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Introduction

Since the first description of ARDS, bilateral alveolar
infiltrates on chest radiography have been recognized as
characteristic of this syndrome, combined with hypoxemia
and low respiratory system compliance (CRS).

1 Due to its
simplicity, chest radiography is still a pillar of the actual
ARDS definition.2 However, only the advance to chest
computed tomography (CT) allowed clinicians to precisely
identify the site of lung disease, revealing the

heterogeneous distribution of lung injury in patients with
ARDS.3,4 As with previous ARDS descriptions, CT studies
reported a variety of areas with pulmonary involvement in
subjects with COVID-19,5,6 such as multilobar ground-
glass opacities and consolidation located mainly in the
gravity-dependent regions.

The use of a chest CT to phenotype ARDS as a focal or
non-focal disease is also advocated to allow personalized
mechanical ventilation.7 However, the use of CT is limited
by the ionizing radiation and the need for patient transfer.8 In
this scenario, electrical impedance tomography (EIT) has
been used at the bedside to monitor pulmonary function in
real time during mechanical ventilation.9,10 In this report, we
aimed to describe the distribution pattern of hypoventilated
regions (ie, areas with deteriorated lung function) in patients
with COVID-19–related ARDS under invasive mechanical
ventilation with the use of EIT. In addition, we assessed the
relationship between the distribution pattern of hypoventi-
lated regions with CRS and gas exchange (PaO2

/FIO2
).

Methods

This study is a secondary analysis of a clinical trial

(https://clinicaltrials.gov, NCT 05024500) that consecutively

monitored subjects with EIT who had been admitted to a ter-

tiary ICU from October 2020 to June 2021. All the subjects

were ventilated in the volume-controlled mode (tidal volume

of 6 mL/kg of predicted body weight) for< 72 h, with PEEP

of 10 cm H2O as recommended previously by Villar et al.11

In this analysis, we excluded subjects on assisted or sponta-

neous ventilation modes and with a PaO2
/FIO2

of 300 mm Hg

on the day of assessment.

The EIT images were acquired by using Enlight-1800

(Timpel Medical, São Paulo, Brazil) with the electrode strap

positioned around the patient’s chest at the axillar level. The

subjects were in the supine position, with the head tilted at

30�. The lung images were divided into 4 regions of interest

(ROI): upper right (UR), lower right (LR), upper left (UL),

and lower left (LL). The regional distribution of ventilation

was determined as a percentage of the change in
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impedance for each quadrant in relation to the total change

in impedance:

ZVROI ¼ DZROI

DZtotal
� 100

The distribution of hypoventilated regions was stratified

into 4 patterns (or phenotypes): pattern 1, preserved bilat-

eral dorsal ventilation (ZVLR þ ZVLL > 40%); pattern 2,

bilateral dorsal hypoventilation (ZVLR þ ZVLL < 40%);

pattern 3, unilateral dorsal hypoventilation (ZVLR or ZVLL

< 20%); and pattern 4, unilateral hypoventilation (ZVUR +
ZVLR or ZVUL + ZVLL < 40%) (Fig. 1A).

Respiratory system mechanics and arterial blood gases

were assessed during EIT assessment. CRS was calculated as

expiratory tidal volume divided by the difference between

plateau pressure and total PEEP. The plateau pressure and

total PEEP were measured by using an end-inspiratory occlu-

sion of 0.5 s and an end-expiratory occlusion of 2 s, respec-

tively. CRS was normalized by the predicted body weight to

account for differences in height and sex (eg, a normalized

compliance of 0.5 mL/cm H2O/kg predicted body weight

would correspond to 35 mL/cm H2O for a 70-kg patient).

Statistical Analysis

Continuous variables were expressed as median (inter-

quartile range), and categorical variables were expressed

as frequencies (percentages). Differences between groups

were assessed with Kruskal-Wallis test, followed by the

Dunn post hoc test. Differences were considered significant

with P < .05. The analysis was conducted by using RStudio

(v1.1.456; PBC, Boston, Massachusetts) and R Statistical

Software (v3.6.2; R Foundation for Statistical Computing,

Vienna, Austria).

Results

A total of 53 subjects were included in this analysis

(Table 1): 24 subjects (45%) showed preserved bilateral

P = .83
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Fig. 1. A: Illustration of the distribution of hypoventilated regions patterns detected by electrical impedance tomography (EIT): pattern 1,
preserved bilateral dorsal ventilation (ZVLR þ ZVLL > 40%); pattern 2, bilateral dorsal hypoventilation (ZVLR þ ZVLL < 40%); pattern 3, unilat-

eral dorsal hypoventilation (ZVLR or ZVLL < 20%); and pattern 4, unilateral hypoventilation (ZVUR þ ZVLR or ZVUL þ ZVLL < 40%). The color
scale of the EIT image was normalized by the sum of the impedance values within the lung area (the lighter the blue, the greater the regional
ventilation). B: Respiratory-system compliance (CRS) normalized by predicted body weight. C: PaO2

/FIO2
according to the hypoventilation

pattern. Box plots in panels B and C express median, 25% and 75% quartiles, minimum and maximum, and outliers (>1.5 interquartile
length values).
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dorsal ventilation (pattern 1), 9 subjects (17%) showed

bilateral dorsal hypoventilation (pattern 2), 17 subjects

(32%) showed unilateral dorsal hypoventilation (pattern 3),

and 3 subjects (5.7%) showed unilateral hypoventilation

(pattern 4). CRS was comparable among the distribution pat-

tern of hypoventilated regions (Fig. 1B). PaO2
/FIO2

was lower

in pattern 2 compared with pattern 1 (Fig. 1C).

Discussion

To our knowledge, this is the first study to demonstrate

the utility of EIT in detecting the heterogeneous topographic

distribution of lung disease in the subjects with COVID-19–

related ARDS. Analysis of our data indicates a higher preva-

lence of subjects with preserved bilateral dorsal ventilation,

followed by unilateral and bilateral dorsal hypoventilation.

Analysis of these results suggests a heterogeneous EIT-

topographic distribution of the lung disease in ARDS, as

reported by previous CT studies.4-6

We defined the EIT patterns (or phenotypes) based on a

previous CT study,7 which dichotomized the phenotype of

ARDS as a non-focal (corresponding to EIT pattern 1) or

focal disease (corresponding to EIT patterns 2, 3, and 4).

EIT patterns 3 and 4 were idealized to allow the classifica-

tion of unilateral lung involvement. We did not include

in the current classification the hypoventilation alone in

the anterior quadrants due to the risk of interference by the

heart area and pulmonary hyperinflation, reducing the

ventilation in non-gravity–dependent regions. The thresh-

old of ventilation distribution was defined based on the

known range of error between EIT and CT for anterior

versus posterior and right versus left regions (bias of 0%

and limits of agreement of 10%).12 Thus, for instance, the

EIT image that shows dorsal ventilation < 40% has a high

accuracy to suggest the existence of a regional lung

impairment (eg, atelectasis, consolidation).

This report intends to show how EIT can add information

to identifying topographic disease distribution in ARDS.

For instance, analysis of our data suggests that the subjects

with preserved bilateral dorsal ventilation (pattern 1) had

comparable CRS with those with bilateral dorsal hypoventi-

lation (pattern 2, which is usually related to regional dorsal

consolidations or atelectasis). Therefore, the identification

of a patient with pattern 1 can exclude any hypothesis about

focal disease presentation. At the same time, the combined

information about EIT pattern 1 with high or low CRS can

address the severity and/or progression of a non-focal ARDS

(eg, patients with minimal or severe diffuse ground-glass

opacities).9 Furthermore, the global CRS was not an informa-

tive variable to detect the extension of hypoventilated areas

(eg, pattern 2 vs pattern 3 and pattern 2 vs pattern 4), and

PaO2
/FIO2

tended to be lower in the subjects with bilateral

dorsal hypoventilation, possibly due to the increased shunt

area.

We believe that EIT bedside information supports a step

forward in clinical studies, in testing ventilatory strategies tai-

lored to lung imaging. For instance, body positioning, such as

prone positioning, has frequently been used in patients with

ARDS to improve oxygenation by promoting dorsal lung

recruitment.13,14 We found that only one-sixth of our subjects

had bilateral dorsal hypoventilation. On the other hand, the

greater prevalence of unilateral dorsal hypoventilation may

indicate the use of lateral positioning, with the sick lung

region positioned up to favor alveolar recruitment.15 The

Table 1. Characteristics of the Subjects at Baseline

Characteristic Pattern 1 Pattern 2 Pattern 3 Pattern 4

Subjects 24 (45.3) 9 (17) 17 (32) 3 (5.7)

Age, y 60 (51–73.5) 51 (48–57) 56 (50–70) 62 (55–68.5)

Women 15 (62.5) 3 (33.3) 6 (35.3) 2 (66.7)

BMI, kg/m2 28.3 (25.8–31) 29.5 (28.6–32) 30.7 (26.8–33.7) 29.1 (29–34.5)

Symptom onset, d 7.5 (6–10) 7 (5.5–9) 8.5 (5–10.7) 7 (7–7)

SAPS III 58.5 (41.7–76) 50 (39–67) 46 (39–62) 84 (79–84.5)

NEWS 13 (11.7–14) 12 (11–13) 11 (10–13) 12 (11–13)

Ventilation time before enrollment, d 1 (1–2) 2 (1–3) 1 (1–3) 1 (1–1.5)

Use of NIV before intubation 12 (50) 3 (33.3) 8 (47.1) 0 (0)

Driving airway pressure, cm H2O 13 (10.7–14.5) 13 (10–14) 13 (9–15) 9 (8.5–12.5)

Comorbidity

Systemic arterial hypertension 13 (54.2) 4 (44.4) 8 (47.1) 2 (66.7)

Diabetes 8 (33.3) 1 (11.1) 3 (17.6) 1 (33.3)

Chronic kidney failure 2 (8.3) 0 (0) 2 (11.8) 1 (33.3)

Data are shown as median (25th to 75th percentiles) or n (%).

BMI ¼ body mass index

SAPS ¼ Simplified Acute Physiology Score

NEWS ¼ national early warning score

NIV ¼ noninvasive ventilation
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small sample size from a single center limited a strong

conclusion from our data. Thus, future studies are needed to

investigate the role of EIT phenotypes on clinical outcomes.

In conclusion, the present study demonstrates a heterogene-

ous EIT topographic distribution of lung disease in subjects

with COVID-19–related ARDS. In addition, standard global

parameters such as CRS and PaO2
/FIO2

were almost indistin-

guishable among the EIT phenotypes.
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