through

a precision medicine approach, the results suggest that a

very small proportion of ARDS patients are likely to

benefit from recruitment maneuvers (Fig. 4, see sub-

jects in cluster 2). Indeed, this method should be applied
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combination of clinical variables). The top 50 variables are colored, and the top 7 variables were named. B: displays the stability of the rank of
the top 50 variables; the top 4 variables appeared to stabilized faster than others. C: shows the distribution of the number of generations
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sodiumh¼ highest sodium value. From Reference 33, with permission.
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to other areas of mechanical ventilation to identify sub-

groups and to provide improved decision support to

bedside clinicians.

Automated Patient–Ventilator Asynchrony Detection

Patient–ventilator asynchrony is associated with in-

creased risk of mortality and increased duration of

mechanical ventilation.37 Sottile et al38 developed a

collection of machine learning models that identify

the various types of asynchrony: double-trigger, flow

limit/starvation, premature breath termination, and inef-

fective trigger. The authors applied random forests,

Gaussian naı̈ve-Bayes, and ADABOOST algorithms to

each type of dyssynchronous breath.39 Overall, area

under the receiver operating characteristic curve ranged

from 0.954 to 0.972 and exhibited very good sen-

sitivity and specificity. Should this performance be

observed prospectively, it may represent an important

alert that will enable clinicians to adjust mechanical

ventilation or other aspects of treatment and obviate

the perceived increased risk of mortality and duration

of ventilation. Certainly, further work in this area is

needed to reproduce these results in a broader patient

population, including both restrictive and obstructive

lung disease and across patient types (ie, neonatal, pe-

diatric, and adult). However, these methods may be

coming to a ventilator near you sooner than one may

suspect.

Prolonged Mechanical Ventilation and Tracheostomy

Predicting need for prolonged mechanical ventilation

could aid in tracheostomy tube placement, weaning strat-

egy, and disposition planning. Parreco et al40 used data

from the Multi-parameter Intelligent Monitoring in In-

tensive Care III (MIMIC III) database to build a classifier

for predicting prolonged mechanical ventilation (ie, > 7 d)

and tracheostomy tube placement. A gradient-boosted deci-

sion tree model was trained using available demographic,

diagnostic, laboratory, and other clinical data. Overall, per-

formance of the classifiers were generally good, and the

area under the receiver operating characteristic curve was

0.852 6 0.017 and 0.869 6 0.015 for prolonged mechani-

cal ventilation and tracheostomy, respectively. However, in

both cases, sensitivity of the classifiers was low at 47.8%

and 26.8% for prolonged ventilation and tracheostomy,

respectively. As such, the clinical utility of the present

model is unclear. Additionally, it is unclear whether these

results outperform a prediction by a bedside clinician. For
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instance, if a patient presents to the ICU with significant

pulmonary system dysfunction (defined with something

like a LODS score, PaO2
/FIO2

, etc.), most ICU clinicians

would agree that such a patient is likely to be on the ventila-

tor for> 7 d.41 Work in this area should focus on identifying

the patients who are not expected to be on the ventilator very

long but subsequently develop respiratory failure and require

more long-term care. For example, further work in this area

should help identify a medical patient sent to the ICU on a

mechanical ventilator following a routine surgical procedure

and is expected to be extubated within 24 h but develops sig-

nificant respiratory failure that precludes the ICU team from

being able to wean the ventilator rapidly, perform an extuba-

tion readiness assessment, and extubate the patient.

Weaning and Extubation

A hallmark of mechanical ventilation care is the imple-

mentation of an extubation readiness test and the associated

practices. Despite a number of clinical efforts to improve

the effectiveness of weaning and extubation practices, a

number of challenges still remain.42 In a cohort of new-

borns, Mueller et al43 compared the performance of stand-

ard bedside practice with an artificial neural network

(ANN) that incorporated 13 clinical parameters to classify

extubation readiness. The ANN extubation model achieved

an area under the receiver operating characteristic curve of

0.87. Importantly, this result was not vastly different from

standard clinical practice. One interpretation of these results

is that the ANN model is unnecessary. However, if an auto-

mated extubation classifier performed as well as standard

care, it could free up clinicians to perform other tasks. After

extending this work, the authors concluded that clinician

predictions outperformed the ANN model.44 Hsieh et al45

conducted a similar study in an adult population and noted

that performance was superior to the rapid shallow breath-

ing index. Prasad et al46 proposed a data-driven approach to

provide optimized mechanical ventilator weaning. They

employed a Markov decision process to patient admissions

to identify representations of patient condition, and they

applied a reinforcement learning technique that learned a

simple ventilator weaning protocol from historical data.

Although a number of challenges are addressed in the pa-

per, further work is needed to validate these results prospec-

tively and to compare performance between the new

extracted policy and standard practice properly.

Sepsis

Sepsis is a life-threatening condition that requires timely

diagnosis and treatment to prevent tissue damage, organ fail-

ure, and death. Sepsis is the main cause of ARDS in approxi-

mately 70% of all cases and often requires mechanical

ventilation.47 However, sepsis frequently is not recognized

until later stages when symptoms have become severe.

Nemati et al48 analyzed a large cohort of subjects and

trained a machine learning model that incorporated both

demographic information as well as time-series features

to predict sepsis risk 12 h before diagnosis. The area

under the receiver operating characteristic curve was

0.83 (sensitivity 0.85, specificity 0.67). In a cohort of

critically ill children, Kamaleswaren et al49 utilized a

number of machine learning techniques (ie, logistic

regression, random forests, deep convolution neural net-

works) to identify physiologic markers from time-series

data to identify subjects with sepsis. Models utilizing

convolution neural networks provided the best sensitivity

and specificity (81% and 76%, respectively). Im-

portantly, the authors provided some degree of explain-

ability in their work and reported that the top features

incorporated into the model were the standard deviation

of diastolic blood pressure and average heart rate.

Predicting Mortality in the ICU

Calvert et al50 described a multi-dimensional analysis of

clinical inputs to provide a mortality risk score for patients

admitted to the ICU. Using only 8 common clinical factors

found in the electronic health record, they reported that the

results of their algorithm, AutoTriage, has an area under the

receiver operating characteristic curve of 0.88 and a sensitiv-

ity of 80%. These results outperformed other common

scores, including the Modified Early Warning Score

(MEWS), Sequential Organ Failure Assessment (SOFA),
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and Simplified Acute Physiologic Score II (SAPS II) in a

population derived from the MIMIC III database (Fig. 5).51,52

Tips on Getting Started

For clinicians and researchers unfamiliar with data sci-

ence methods or machine learning, the task of starting a

project can be daunting. Indeed, a significant activation

energy is required to build up the required personnel, tech-

nical skills, and general best practice knowledge required to

collect and clean data, train models, analyze performance,

and draw sound conclusions based on results.

For those ready to learn a new language, you can down-

load programming languages and get a large number of

learning resources online at no cost. Two popular languages

include Python (available at https://www.python.org,

Accessed April 13, 2020) or R (available at https://www.r-

project.org, Accessed April 13, 2020). Python is a free,

high-level, general-purpose programming language with a

large community support base that offers solutions for data

wrangling, statistics, machine learning, and application de-

velopment. R is a free statistical computing language and

offers great support for managing large datasets, statistics,

and machine learning. Matlab is a technical computing lan-

guage that is available for a cost, but this is often available

through an academic institution or the research computing

department at many hospitals (see https://www.mathworks.

com, Accessed April 13, 2020; for more information, con-

tact your research support staff to inquire about licenses).

Matlab offers a mature programming interface with many

tasks that can be completed with the use of an easy graphi-

cal user interface; this software has good customer support,

robust community forums, and is capable of tackling a

wide variety of computing tasks, including statistics,

machine learning, data visualization, and much more.

Although publications including machine learning meth-

ods are increasingly being accepted in mainstream clinical

journals, the vast majority of papers exist in places a typical

ICU clinician may not look. Rather than a simple https://

PubMed.gov search (Accessed April 13, 2020), use resour-
ces like Web of Science (typically available through your

institution) and https://scholar.google.com (Accessed April
13, 2020). These websites offer searches that include a

number of journals outside those indexed in PubMed and

can help identify important publications.

Ideally, one would already have a large data set of

patients from his or her own institution that is ready for

analysis. Indeed, the majority of the time dedicated to a pro-

ject in the big data or artificial intelligence space will be

committed to compiling, cleaning, and otherwise preparing

your data for analysis. While this should be a priority, there

are some high-quality data sets available to the public that

can be used to get started. The Medical Information Mart

for Intensive Care (MIMIC-III) is a freely accessible

critical care database that contains > 60,000 ICU admis-

sions and includes demographic and patient data (eg, labo-

ratory, medications, and other health care data).53 The

database was developed at the Massachusetts Institute

of Technology Lab for Computational Physiology and

can be accessed online at https://mimic.physionet.org

(Ac-cessed April 13, 2020).

Future Direction

Management of the acutely ill patient in the ICU is not

going to be completely automated anytime soon. As of this

writing, no machine learning silver bullet exists that ingests

data and spits out 100% accurate clinical predictions.

Indeed, a number of publications discussed in this article

offer levels of accuracy that aren’t terribly exciting; many

papers report area under the receiver operating characteris-

tic curve in the range of 0.7–0.8. In light of this, we may be

tempted to conclude that artificial intelligence really

doesn’t work in the ICU. However, this is more likely a

function of limited data available to the model rather than

a model’s inability to perform. It is essential to provide a

comprehensive data set that contains as much information

as possible to describe clinical conditions. If a data set con-

tains variables that account for only 25% of the information

available to clinicians, it should be no surprise that clini-

cians can make better predictions than the models. As ICUs

increasingly implement systems that collect continuous

data from mechanical ventilators and physiologic monitors,

and transcribe laboratory data, imaging data, and informa-

tion from clinical documentation in real time, we should

see improvements in model performance as these factors

are incorporated. Does this mean that all future studies

should include machine learning? Certainly not. The sim-

plest solution should always be preferred, and in many

cases traditional analyses will suffice. However, applied

machine learning, by nature of its ability to identify com-

plex non-linear relationships among variables and to pro-

vide predictions of important clinical events, will be an

important tool for those involved in research, quality

improvement, and day-to-day ICU workflow.

Rather than simply making predictions with a machine

learning model, future work should focus on offering deci-

sion support to bedside clinicians. For example, suppose

that we want to develop a model to predict extubation suc-

cess that won’t require respiratory therapists to manually

conduct an extubation readiness test. Clinical data are

recorded, and cases are labeled. Currently, many teams

would attempt to build a prediction model that classifies a

patient as simply successful or not successful. If that model

doesn’t perform with tremendous accuracy, however, no

reasonable clinician would trust it, and it would not be

implemented. Rather, we should offer predictions that ena-

ble clinicians to incorporate clinical judgment. This way,
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the model will generate a prediction and label a patient as

predicted to successfully extubate, but the model also will

describe the probability of success (eg, 88% probability of

successful extubation). Now a clinician is empowered. This

model may identify that this patient is eligible for extuba-

tion earlier than is typically recognized. The clinical team

can also decide if 88% probability is enough for this patient

at this time. For low-risk patients who have simple intuba-

tions or who would likely tolerate noninvasive ventilation

if needed, perhaps they can be extubated at this probability

level. For higher-risk patients, such as those with a difficult

airway or those who will not tolerate noninvasive ventila-

tion, perhaps the care team should wait to extubate.

In general, artificial intelligence and big data are becom-

ing an important part of the respiratory literature. As mature

data-collection systems are implemented, these methods

can be applied to build decision support tools to provide

insight to bedside clinicians, but we still have a long way to

go.
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Suzumura ÉA, Laranjeira LN, Paisani DM, Damiani LP, et al. Effect

of lung recruitment and titrated positive end-expiratory pressure

MONITORING BIG DATA DURING MECHANICAL VENTILATION IN THE ICU

RESPIRATORY CARE � JUNE 2020 VOL 65 NO 6 905

https://www.aclweb.org/anthology/W19-5007
https://www.aclweb.org/anthology/W19-5007


(PEEP) vs low PEEP on mortality in patients with acute respiratory

distress syndrome: a randomized clinical trial. JAMA 2017;318

(14):1335-1345.

35. Suzumura EA, Figueiro M, Normilio-Silva K, Laranjeira L, Oliveira

C, Buehler AM, et al. Effects of alveolar recruitment maneuvers on

clinical outcomes in patients with acute respiratory distress syndrome:

a systematic review and meta-analysis. Intensive Care Med 2014;40

(9):1227-1240.

36. Zampieri FG, Costa EL, Iwashyna TJ, Carvalho CRR, Damiani LP,

Taniguchi LU, et al. Heterogeneous effects of alveolar recruitment in

acute respiratory distress syndrome: a machine learning reanalysis of

the Alveolar Recruitment for Acute Respiratory Distress Syndrome

Trial. Br J Anaesth 2019;123(1):88-95.

37. Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Lujan M,

et al. Asynchronies during mechanical ventilation are associated with

mortality. Intensive Care Med 2015;41(4):633-641.

38. Sottile PD, Albers D, Higgins C, McKeehan J, Moss MM. The associ-

ation between ventilator dyssynchrony, delivered tidal volume, and

sedation using a novel automated ventilator dyssynchrony detection

algorithm. Crit Care Med 2018;46(2):e151-e157.

39. Barber D. Bayesian reasoning and machine learning. Cambridge. New

York: Cambridge University Press; 2012.

40. Parreco J, Hidalgo A, Parks JJ, Kozol R, Rattan R. Using artificial

intelligence to predict prolonged mechanical ventilation and tracheos-

tomy placement. J Surg Res 2018;228:179-187.

41. Le Gall JR, Klar J, Lemeshow S, Saulnier F, Alberti C, Artigas A, Teres

D. The logistic organ dysfunction system: a new way to assess organ

dysfunction in the intensive care unit. JAMA 1996;276(10):802-810.

42. Krawiec C, Carl D, Stetter C, Kong L, Ceneviva GD, Thomas NJ.

Challenges with implementation of a respiratory therapist-driven pro-

tocol of spontaneous breathing trials in the pediatric ICU. Respir Care

2017;62(10):1233-1240.

43. Mueller M, Wagner CL, Annibale DJ, Hulsey TC, Knapp RG,

Almeida JS. Predicting extubation outcome in preterm newborns: a

comparison of neural networks with clinical expertise and statistical

modeling. Pediatr Res 2004;56(1):11-18.

44. Mueller M, Almeida JS, Stanislaus R, Wagner CL. Can machine learn-

ing methods predict extubation outcome in premature infants as well

as clinicians? J Neonatal Biol 2013;2(2):1-7.

45. Hsieh MH, Hsieh MJ, Chen CM, Hsieh CC, Chao CM, Lai CC. An ar-

tificial neural network model for predicting successful extubation in

intensive care units. J Clin Med 2018;7(9):240.

46. Prasad N, Cheng L, Chivers C, Draugelis M, Engelhardt BE. A rein-

forcement learning approach to weaning of mechanical ventilation in

intensive care units. arXiv 2017(06300):1704.

47. Zampieri FG, Mazza B. Mechanical ventilation in sepsis: a reap-

praisal. Shock 2017;47(1S Suppl 1):41-46.

48. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman

TG. An interpretable machine learning model for accurate prediction

of sepsis in the ICU. Crit Care Med 2018;46(4):547-553.

49. Kamaleswaran R, Akbilgic O, Hallman MA, West AN, Davis RL,

Shah SH. Applying artificial intelligence to identify physiomarkers

predicting severe sepsis in the PICU. Pediatr Crit Care Med 2018;19

(10):e495-e503.

50. Calvert J, Mao Q, Hoffman JL, Jay M, Desautels T, Mohamadlou H,

et al. Using electronic health record collected clinical variables to pre-

dict medical intensive care unit mortality. Ann Med Surg (Lond)

2016;11(1):52-57.

51. Subbe CP, Kruger M, Rutherford P, Gemmel L. Validation of a modi-

fied Early Warning Score in medical admissions. QJM 2001;94

(10):521-526.

52. Ferreira FL, Bota DP, Bross A, Melot C, Vincent JL. Serial evaluation

of the SOFA score to predict outcome in critically ill patients. JAMA

2001;286(14):1754-1758.

53. Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M,

et al. MIMIC-III, a freely accessible critical care database. Sci Data

2016;3(1):160035.

Discussion

Pham: In terms of patient confiden-

tiality and all these issues, is there a

plan for international agreement of

how we can obtain all these data com-

ing from patients? I have the feeling

that now there are so many wearables,

the phone in your pocket, everybody

has a lot of data on you but when you

want to do research and collect it on

patients it’s way more complicated to

get patient or caregiver agreement for

you to collect data. Even if it’s

anonymous.

Smallwood: That’s a good ques-

tion. Just getting the data into your

hands is important and sometimes dif-

ficult. One of the best things I think

we can do to be successful is make

the most of what you currently have.

So rather than starting with a world-

wide standard for all medical data we

design a retrospective study at an

individual ICU, perhaps grow that to

partner with some ICUs who have

access to similar data and go from

there. That may take making very

good friends with your information

services department to get access to

the SQL database where a lot of this

information is buried. I know that in

my institution we have a whole core

of people who are trained in SQL to

go in and work with me to extract rel-

evant information that I need for a

study. I’ve also managed to get

myself access to the database for

select projects. The IRB pathway to

get to that is not too difficult either. I

have to go through review with my

department but once I do that it will

be exempt from IRB because it’s all

retrospective data, so there’s no real

risk as long as I do a good job of pro-

tecting the private healthcare informa-

tion. To your question about working

through the pathway to obtain

healthcare data, we certainly need to

do a better job of connecting device

data, medication administration re-

cord and other details from the

patient’s chart all in one place. One of

the things that’s difficult is mapping

the conditions that are known to that

patient at any given point in time

because the coding used for billing is

not optimized to patient care; it’s opti-

mized for billing. I can extract an

ICD-10 code for respiratory distress

but if there’s some other code that

will be more appropriate to get maxi-

mum reimbursement for that subject

then I may miss some information.

Combining it with other information,

physiologic data, etc. can certainly

start to solve the problem but I think

in general we will see an increasing

amount of ‘computable phenotypes’

for conditions we see in the ICU.

Essentially some standard, reproduci-

ble method of obtaining information
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and assigning that patient some detail

that’s important for both clinical and

research purposes. There will be a

whole host of problems moving from

a purely retrospective exploration of

information to then prospectively col-

lecting data to validate, whether or

not this will be reasonable to do in all

cases is something to consider and

may require changes to the way we

consent people for care in the ICU is

certainly on the table.

Goligher: This is a really interesting

and rapidly expanding area, like you

pointed out and it’s really challenging

to keep up so I really appreciate the

way you spent time defining terms and

clarifying the basic mechanics of

machine learning, that was extremely

helpful. The question I have for you is

whether there’s any science that sup-

ports the notion that machine learning

actually improves our ability to predict

over conventional regression models?

I’ve attempted machine learning stud-

ies 3 times now and in all 3 cases we

were not able to improve our predic-

tive performance with these very

advanced machine learning techni-

ques. It’s disappointing; obviously it’s

not a magic bullet if you don’t have

the information you need, you don’t

have the information you need. But

I wonder if you know of a systematic

review or something like that that

identified a proportion of cases where

these new techniques really do

improve our ability to discriminate

outcomes of interest?

Smallwood: I think that is one of

the most important points of adopting

this within the medical research com-

munity. I did an experiment myself, I

said, ‘great, neural networks sound

awesome, they’re going to learn better

than I can, identifying things I never

knew existed and essentially all of our

problems.’ What I decided to do was

predict carbon dioxide elimination and

energy expenditure in a cohort of

critically ill mechanically ventilated

subjects. I cleaned up the data, I had

something like 5 or so predictor varia-

bles, a good size population and I set

to work training, optimizing, adjusting

hyper-parameters, re-training and re-

optimizing a neural network. It did

horrible. What I found was that I could

do a much better job combining what I

believed to be important about the

patients, what I knew about physiol-

ogy and ended up with a much better

prediction model. What I learned from

that is that it’s not as simple as saying

machine learning is better. It’s really

about adding these skills to our tool-

box, and recognizing when and how

they can offer us superior insights or

prediction performance in certain

cases. By the way, a computer scientist

would point out linear regression is

technically machine learning. But take

linear regression for example. You

conduct an experiment and you want

to describe the relationship between

variable X and measurement Y. You

apply linear regression and you don’t

get a good R2 value. Do you blame lin-

ear regression for that? No. You’d

simply conclude that the data don’t fit

that model and you keep hunting for a

better one. You can imagine many

cases where that would be the case. I

think that one of the things that hap-

pens to machine learning is that it’s

good at identifying non-linear patterns

in data. But in order for it to learn it

needs a heck of a lot of data, and a lot

more than is typically collected for

something like a pilot study. The sheer

volume of data required to actually

make the thing work how it’s supposed

to can be beyond what’s practical for a

single institution. That’s certainly not

always the case but something to

watch out for.

Lamberti: I would refer you to a

recent study from the University of

Chicago that utilized machine learning

to improve the clinical prediction of

death, cardiac arrest or ICU transfer in

general care unit patients.1 A standard

regression analysis using vital signs to

determine the risk of clinical deteriora-

tion yielded an area under the receiver

operating characteristic curve (AUC)

of 0.74. They utilized machine learn-

ing (random forest) and were then able

to improve the AUC to 0.80. Machine

learning did improve the clinical pre-

dictive value. But, is changing the

AUC by 0.06 clinically meaningful?

Smallwood: There’s also a review

in NEJM2 that went through, not neces-

sarily the whole spectrum of machine

learning, but the general ways we think

about problems and some of the limita-

tions of machine learning.

Schmidt: Suppose you had a really

good predictive tool, have you thought

about some of the downstream chal-

lenges who will see that, who will act

on that, how will that be integrated

with the current models of care

provision?

Smallwood: That’s a good question:

we have something great but we can’t

use it. I think that will be a real prob-

lem as we move forward. I think most

ICUs haven’t approached that problem

yet but we are certainly getting there.

Like any other piece of technology

that we purchase at a hospital, the

adoption and utilization need to be the

first thing we think about. We can buy

a really excellent monitor that has the

capacity to apply advanced predictive

modelling for our patients, but if peo-

ple aren’t educated, don’t trust it and

therefore don’t actually use it, or if the

alerts aren’t helpful to the clinicians,

then it’s all for naught. Your point is

very well taken, that a lot more care

will have to be taken around the actual

implementation science of the decision

support model itself and not just mak-

ing a really great tool. This will cer-

tainly require high level buy-in at the

hospital to set up the computing infra-

structure required to collect, analyze

and provide decision support alerts

and that’s definitely a touch challenge,
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but one I believe can be eventually

justified.

Goligher: One of the things that’s

an important limitation of this whole

business is the fact that you can retro-

spectively, particularly with unsuper-

vised techniques, identify clusters of

patients. The kind of paradigm I’m

thinking of is Calfee’s seminal work

on subphenotypes of ARDS.3-5 And

every time they go to a new dataset

they’re able to identify these subphe-

notypes which consistently look like

hyper- and hypo-inflammatory sub-

phenotypes. The problem is they can’t

actually go to the emergency depart-

ment and look at a patient who’s

newly diagnosed with ARDS and

decide which group they’re in. There’s

no way to prospectively classify

patients, it’s always a retrospective

unsupervised analysis of previously

collected data. In order to try and

actually overcome that problem you

still have to have theory-driven hy-

pothesis-based tests that are thinking

about, ‘what basic mechanisms would

drive a patient being in one group or

the other?’ or try to develop prospec-

tive ways of classifying patients. It

seems to me like we can identify sub-

groups but then the challenge of mak-

ing that useful prospectively in

relation to Craig’s point remains an

important problem to be surmounted.

Smallwood: That’s very well said

and I think something that will have to

be mostly solved for different applica-

tions. In general, any clustering algo-

rithm is going to be most helpful

retrospectively and can be hypothesis

generating. On the other hand, a num-

ber of regression machine learning

models are more built to make predic-

tions and would be better suited to

offer bedside decision support. In the

context of ARDS sub-phenotypes and

classifying patients in near-real time.

The next step may be to design a study

where those groups identified from

clustering are labeled 1 and 2. Take

some clinical data available at the time

of admission in the ER and apply a

regression algorithm like a support

vector machine and try to predict ei-

ther class 1 or class 2. In that way the

project evolves from identifying

groups that weren’t clinically obvious,

noting some important clinical reason

why they may respond better or worse

to treatment, then predicting that class

with available data. But as some stage

it’s going to come down to designing

your whole data infrastructure around

the clinical application of these mod-

els, because up until this point we

haven’t really designed our monitors,

our information systems, our EHR

around getting information out, churn-

ing it, and then spitting out a helpful

recommendation. That’s just not how

it was designed. In some data scien-

tist’s office, he or she can spend

months doing retrospective analysis

and you can let a computer look at a

single patient for a number of hours

and it doesn’t matter. There’s no rush.

But in the ICU we need to be much

quicker than that. One of the things

I’m trying to work on at my institution

is designing, at least in the ICU, a

mechanism that enables information to

be available to a number of applica-

tions, whether it be for research, third

party applications, custom built algo-

rithms, etc. We need a way to spin that

information back to the clinician at the

bedside. I feel the pain of seeing a

good result in a paper and having no

way to make that a reality at the

bedside.

Blanch: All of this to me should be

done according to a hypothesis you’re

trying to solve. And then you create

the tools to answer the question. We re-

alize that, for example, in waveforms

there are events that happen which

might be important but still not diag-

nosed. Using supervised machine learn-

ing, physiologic knowledge behind is

needed. Information in large ICU

databases is complex and might be

incomplete or corrupted and needs

supervision, modeling to improve qual-

ity. It’s an enormous problem like you

said.

Smallwood: You touched on a cou-

ple of good points, Lluı́s. One of which

is the hype cycle. We see this all the

time and not just with medical technol-

ogy. It goes something like this. New

technology gets introduced and there

is a great deal of excitement, ‘this new

technology will solve all of our prob-

lems!’ Well, it doesn’t. We need to

understand it, have a solid understand-

ing of the problem we have and imple-

ment this new technology in

thoughtful and systematic ways. I

know that my presentation and the

forthcoming paper sounds like I’m a

big data and machine learning zealot,

but frankly I’m not and I find myself

mostly agreeing with your point of

view Dr. Blanch. However, I do believe

that machine learning, along with the

clinicians and invested and knowledge-

able researchers will actually solve a

number of important problems. That

said, we should always prefer the sim-

pler solution to a problem rather than a

complicated one. In many cases we

may not need sophisticated algorithms

at all and that is completely appropri-

ate. But in a number of cases I think

we will find that the standard meth-

ods that all of us have seen in the

medical literature for decades will

be found lacking and we will do well

to have big data and machine learn-

ing skills available to us. One oppor-

tunity I believe we have is to do a

better job of identifying problems

based on outcome data. Indeed, I

struggle with myself. Often, the way

we select an area to study is based on

personal interest or maybe your

chief or medical director says we

need to work on this problem. A lot

of time that may work out just fine.

But what if our areas of improve-

ment were data driven and based on

automated outcome assessment? I

think an emerging area will be the

combination of automated outcome
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assessment, facilitated with big data

methodologies in order to identify

areas of our practice that need

improvement. That will include tak-

ing into account how big of an effect

it will have on the patients morbidity

and mortality, cost of care, but also

how practical our envisioned solu-

tion is to make happen at the

bedside.

Walsh: Craig, would you share with

us, in your ideal world where every-

body is connected and the data are

clean, how could you potentially take

advantage of the actual experiments

that are happening daily we call prac-

tice of medicine? We have modes of

ventilation, all of us have biases of

things we think are important and less

important. If we were able to get all of

that data could you share with us what

that would mean?

Smallwood: I’ll tell a story that

illustrates this. I work in a pediatric

ICU. I see mortality of ARDS as rela-

tively low compared to adults. If you

look at the literature it’s about 18%. If

you ask the simple question, at any

given moment in time, what is our ICU

mortality? And how can we benchmark

against everybody else? There’s no

easy way to do that. In a single institu-

tion, there are different databases, each

put together for different reasons but

collect some of the same data. In one

data base you may a 33% mortality. If

I trust that number, then alarm bells

better be going off because on the sur-

face that is much worse than what is

expected. Of course, there are a num-

ber of things we need to assess the

under-diagnosis of mild and moderate

ARDS, the severity of illness and some

other factors that would change how

I interpret comparing those 2 numbers.

So #1, can I trust that information, and

#2 if I can then I go into the data and

explore what perhaps led to those out-

comes. I think that that exploration

isn’t necessarily machine learning

it’s more datamining but essential,

nonetheless. But to your question

Brian, let’s suppose we have this all

figured out, we trust the data, a number

of different institutions implement the

same methodologies. What’s next?

What I would love to see is identifying

cohorts of patients who had a favorable

outcome and exploring factors associ-

ated with that. In some cases, it may

just be severity of disease, or some hid-

den phenotype that was previously

unrecognized. But what if we spot

some differences in care? I think that

would be hypothesis-generating. And

the beauty of this approach is that these

hypotheses may not have been obvious

before going through this exercise.

This could inform the development of

algorithms based on better outcomes

and utilized prospectively. Of course,

prospective evaluation will be impor-

tant before proving to ourselves that

we have actually improved care. In

general, I think this should be easy one

day. Right now, it’s not. But that’s

what I’d like to see going forward.

Blanch: Another thing, in the past

the relationships between heath institu-

tions, academia and industry were rea-

sonably established. But now seems

there is some overlap and big players

like Apple or Google are new actors.

I’d like your opinion on how should

we work or regulated intellectual prop-

erty with these big players.

Smallwood: I think it really comes

down to how in the boundaries of the

law, we can develop improvements in

patient care. In the past there was this

whole mechanism, how to better build

a sensitivity mechanism to make NIV

triggering better for patients. There’s

no mechanism for me at my institution

to build that and put it on our patients.

What you have to do is partner closely

with the developer or the company that

made that device, go through a whole

pathway of validation experiments, go

through a whole regulatory pathway to

get it approved, and then actually apply

it to patients in the ICU. What’s nice

about that is the whole collaboration is

where the lines are drawn. But when

we talk about machine learning we do

all kinds of things for clinical improve-

ments and changes in care that don’t

require us to go through the FDA. And

where does some model that tells me

to change or do something different

with a mechanically ventilated patient

stay? Is it okay for me to look at my

own information at my hospital, opti-

mize some model and then push it as a

clinical initiative? Do I even need to go

to the FDA? If I do, then you can con-

sider who to partner with and rapidly

turn that around the whole regulatory

pathway. But it’s not necessarily clear

to me that would be the case 100% of

the time. What I would love to see is a

mechanism at individual institutions

where we have a group of people who

ensure that the algorithm has demon-

strated reliability, accuracy of data and

data showing it’s superiority to current

clinical practice. This wouldn’t be

that different from a scientific review

board, or a quality committee evaluat-

ing a new guideline. The key differ-

ence will be the additional knowledge

required to ask informed questions

about the technical performance of the

algorithm, data reliability, etc. Those

skills are currently outside the average

quality improvement committee. There

may be cases where that’s not appro-

priate and a broader federal regulation

will be required but in general that’s

what I think we will see moving for-

ward. But regulation usually follows

innovation so we will have to see what

happens.
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