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Ventilation during chest compressions can lead to an increase in peak inspiratory pressure. High
inspiratory pressure can raise the risk of injury to the respiratory system and make it challenging
to deliver the required tidal volume. The utilization of mechanical devices for chest compression has
exacerbated this challenge. The aim of this narrative review was to summarize the different mechan-
ical ventilation strategies applied during mechanical cardiopulmonary resuscitation (CPR). To this
end, we searched the PubMed and BioMed Central databases from inception to January 2020, using
the search terms “mechanical ventilation,” “cardiac arrest,” ‘“cardiopulmonary resuscitation,” “me-
chanical cardiopulmonary resuscitation,” and their related terms. We included all studies (human
clinical or animal-based research studies, as well as studies using simulation models) to explore the
various ventilation settings during mechanical CPR. We identified 842 relevant articles on PubMed
and 397 on BioMed Central; a total of 38 papers were judged to be specifically related to the subject
of this review. Of this sample, 17 studies were conducted on animal models, 6 considered a simulated
scenario, 13 were clinical studies (5 of which were retrospective), and 2 studies constituted literature
review articles. The main finding arising from the assessment of these publications is that a high
Fio, must be guaranteed during CPR. Low-grade evidence suggests turning off inspiratory trigger-
ing and applying PEEP = 5 cm H,O. The analysis also revealed that many uncertainties persist
regarding the ideal choice of ventilation mode, tidal volume, the ventilation rate setting, and the
inspiratory:expiratory ratio. None of the current international guidelines indicate the ‘“best” mechan-
ical ventilation strategy to apply during mechanical CPR. We propose an operating algorithm wor-
thy of future discussion and study. Future studies specifically addressing the topics covered in this
review are required. Key words: mechanical CPR; mechanical ventilation; peak inspiratory pressure;
out-of-hospital cardiac arrest. [Respir Care 2021;66(2):334-346. © 2021 Daedalus Enterprises]
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Introduction

International guidelines recommend ensuring effective
ventilation for cardiac arrest patients;' however, a “best”
invasive ventilation strategy for cardiopulmonary resuscita-
tion (CPR) has yet to be established. The European
Resuscitation Council guidelines suggest a protective venti-
lation approach derived from the management of other
types of critically ill patients, such as patients with ARDS
or acute respiratory failure,” but the conditions that arise
during cardiopulmonary resuscitation can be very different
from the clinical models investigated to date. Following
cardiac arrest, the thoracic system’s compliance declines,
leading to an increase in pressure against the mobilized
volumes.® Furthermore, asynchronous ventilation during
the delivery of chest compressions can increase the risk of
a rise in peak inspiratory pressure.* In addition to increas-
ing the potential risk of injury to the respiratory system, it
may also make it challenging to deliver the required tidal
volume (V1). A recent retrospective study reported that
nonsurvivors of cardiac arrest had received a higher mean
plateau pressure and higher driving pressure, which sug-
gests that ventilation plays a central role in determining
survival following a cardiac arrest.” The continued devel-
opment of mechanical devices for chest compression and
the rapid spread of their use underscore the uncertainty
that continues to exist in this area. Although mechanical
CPR has not been proven superior to manual CPR, the for-
mer seems to be useful, particularly when maintaining
high-quality chest compressions is difficult (eg, during
ambulance transport or a coronary angioplasty proce-
dure).® The adoption of mechanical chest compressions in
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clinical practice has led to problems in the management of
invasive mechanical ventilation, and the guidelines have
yet to address this issue adequately.

Our narrative review aims to summarize the different
strategies of mechanical ventilation presented in the liter-
ature. In particular, we discuss the following topics: the
choice of ventilation mode; the challenge of achieving the
predetermined Vr; the PEEP setting and ventilation rate;
the role of the inspiratory-expiratory ratio and the most
appropriate inspiratory trigger threshold; and adequate
Fio,. Finally, future and advanced perspectives are
addressed.

Search Strategy and Study Selection

We searched the MEDLINE (PubMed) and BioMed
Central databases, from inception to January 2020, in ac-
cordance with the PRISMA guidelines, using following the
search terms: “mechanical ventilation,” “cardiac arrest,”
“cardiopulmonary resuscitation,” and “mechanical cardio-
pulmonary resuscitation,” as well as their possible varia-
tions or other closely related terms. We also searched
actual citations of relevant primary and review articles. We
included a wide range of study types, including those on
human or animal models or simulation models, as well as
literature review articles and observational studies. Studies
conducted within the hospital setting as well as out-of-hos-
pital cardiac arrest scenarios were included. We excluded
studies that considered pediatric subjects only, mechanical
ventilation after the return of spontaneous circulation,
extracorporeal cardiopulmonary resuscitation, case reports,
conference abstracts, and articles in languages other than
English. Although we considered a broad spectrum of dif-
ferent study designs, our review attempts to classify the evi-
dence collected: meta-analyses before randomized clinical
trials, followed by observational studies, and finally animal
or preclinical studies.

The articles were screened and read independently by
three authors (DO, LV, NF). Each author made an inde-
pendent judgment regarding the degree of relevance of the
study in question. These judgments were compared, and a
majority criterion was used to include the research in the
review.

Data Extraction and Synthesis

The following data were extracted from the selected
studies: year of publication, study design, ventilation vari-
able(s) studied, clinical context, the aim of the study, meas-
ured parameters, and the main findings. Because the
included studies were all very different from each other in
terms of design and aims, we summarized the results in the
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form of a narrative review according to the following
scheme: ventilation mode, V, PEEP, ventilation rate set,
inspiratory/expiratory time ratio, Fjp,, and new research
directions.

Literature Review

We identified 842 articles on PubMed and 397 on
BioMed Central; of these, 38 were judged to be related to
the subject of this review (see Fig. 1 and the search strat-
egy section in the supplementary materials at http://www.
rcjournal.com). Seventeen articles were conducted on ani-
mal models, 6 were considered a simulated scenario, 13
were clinical studies (5 of which were retrospective), and
2 constituted literature review articles.

Ventilation Modes

The ventilation mode chosen during CPR is not irrele-
vant in determining the outcome. In pressure control con-
tinuous mandatory ventilation, the provider can control the
pressure level applied, but this modality runs the risk of not
achieving sufficient Vy. By contrast, in volume control
continuous mandatory ventilation, the volume delivered by
the ventilator is established a priori, but this runs the risk of
exceeding safe peak inspiratory pressure levels. The main
problem in administering high inspiratory pressures is
related to the risk of overdistention of the alveolar struc-
tures (ie, barotrauma).” Depending on the mechanical ven-
tilation settings used, asynchronous ventilation combined
with chest compressions may result in high positive pres-
sure and rapid changes in chest wall compliance secondary
to chest compressions. Furthermore, it is not possible to
preset the maximum pressure limit on all transport ventila-
tors, so achieving the target volume can be challenging.
Additionally, positive pressure mechanical ventilation
causes some alterations in hemodynamic physiology, the
most relevant of which is the reduction in venous return
and, therefore, the reduction in ventricular preload.g’9

A recent survey reported that the most commonly used
ventilation mode is volume control continuous mandatory
ventilation.'® However, no clinical studies have yet defined
the “best” mode of invasive ventilation to use during me-
chanical CPR. Only experimental bench simulation studies
have been proposed to evaluate the effects of different me-
chanical ventilation modes during mechanical CPR. Speer
and colleagues'' compared pressure modes with volumetric
modes and established that both permitted adequate V1 to be
achieved without increasing the peak inspiratory pressure.

Some alternative strategies to administering oxygen with
positive pressure without the risk of high peak pressures
have been studied in the literature. These approaches are
discussed in the section on future and advanced perspec-
tives, given their limited diffusion in clinical practice.
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Studies included in
qualitative synthesis
38

Fig. 1. Flow chart.

Tidal Volume

The Vr range most frequently cited as being adminis-
tered in actual practice is 6-8 mL/kg'%; however, it is ess-
ential to note that the studies contributing to the deduction
of this range mainly concern protective ventilation in
patients with ARDS. Indeed, the debate about the best V¢
remains very much open. For example, although the evi-
dence correlating the magnitude of Vt with the probability
of spontaneous recovery of circulation tends to be weak,'”
Vr has been shown to correlate positively with the level of
neurological recovery in the context of in-hospital cardiac
arrests.'* Moreover, a reasonable V1 value might never be
established in cardiac arrest patients, especially if the
patient is subjected to mechanical chest compressions.
Mechanical chest compression devices can deliver com-
pressions in ‘“‘synchronous” mode (ie, 30 compressions
alternating with 2 ventilations) or in “asynchronous” mode
(ie, continuous compressions that are not synchronized
with ventilation). The latter method allows the pauses
between compressions to be minimized, and the reduction
in the pause time between one compression and another is a
known factor associated with better survival.'? However,
how this mode affects the delivery of an adequate Vr is
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uncertain. In fact, a recent retrospective study reported that
the asynchronous mode, and not the synchronous mode,
correlated with a higher survival rate.'* However, it is diffi-
cult to determine whether this correlation is related to more
effective chest compression or to better ventilation in terms
of V. Moreover, in the survey conducted by Cordioli et
al,'” the most frequently observed complications of inva-
sive mechanical ventilation during cardiopulmonary resus-
citation were activation of the high-pressure alarm and
delivery of an insufficient V. Thus, the broad range of pos-
sible intrathoracic pressure changes and the compliance of
the respiratory system make it difficult to predict the behav-
ior of a cardiac arrest patient’s ventilatory system during
chest compressions. '

Moreover, the only direct evidence available has been
derived from animal studies. One recent study reported favor-
able consequences following the use an ultra-low Vr (ie, 2-3
mL/kg) in terms of both adequate ventilation and a reduced
risk of iatrogenic damage.'® By contrast, another study dem-
onstrated a high Vr ventilation strategy (ie, 10 mL/kg vs 7
mL/kg) to increase the probability of return of spontaneous
circulation.'? Further studies are required to define the most
appropriate V- to apply in different clinical contexts.

PEEP

The application of PEEP can bring about different
effects. First of all, PEEP is known to improve oxygenation
by increasing the V1 and keeping the alveoli open (the so-
called “open the lung and keep it open” concept).'® A recent
Canadian study on cadavers showed that changes in intra-
thoracic pressure are related to the PEEP levels applied
rather than the inspiratory pressure (at least within certain
limits). Moreover, the authors were able to establish that
while intrathoracic pressure is generally stable during CPR,
the pressure in the airway can vary, even dropping below
the alveoli closure limit. This effect has important implica-
tions in terms of oxygenation during cardiac arrest.'” The
same group also reported that end-tidal CO, influences
proper alveolar ventilation, as it decreases in cases of
alveoli closure despite a satisfactory hemodynamic effect
of chest compressions.18 On the other hand, PEEP increases
the risk of dynamic hyperinflation (and is associated with
important hemodynamic effects); this can, in turn, cause a
reduction in venous return and, therefore, cardiac output
(under conditions of preload-dependent cardiac stroke)."

As long ago as 1980, Babbs and co workers noted that
applying positive airway pressure during chest compres-
sions increased oxygenation without deteriorating cardiac
function.?® Data gathered from animal models seem to point
in the same direction: the application of PEEP brings about
an improvement in survival independently of other parame-
ters.”?? Considering the actual evidence, application of at
least 5 cm H,O PEEP seems to be beneficial; however, the
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optimal PEEP still needs to be adequately investigated.
Excessive PEEP may worsen the outcome of cardiopulmo-
nary resuscitation, but more evidence is required to estab-
lish the validity of this statement. For instance, Van der
Touw et al** pointed out that, during conditions of hyperin-
flation, the increase in intrathoracic pressure resulting from
chest compressions reduces the cardiac output and the
mean arterial pressure.

Ventilation Rate

In a small case study, Maertens et al** reported that sub-
jects in cardiac arrest, even when intubated, are ventilated
at a higher frequency than prescribed by the guidelines (ie,
10-12 breaths/min). Vissers and colleagues® systemati-
cally reviewed the literature to investigate whether the
optimal set ventilation rate during cardiopulmonary resusci-
tation was indeed ~ 10 breaths/min. Their results were
inconclusive, as was the issue of whether rates lower or
higher than 10 breaths/min are able to influence outcomes
(Table 1). Note that rates < 10 breaths/min run the risk of
not achieving the target minute volume, whereas higher
rates are more likely to cause dynamic hyperinflation and
bring about a deterioration in hemodynamic parameters. In
an animal model, a high ventilation rate was associated
with a reduction in coronary perfusion.?® However, a recent
prospective observational study reported that subjects who
reached the return of spontaneous circulation received
faster ventilation compared to subjects who did not get
the return of spontaneous circulation.'* The effect caused
by the ventilation frequency is probably indirect and
related to changes in the patient’s intrathoracic pres-
sure, volume state and the normal range for the patient’s
body structure. However, studies specifically aimed at
this issue are required to obtain clearer data.

Inspiratory-Expiratory Ratio

The relationship between inspiratory time and expiratory
time is fundamental for the complete replacement of the re-
spiratory system’s anatomical deadspace. If the expiratory
time is not long enough, the phenomenon of dynamic
hyperinflation can occur, causing an increase in intrinsic
PEEP. The mechanisms through which this generates he-
modynamic impairments have been clearly demonstrated
in the literature.””"’ Fitz-Clarke®® highlighted the relation-
ship between target V and the duration of the inspiratory
phase by means of a physiological model. The model
showed that the length of the inspiratory phase correlates
inversely with the pressure regime, such that an inspiratory
time that was too short could result in gastric insufflation.
However, this study was conducted using an unprotected
airway model. Von Goedecke et al,”’ considering a bag-
mask ventilation simulation model, assessed the possibility
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Main Findings

Aim

Study Design

Study Type

Study

The high Fjo, group achieved a high hospital admission rate

To investigate the impact of P,p, on the rate of

145 OHCA subjects with an arterial

Retrospective

Spindelboeck

et al*

(83.3% vs 18.8% vs 50.6%, P < .001 high group vs low,

P = .004 high group vs intermediate).
Subjects with higher intra-arrest P,o, levels had

survival to hospital admission.

blood analysis performed during

CPR
167 IHCA subjects

observational

study
Retrospective

To verify the association between intra-arrest

Patel et al®®

progressively higher rates of ROSC (58% vs 71% vs 72%

vs 79% vs 100%, P = .02) and survival to

P,0, levels with rates of ROSC and survival to

observational study

hospital discharge.

discharge (16% vs 23% vs 30% vs 33% vs 56%,

P =.031).
Hyperoxia is associated with lower mortality compared to

To investigate the association between hyperoxia

241 pooled OHCA subjects

Systematic review +

Patel et al’®

MECHANICAL VENTILATION DURING MECHANICAL CPR

normoxia (odds ratio 0.25, 95% CI 0.12-0.53, P < .001).

and mortality in adults with cardiac arrest.

meta-analysis

PPV = positive-pressure ventilation

CPR = cardiopulmonary resuscitation

OHCA = out-of-hospital cardiac arrest

cardiac arrest
return of spontaneous circulation
mean arterial pressure

intrahospi

IHCA
ROSC
MAP

of reducing the inspiratory time from 2 s to 1 s. They
reported that, although the target V was continuously met,
it was detrimental to peak inspiratory pressure, which
increased.”’ However, the comparability of this simulated
model to invasive mechanical ventilation of a patient dur-
ing mechanical CPR is debatable. No clinical studies have
investigated the inspiratory-expiratory ratio in the invasive
ventilated patient during cardiac arrest.

Inspiratory Trigger

One of the most frequently encountered problems during
mechanical cardiopulmonary resuscitation is the auto-trig-
gering or the inappropriate activation of ventilator delivery
due to the incorrect setting of the ventilator’s inspiratory
trigger.®® Ventilation with pressure- or flow-triggering can
lead to hyperventilation and deteriorating gas exchange and
hemodynamics during CPR. Indeed, the results obtained
from small animal model studies have encouraged physi-
cians to turn the inspiratory trigger off during CPR (or to
increase the threshold to at least 20 cm H,0).>°

Fio,

Guidelines regarding cardiac arrest patients usually rec-
ommend Fjp, close to 1.0 to improve oxygen delivery.?
However, this physiological assumption has never been
proven. Furthermore, the harmful role of hyperoxemia in
the development of post-cardiac arrest syndrome is being
increasingly acknowledged.***! For example, a 2017 study
using an animal model investigated whether Fio, signifi-
cantly < 1.0 (in this case, 0.50) would permit comparable
cerebral oxygenation and reduce mitochondrial oxidative
stress.*! The results obtained were not straightforward: on
the one hand, a Fip, of 0.50 resulted in a reduction in cere-
bral oximetry values compared with those achieved with
Fio, values nearing 1.0; on the other hand, invasive meth-
ods of measuring cerebral oxygenation showed no signifi-
cant differences’' (Table 1). However, how hyper- and
hypoxemia affect survival and neurological outcomes is
controversial.****%? A recent meta-analysis, which pooled
the data of the only 2 clinical studies present in the litera-
ture,*** concluded that whereas hyperoxemia in the post-
arrest period is associated with a worse outcome, during
CPR it appears to be related to a higher rate of return of
spontaneous circulation.*® The effects induced by hyperox-
emia seem to correlate with the timing of the pathological
process, rather than a simple on/off effect.*>**

Future and Advanced Perspectives
This review has focused on the problems primarily

encountered when invasively ventilating a patient in car-
diac arrest with mechanical CPR. However, other strategies
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Table 2. Continued

342

Main Findings

Aim

Study Design

Type of Study

Study

Chest compression synchronized ventilation elicited

To investigate the influence of intermittent

24 pigs randomized to intermittent PPV

Animal model study

Kill et al>®

the highest mean arterial pressure (P < .02), and

best oxygenation at 4 min (P < .001).

PPV, bi-level ventilation, and the novel

(control group), bi-level, or chest

chest compression synchronized ventilation

compression synchronized ventilation
mode.
To investigate the influence of intermittent

group
20 pigs receiving intermittent PPV or chest

All patterns of chest compression synchronized

Animal model study

Kill et al*®

ventilation led to higher P,o, (P = .001) and
avoided an arterial blood pressure drop

(P <.001).
The phase-controlled intermittent insufflation of

PPV and chest compression synchronized

compression synchronized ventilation

ventilation.

To compare phase-controlled intermittent

20 pigs stratified in 2 groups: continuous

Animal model study

Soltesz et al’’

MECHANICAL VENTILATION DURING MECHANICAL CPR

oxygen group showed a higher coronary perfusion

pressure (P < .01).

insufflation of oxygen vs continuous

intratracheal insufflation of oxygen vs

intratracheal insufflation of oxygen during

mechanical CPR.

phase-controlled intermittent insufflation

of oxygen

positive-pressure ventilation

PPV =

CPR = cardiopulmonary resuscitation

OHCA = out-of-hospital cardiac arrest

that permit respiratory homeostasis to be maintained in car-
diac arrest patients subjected to mechanical ventilation
have been explored in the context of clinical research
(Table 2). Data in the literature suggest that ventilation
involving air solely mobilized by the mechanical chest
compressor is not sufficient to meet the organism’s meta-
bolic needs. Deakin and colleagues*’ observed that the vol-
ume of air mobilized by an automatic device for chest
compressions was ~ 40 mL/breath. This value cannot meet
the metabolic needs of an adult patient of standard size;
indeed, the eliminated CO, quota was well below the regu-
lar quota (only 20 mL/min were observed vs the standard
value of > 150 mL/min).

Some research groups have explored the possibility of
not ventilating cardiac arrest patients at all but only oxygen-
ating them; this is known as “apneic oxygenation,” which
exploits the displacement of air caused by the chest com-
pressions themselves.*>>® Both animal and clinical studies
seem to demonstrate the feasibility of this oxygenation
strategy.*”*® Steen et al,** using an animal model, reported
a higher coronary perfusion pressure in the group of ani-
mals treated with continuous passive oxygenation com-
pared with the group treated with standard intermittent
ventilation. In the early 2000s, Saissy et al’® conducted a
clinical study involving subjects in out-of-hospital cardiac
arrest. The authors noted better oxygenation levels and sig-
nificantly more CO, elimination in the group treated with
passive oxygenation alone.’® However, the size of the study
was not adequate to detect a statistically significant differ-
ence in terms of survival rate. Bobrow and colleagues,’’ in
their case history, reported that passive oxygen insufflation
is superior to bag-valve-mask ventilation in terms of
survival outcome and hospital discharge with preserved
neurological status. Bertrand and colleagues™ found the
application of a passive oxygen flow of ~ 15 L/min to be
associated with the same survival rates as obtained with
conventional invasive ventilation.

It is essential to distinguish between passive oxygen
insufflation, achieved mainly using dedicated devices (such
as the Boussignac tube), and pure apneic oxygenation, in
which the complete denitrogenation of the alveoli is sought
through the administration of pressure flow (usually 20 cm
H,0). From a theoretical point of view, this distinction is
essential for determining the risk of atelectasis from oxygen
reabsorption; however, from a practical point of view (at
least in relation to the studies conducted on animal models),
no substantial difference has been identified between the 2
methods in terms of side effects, or between these methods
and invasive ventilation performed at zero PEEP.%*>*

Although, from a theoretical point of view, the application
of PEEP seems to be beneficial for achieving an adequate
oxygenation target (see the section on PEEP), other clinical
studies have focused on more specifically adapting ventila-
tion to the patient, even during the inspiratory phase. Indeed,

RESPIRATORY CARE @ FEBRUARY 2021 VoL 66 No 2
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Is mechanical CPR ongoing?

Is mechanical ventilation feasible?

Controlled mechanical
ventilation

Fo,= 1.0

Protective YES
ventilation

(Vs = 6-8 mL/kg)
PEEP > 5 cm H,0

Turn off the
inspiratory trigger

IE =1/2 (111?)

Frequency =
10-12 breaths/min

(Adjust according to
EtCO,)

Passive flow oxygenation

Is ROSC achieved?

Is passive flow oxygenation
feasible?

NO

Bag-valve ventilation

— NO

s

Fig. 2. Proposed operating algorithm for invasive mechanical ventilation during mechanical CPR. CPR = cardiopulmonary resuscitation; V1 =
tidal volume; I:E = inspiratory-expiratory ratio; ROSC = return of spontaneous circulation; Perco,= end-tidal carbon dioxide pressure.

the risk of barotrauma during ventilation occurring simulta-
neously with chest compressions is well documented in the
literature.” The arrival of new portable ventilator devices in
the market capable of activating flow delivery through
reverse inspiratory triggers (which work when the airway
pressure rises fast enough above an absolute threshold after a
minimal time of expiration) has opened a new line of
research into intermittent ventilation synchronized with chest
compressions. Animal studies have shown greater effi-
ciency in terms of achieving (and maintaining) certain
threshold levels of P,o,, with beneficial effects also on the
hemodynamic conditions (eg, maintenance of adequate
mean arterial pressure) and acid/base homeostasis (Table
1).>>%¢ However, as previously mentioned, the studies
conducted to date have only involved animal models.
Thus, no conclusions can yet be drawn about such devices
in terms of achieving return of spontaneous circulation or
better neurological performance.

RESPIRATORY CARE ® FEBRUARY 2021 VoL 66 No 2

Therefore, 2 opposing strategies exist: passive oxygen-
ation versus the synchronization of ventilation with chest
compressions. Until now, the only study to compare these 2
strategies in an animal model is that by Soltsez and col-
leagues.’” They found a higher coronary perfusion pressure
and compression phase aortic pressure when positive-pres-
sure ventilation was applied.

Limitations

The priority of this review was to consider all of the litera-
ture assessing mechanical ventilation during mechanical
CPR. In doing so, we have been largely inclusive, as demon-
strated by the wide variety of study designs involved. Most
investigations are preclinical studies (animals or laboratory
models), so their direct relevance to clinical practice is lim-
ited. In addition, the literature contains controversial results
regarding the need for ventilation during cardiopulmonary
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resuscitation.®** Indeed, doubts persist regarding the need
to intubate cardiac arrest patients at all®>®; although a dis-
cussion of this issue is beyond the scope of our review, we
can affirm that the benefits of protecting the airways and me-
chanical ventilation continue to be widely recognized and
prioritized.®®”° This review has only addressed the evidence
regarding mechanical ventilation during mechanical CPR.
Any evidence that relates to data gathered outside this time
frame (including after return of spontaneous circulation) has
not been covered. The reader is instead referred to the recent
publication by Holmberg and colleagues,”" which discusses
oxygenation and ventilation targets after cardiac arrest.

Summary

Research into the optimal way to ventilate a patient in
cardiac arrest using mechanical chest compressions is
ongoing. At present, very few clinical studies have explored
the best ventilation strategy for cardiac arrest patients dur-
ing mechanical CPR. According to the evidence published
to date, a high Fjo, during CPR must be guaranteed in these
patients. Low-grade evidence suggests deactivating the
inspiratory trigger and applying PEEP (at least 5 cm H,0).
Uncertainties remain about the ideal ventilatory mode, Vr,
the ventilation rate setting, and the inspiratory-expiratory
ratio. Current international guidelines do not provide any
indications about the “best” mechanical ventilation strategy
to use during mechanical CPR. Here, we put forward an
operating algorithm based on the current state of knowledge
(Fig. 2). Studies specifically addressing the topics covered
in this review would be required to investigate its validity.
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