Calculation of Physiologic Deadspace: Comparison of Ventilator Volumetric Capnography to Measurements by Metabolic Analyzer and Volumetric CO₂ Monitor.

Mark S. Siobal BS RRT FAARC

Hannah Ong RRT

Josephine Valdes RRT

Julin Tang MD

Respiratory Care Services

San Francisco General Hospital

University of California, San Francisco

Department of Anesthesia and Perioperative Care

Key Words: deadspace fraction, metabolic analyzer, volumetric CO2 monitor ventilator volumetric capnography, volumetric capnogram

Abstract

Background: Calculation of physiologic deadspace (V_D/V_T) using the Enghoff modification of the Bohr equation requires measurement of the partial pressure of mean expired CO_2 (PeCO₂) by exhaled gas collection and analysis, use of a metabolic analyzer, or use of a volumetric CO_2 monitor. The Drager XL ventilator is equipped with integrated volumetric CO_2 monitoring and calculates minute CO_2 production (VCO_2) . We calculated $PeCO_2$ and V_D/V_T from ventilator derived volumetric CO_2 measurements of VCO_2 and compared it to metabolic analyzer and volumetric CO_2 monitor measurements.

Methods: A total of 67 measurements in 36 in patients recovering from acute lung injury or acute respiratory distress syndrome were compared. Thirty-one ventilator derived measurements were compared to measurements using 3 different metabolic analyzers and 36 ventilator derived measurements were compared to measurements from a volumetric CO₂ monitor.

Results: There was a strong agreement between ventilator derived measurements and metabolic analyzer or volumetric CO_2 monitor measurements of $PeCO_2$ and V_D/V_T . Correlation, bias, and precision between ventilator and metabolic analyzer measurements for $PeCO_2$ were r = 0.97, $r^2 = 0.93$ (p < 0.0001), bias -1.04 and precision \pm 1.47 mm Hg and for V_D/V_T r = 0.95, $r^2 = 0.91$ (p < 0.0001), bias 0.024 and precision \pm 0.034. Correlation between ventilator and volumetric CO_2 monitor for $PeCO_2$ were r = 0.96, $r^2 = 0.92$ (p < 0.0001), bias -0.19 and precision \pm 1.58 mm Hg and for V_D/V_T r = 0.97, $r^2 = 0.95$ (p < 0.0001), bias 0.006 and precision \pm 0.033.

Conclusion: $PeCO_2$ and therefore $V_D/V_{T\,can}$ be accurately calculated directly from the Drager XL ventilator volumetric capnography measurements without use of a metabolic analyzer or volumetric CO_2 monitor.

Introduction

Deadspace ventilation, the portion of a tidal volume that does not contribute to gas exchange, was first described and calculated by the Bohr equation in 1891¹, and later by the Enghoff modification of the Bohr equation in 1938.² Physiologic deadspace fraction (V_D/V_T) as defined by Bohr and Enghoff, is the sum of anatomic or airway deadspace (VD_{anat}) and alveolar deadspace (VD_{alv}) divided by the tidal volume (Vt). The definition of pure deadspace is ventilation without perfusion whereby alveolar gases do not contact blood flowing through the pulmonary capillaries. All conducting airways (anatomical and mechanical deadspace), areas of pure shunt (pulmonary capillary perfusion with no ventilation), areas of pure deadspace, and the presence of gas exchange units with any degree of inequality of ventilation in relation to perfusion, can contribute to the calculated deadspace ventilation.

Assessing V_D/V_T in critically ill patients during mechanical ventilation is important for several reasons.³ The prognostic value of V_D/V_T has been linked to mortality risk in acute respiratory distress syndrome (ARDS) ⁴⁻⁷ and to other important clinical indices. V_D/V_T is known to correlate with the severity of lung injury, ⁸⁻¹² can be useful as an indicator of lung recruitment versus overdistention in patients with acute lung injury (ALI) and ARDS, ¹³⁻¹⁷ may be helpful as a predictor of successful extubation in pediatric ¹⁸ and adult patients, ¹⁹ and may be useful in diagnosing and assessing the severity of pulmonary embolism. ^{20,21}

Simplified bedside calculation of V_D/V_T requires a measurement of the partial pressure of mean expired CO_2 (PeCO₂) and use of the Enghoff modification of the Bohr equation.² The Enghoff equation differs from the original Bohr equation by the substitution of PaCO₂ for the partial pressure of mixed alveolar CO_2 (PACO₂). The Enghoff equation became the standard in clinical practice for calculation of V_D/V_T because PACO₂ has been difficult to accurately

measure or estimate at the bedside. The traditional technique of measuring $PeCO_2$ used the Douglas bag method of exhaled gas collection and analysis.²² Technological advancements allow the use of a metabolic analyzer,^{23, 24} and more recently, use of volumetric capnography and a volumetric CO_2 monitor.²⁵

The Drager XL ventilator (Drager Medical, Telford, PA) is equipped with integrated CO_2 and volume measurement capabilities (volumetric CO_2). We calculated $PeCO_2$ and V_D/V_T directly from the Drager XL ventilator volumetric CO_2 measurements of VCO_2 and compared it to metabolic analyzer and volumetric CO_2 monitor measurements of $PeCO_2$ and V_D/V_T .

Methods

A total of 67 measurements were performed in 36 patients who met the American-European Consensus Conference criteria for ALI or ARDS.²⁶ Measurement were done at varying time periods after ALI or ARDS criteria were met (Table 1). Phase 1 of the study compared 31 ventilator derived measurements in 25 patients to measurements from three different metabolic analyzers, Metascope (Cybermedic, Louisville, CO) n = 9, Deltatrac (Sensor Medics, Yorba Linda, CA) n = 4, and Vmax Encore (Viasys, Yorba Linda, CA) n = 18. Use of the various metabolic analyzers was based on functional availability. All metabolic analyzers used were maintained by annual biomedical engineering preventative maintenance and performance verification. In phase 2 of the study, 36 ventilator derived measurements in 11 patients were compared to the NICO₂ Respiratory Profile Monitor (Philips Healthcare, Andover, MA).

 V_D/V_T measurements were performed when requested by the ICU team. Arterial blood gas samples for PaCO₂ determination and V_D/V_T calculation were obtained from arterial catheters. Prior to all measurements, ventilator, metabolic analyzer, and NICO₂ monitor CO₂ and flow sensors were calibrated using manufacturers specifications. Following all ventilator circuit disconnections, approximately 30 minutes was allowed for patient stabilization. Ventilator

measurements were done simultaneously during metabolic analyzer and NICO₂ monitor measurements for comparison. The ventilator circuit was checked for leaks and patients with active pulmonary air leaks were excluded from the study. The study was approved by the Committee on Human Research at the University of California, San Francisco.

Ventilator Volumetric CO2 Measurements

The Drager XL ventilator (Drager Medical, Telford, PA) mainstream CO₂ sensor was placed between the ventilator circuit and the patient connection. The ventilator expiratory flow sensor positioned at the distal side of the expiratory valve measured exhaled tidal volume (Vt) and exhaled minute ventilation (VE). Ventilator volumetric CO₂ measurements were initiated and displayed on the ventilator trend data screen. After measured values stabilized and reached a steady state, ventilator trend data for minute CO₂ production (VCO₂) and VE were averaged over 5 minutes. All measurements were reported at body temperature, pressure, and saturated (BTPS).

The fraction of exhaled CO₂ (FeCO₂) was calculated manually by dividing the ventilator derived VCO₂ by the VE whereby:

(1)
$$FeCO_2 = VCO_2 / VE$$

PeCO₂ was then calculated by multiplying FeCO₂ by the barometric pressure minus water vapor pressure:

(2)
$$PeCO_2 = FeCO_2 \times (760 - 47)$$

PeCO2 was then used to calculate V_D/V_T by the Enghoff modification of the Bohr equation:

(3)
$$V_D/V_T = (PaCO_2 - PeCO_2) / PaCO_2$$

The automated ventilator correction for delivered and measured Vt was used by performing a circuit compliance test at device start up. The automated ventilator correction adjusts the delivered and measured Vt and therefore the ventilator calculated values for VCO₂

and VE reflect the adjusted values and eliminated the need for a manual circuit compression volume correction.

Metabolic Analyzer Measurements

The metabolic analyzers were warmed-up for 20-minutes and calibrated per manufacturers recommendations. The fraction of inspired gases were sampled from the ventilator inspiratory limb and the fraction of exhaled gases and volumes were measured by directing expiratory gas flow into the metabolic analyzer (Metascope and Deltatrac) or by placement of the metabolic analyzer flow sensor and expired gas sampling line at the ventilator expired gas outlet (Vmax Encore). After a stable10-minute measurement period, FeCO₂ averaged over a 5 minute period from the metabolic analyzer was used to calculate PeCO₂ using Equation 2 above.

All metabolic analyzer measurements of PeCO₂ were corrected for circuit compression volume as previously described ^{23-25, 27-29} whereby the PeCO₂ was multiplied by the ratio of the observed Vt divided by the observed Vt minus the calculated compression volume using the following equations:

- (4) Compression Volume = (Peak Inspiratory Pressure PEEP) x Circuit Compliance
- (5) Corrected $PeCO_2 = PeCO_2 \times (Vt / [Vt compression volume])$

Ventilator circuit compliance factors of 2.5 and 2.0 mL/cm H_20 were used pre and post a ventilator circuit configuration change that was implemented during the study period. The circuit compliance factor of 2.5 mL/cm H_20 was used for the Metascope and Deltatrac, and 2.0 mL/cm H_20 was used for the Vmax Encore. Circuit compression volume was determined by laboratory testing and confirmed by the ventilator circuit compliance test mentioned above. Vt was derived by dividing the VE by the respiratory rate measured by the metabolic analyzer. The Drager XL ventilator uses a non bias flow triggering method and therefore additional correction for potential measurement error caused by bias flow was unnecessary.

NICO₂ Monitor Measurements

The NICO₂ monitor combined CO₂ / flow sensor was allowed to warm-up for 5 minutes until stable measurements for PeCO₂ were obtained. Both the NICO₂ combined sensor and the ventilator mainstream CO₂ sensor were placed between the ventilator circuit and the patient. The position of the NICO₂ sensor and the ventilator CO₂ sensor were placed distal and proximal to each other in random order. In a previous bench study, the distal or proximal position of either sensor did not result in position related bias.³⁰ PeCO₂ derived from the ventilator measurements was rounded to the nearest whole number for comparison to the NICO₂ monitor display of PeCO₂.

Since the $NICO_2$ combine CO_2 / flow sensor measures distal to the ventilator "Y" adapter, the effects of ventilator circuit compression volume and the utilization of a correction factor are unnecessary.

Statistical Analysis

Ventilator derived measurements of VCO₂, FeCO₂, PeCO₂ and V_D/V_T were compared to metabolic analyzer measurements. PeCO₂ and V_D/V_T derived from ventilator measurements were compared to NICO₂ monitor measurements. The data was compared and analyzed by correlation measured by Pearson product-moment correlation coefficient (r) and coefficient of determination (r^2). Bias and precision was assessed by Bland-Altman analysis. Statistical analysis was done using commercially-available software (Microsoft Office Excel 2011, version 14.2.2, Redmond, WA). Correlation results were considered to be significant when p < 0.05.

Results

There was a strong correlation, agreement and accuracy between ventilator derived measurements and metabolic analyzer or volumetric CO_2 monitor measurements of VCO_2 , $FeCO_2$, $PeCO_2$ and V_D/V_T .

In phase 1 of the study, correlation between ventilator derived measurements compared to metabolic analyzer measurements for VCO₂ and FeCO₂ were $r=0.92, r^2=0.85$ (p < 0.0001) and $r=0.95, r^2=0.91$ (p < 0.0001). Bias and precision for VCO₂ and FeCO₂ was 24 ± 31 mL/min and 0.07 ± 0.23 percent respectively. Correlation for PeCO₂ was $r=0.97, r^2=0.93$ (p < 0.0001) (Figure 1), and bias and precision were –1.04 and ±1.47 mm Hg (Figure 2). Correlation for V_D/V_T was $r=0.95, r^2=0.91$ (p < 0.0001) (Figure 1), and bias and precision was 0.02 ± 0.04 (Figure 3). The p value of two tailed probability Pearson correlation coefficient reached statistical significance for each metabolic analyzer for both PeCO₂ and V_D/V_T except for one where the sample size was very small (DeltaTrac, $n=4, V_D/V_T, p=0.09$). Similarly, bias and precision remained within clinically acceptable ranges when individual measurements between the three metabolic analyzers were compared to the combined data from all three analyzers (Table 2).

In phase 2 of the study, correlation, bias, and precision between ventilator and volumetric CO_2 monitor measurements for $PeCO_2$ were r = 0.96, $r^2 = 0.92$ (p < 0.0001) (Figure 4), bias – 0.19 and precision \pm 1.58 mm Hg (Figure 5), and for V_D/V_T r = 0.97, $r^2 = 0.95$ (p < 0.0001) (Figure 4), bias 0.01 and precision \pm 0.03 (Figure 6).

Discussion

The results of this study confirm that $PeCO_2$ and therefore V_D/V_T using the Enghoff equation can be accurately calculated directly from the Drager XL ventilator volumetric capnography measurements without use of a metabolic analyzer or volumetric CO_2 monitor. In a recent study, use of volumetric capnography calculations of V_D/V_T from the Drager XL ventilator were shown to be a predictor of extubation success. ¹⁹ However, to our knowledge the results of our study are the first to validate the accuracy of the Drager XL measurements of V_D/V_T against previously accepted methods.

These findings have several important implications. This simplified approach to V_D/V_T measurement will improve availability, allow early and repeated measurements, and will increase the utilization of V_D/V_T for prognostic, diagnostic, and disease severity monitoring in the critical care setting. V_D/V_T has been shown to be predictive of the mortality risk in patients with ARDS in both the early and intermediate phases of the disease progression in single center or small cohort studies. ⁴⁻⁸ Patients with $V_D/V_T \ge 0.57$ where found to have higher mortality with a 45 percent increase in the odds of dying for every 0.05 increase in deadspace fraction. ⁵ V_D/V_T is also known to be a marker of the severity of lung injury. 9-13 Serial monitoring of V_D/V_T over the duration and course of ALI/ARDS can be useful as a means to assess the need and effects of supportive therapeutic strategies and interventions. ^{12, 13} V_D/V_T measurements in patients with ALI/ARDS have been found to be useful for titrating positive end expiratory pressure and optimizing cardio-pulmonary function, 14-16 and may be useful as a tool to monitor lung recruitment versus overdistension. ¹⁷ Assessment of V_D/V_T may also be used to predict successful of extubation in pediatric 18 and adult patients. 19 $V_D/V_T \leq~0.50$ and ≥ 0.65 in infants and children were found to be predictive of extubation success or failure 18 where as in adult patients the V_D/V_T cut off value which offered the best sensitivity and specificity of predicting extubation failure was 0.58. ¹⁹ The use of V_D/V_T measurements in addition to other clinical assessments and diagnostics test has also been used in diagnosing and assessing the severity of pulmonary embolism. 20,21 The culmination of the broad clinical value of V_D/V_T assessments in the critical care setting support the integration of this measurement into routine clinical practice.

Additionally, use of a separate stand alone device for V_D/V_T measurements with the associated acquisition and supply costs, and staff utilization time may become unnecessary. Elimination of a metabolic analyzer or volumetric CO_2 monitor simplifies the determination of V_D/V_T Use of ventilator derived volumetric CO_2 makes the potential to evaluate physiologic

deadspace fraction more accessible for use in clinical practice as ventilator manufacturers incorporate volumetric CO_2 monitoring capabilities into newer ventilator platforms.³¹ The calculations performed for his study where done manually using ventilator derived measurements but could easily be incorporated as an automated feature by ventilator software modification. Methods for estimating V_D/V_T by predictive equations have been described using the arterial to end tidal CO_2 gradient^{32, 33} and estimation of VCO_2 .³⁴ The increasing availability of volumetric capnography make the use of predictive equations unnecessary.

The results of this study are consistent with prior data which confirm the accuracy of different methods of calculating V_D/V_T (Table 3). Similar correlation and accuracy of the exhaled gas collection method using a Douglas bag to the metabolic analyzer, 23,24 metabolic analyzer to the volumetric CO_2 monitor, 25 and ventilator based volumetric capnography to both metabolic analyzer and volumetric CO_2 monitor are now demonstrated.

Limitations of this study include a relatively small sample size in each study phase and the use of three different metabolic analyzers in phase 1. Also the ventilator circuit configuration and therefore the circuit compression volume were changed during the study. Despite these factors, the resiliency of the ventilator derived data in relation to the correlation, bias, and precision between measurements remained consistent. Although number of individual measurements between the three metabolic analyzers used varied markedly, the agreement of correlation, bias, and precision remained consistent between individual metabolic analyzers when compared to the combined data from all three analyzers (Table 2). Additionally, the change in ventilator circuit configuration and compression volume did not significantly alter the correlation and agreement of the measurements (Table 2).

 V_D/V_T calculated by the original Bohr equation has been recognized as "true deadspace" or the balance between effective and ineffective ventilation. The Bohr deadspace equation relies

on the calculation or estimation of PACO₂ from mixed alveolar gas. PACO₂ is affected by the dilution of CO₂ from the alveolar side of the alveolar-capillary membrane before the affects of shunt and venous admixture on PaCO₂. Bohr deadspace is affected by areas of high ventilation to perfusion matching such as alveolar overdistension by excessive PEEP and or Vt, pulmonary vascular occlusion, and pulmonary hypoperfusion secondary to hypovolemia.³⁵ The Enghoff equation on the other hand relies on the PaCO₂ of arterial blood and is thus an index of "true deadspace" plus the effects elevated PaCO₂ from global gas exchange inefficiency and shunt (Figure 7). Elevated PaCO₂ can result from all causes of low ventilation to perfusion matching and shunt such as atelectasis, pneumonia, COPD, and asthma. Furthermore, PaCO₂ can rise when an increase in metabolic rate and CO₂ production are not accompanied by an increase in CO₂ excretion. Changes in PaCO₂ are determined by the relationship between VCO₂ and minute alveolar ventilation (V_A) whereby $PaCO_2 = VCO_2 / V_A$. If VCO_2 increases without a proportional rise in V_A, CO₂ production exceeds CO₂ excretion and PaCO₂ increases. Therefore the Enghoff deadspace equation can overestimate V_D/V_T in the presence of shunt and regions of low ventilation to perfusion ratios (Figure 8).

Use of volumetric capnography to determin PACO $_2$ for Bohr deadspace calcuation has been demonstrated and validated in an animal model of lung injury. PACO $_2$ measured at the mid point of phase III of the expired volume capnogram was compared to the PACO $_2$ mathematically derived using the multiple inert gas elimination technique (MIGET). There was a close linear correlations between the two methods for calculating PACO $_2$ (r = 0.99, p < 0.001) and Bohr deadspace (r = 0.96, p < 0.001). The mean PACO $_2$ and Bohr deadspace from volumetric caonography was similar to the calulation obtained by MIGET with a mean bias of -0.10 mmHg, 95% Confidence Interval -2.18 to 1.98 mmHg and 10 mL, 95% Confidence Interval -44 to 64 mL respectively. Given these findings, it has been suggested that simultaneous

assessment of Bohr and Enghoff deadspace using volumetric capnography may provide useful complimentary information in regards to recognizing the effects of shunt and ventilation to perfusion inequality versus "true deadspace" or wasted ventilation in critically ill patients with elevated V_D/V_T . Furthermore, using volumetric capnography to determin Bohr deadspace could be monitored continuously and would not require periodic arterial blood sampling to measure $PaCO_2$. ³⁵

Conclusion

This study confirms that $PeCO_2$ and V_D/V_T using the Enghoff equation can be accurately calculated directly from the Drager XL ventilator volumetric capnography measurements without use of a metabolic analyzer or volumetric CO_2 monitor.

Future study of the use and development of ventilator based techniques for volumetric capnography measurements of V_D/V_T should continue to confirm and validate measurement correlation and accuracy. Investigation of the meaningful use of continuous Bohr V_D/V_T monitoring and simultaneous measurement of Bohr and Enghoff V_D/V_T using volumetric capnography should also be pursued.

References

- 1. Bohr C. Uber die Lungeatmung. Skand Arch Physiol 1891;2:236–238
- 2. Enghoff H. Volumen inefficax: bemerkungen zur frage des schadli-chen raumes. Upsala Lakareforen Forh 1938;44:191–218.
- 3. Kallet RH, Siobal MS. Measuring Deadspace: Does it really matter? or, what are we waiting for? Respir Care 2010; 55(3):350-352.
- 4. Raurich JM, Vilar M, Colomar A, Ibanez J, Ayestaran I, Perez- Barcena J, Llompart-Pou JA. Prognostic value of the pulmonary dead-space fraction during the early and

- intermediate phases of acute respiratory distress syndrome. Respir Care 2010;55(3):282-287.
- Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA.
 Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002;346(17):1281-1286.
- 6. Kallet RH, Alonso JA, Pittet JF, Matthay MA. Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. Respir Care 2004;49(9):1008-1014.
- 7. Cepkova M, Kapur V, Ren X, Quinn T, Zhuo H, Foster E, Liu KD, Matthay MA.

 Pulmonary dead-space fraction and pulmonary artery systolic pressure as early predictors of clinical outcome in acute lung injury. Chest 2007;132(3):836-842.
- 8. Lucangelo U, Bernable F, Vatua S, Degrassi G, Villagra A, Fernandez R, et al.

 Prognostic value of different deadspace indices in mechanically ventilated patients with acute lung injury and ARDS. Chest 2008;133(1):62-71.
- 9. Lamy M, Fallat RJ, Koeniger E, Dietrich HP, Ratliff JL, Eberhart RC, et al. Pathologic features and mechanisms of hypoxemia in adult respiratory distress syndrome. Am Rev Respir Dis 1976;114(2):267-284.
- Ralph DD, Robertson HT, Weaver LJ, Hlastala MP, Carrico CJ, Hudson LD. Distribution
 of ventilation and perfusion during positive end expiratory pressure in the adult
 respiratory distress syndrome. Am Rev Respir Dis 1985;131(1):54-60.
- 11. Gattinoni L, Bombino M, Pelosi P, Lissoni A, Pesenti A, Fumagalli R, Tagliabue M. Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 1994;271(22):1772-1779.

- 12. Bein T, Reber A, Stjernstrom H, Metz C, Taeger K, Hedenstierna G. Ventilation-perfusion ratio in patients with acute respiratory insufficiency. Anaesthesist 1996;45(4):337-342.
- 13. Nunes S, Valta P, Takala J. Changes in respiratory mechanics and gas exchange during the acute respiratory distress syndrome. Acta Anaesthesiol Scand 2006;50(1):80-91.
- 14. Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 1975;292(6):284-289.
- 15. Beydon L, Uttman L, Rawal R, Jonson B. Effects of positive end- expiratory pressure on deadspace and its partitions in acute lung injury. Intensive Care Med 2002;28(9):1239-1245.
- 16. Maisch S, Reissmann H, Fuellekrug B, Weismann D, Rutkowski T, Tusman G, Bohm SH. Compliance and deadspace fraction indicate an optimal level of positive endexpiratory pressure after recruitment in anesthetized patients. Anesth Analg 2008;106(1):175-181.
- 17. Tusman G, Suarez-Sipmann F, Bo"hm SH, Pech T, Reissmann H, Meschino G, et al.

 Monitoring deadspace during recruitment and PEEP titration in an experimental model.

 Intensive Care Med 2006;32(11):1863-1871.
- 18. Hubble CL, Gentile MA, Tripp DS, Craig DM, Meliones JN, Cheifetz IM. Deadspace to tidal volume ratio predicts successful extubation in infants and children. Crit Care Med 2000;28(6):2034-2040.
- 19. González-Castro A, Suárez-Lopez V, Gómez-Marcos V, González-Fernandez C, Iglesias-Posadilla D, Burón-Mediavilla J, Rodríguez-Borregan JC, Miñambres E, Llorca J. Utility of the deadspace fraction (Vd/Vt) as a predictor of extubation success. Med Intensiva. 2011;35(9):529-38.

- 20. Kline JA, Kubin AK, Patel MM, Easton EJ, Seupal RA. Alveolar deadspace as a predictor of severity of pulmonary embolism. Acad Emerg Med 2000;7(6):611-617.
- 21. Burki NK. The deadspace to tidal volume ratio in the diagnosis of pulmonary embolism.

 Am Rev Respir Dis 1986;133(4):679-685.
- 22. Hedley-Whyte J, Pontoppidan H, Morris MJ. The response of patients with respiratory failure and cardiopulmonary disease to different levels of constant volume ventilation. J Clin Invest 1966;45(10): 1543–1554.
- 23. MacKinnon JC, Houston PL, McGuire GP. Validation of the Deltatrac metabolic cart for measurement of dead-space-to-tidal-volume ratio. Respir Care 1997;42(8):761–764.
- 24. Lum L, Saville A, Venkataraman ST. Accuracy of physiologic dead-space measurement in intubated pediatric patients using a metabolic monitor: comparison with the Douglas bag technique. Crit Care Med 1998;26(4):760–764.
- 25. Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiologic deadspace measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method. Respir Care 2005;50(4):462-467.
- 26. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. Report of the American-European consensus conference on acute respiratory distress syndrome: definitions mechanisms, relevant outcomes, and clinical trials coordination. Am J Respir Crit Care 1994;9(1):72–81.
- 27. Crossman PF, Bushnell LS, Hedley-Whyte J. Dead-space during artificial ventilation: gas compression and mechanical dead-space. J Appl Physiol 1970;28(1):94–97.
- 28. Smith ER. Measurement of physiological deadspace during mechanical ventilation.

 Respir Care 1977;22(12):1341–1342.

- 29. Forbat AF, Her C. Correction for gas compression in mechanical ventilators. Anesth Analg 1980;59(7):488–493.
- 30. Siobal M, Tang J, Ong H, Toy W. Comparison of mean expired CO2 measurements calculated using the Draeger XL ventilator volumetric capnography versus the Respironics NICO2 monitor (abstract). Respir Care 2008;54(11):1560.
- 31. Siobal MS, Bandian L. Comparison of mean expired CO2 measurements using the eVent 7i ventilator volumetric capnography vs the Respironics NICO2 monitor (abstract).

 Respir Care 2012;57(11) In Press.
- 32. Frankenfield DC, Alam S, Bekteshi E, Vender RL. Predicting deadspace ventilation in critically ill patients using clinically available data. Crit Care Med. 2010;38(1):288-91.
- 33. Hardman JG, Aitkenhead AR. Estimating alveolar deadspace from the arterial to end-tidal CO(2) gradient: a modeling analysis. Anesth Analg. 2003;97(6):1846-1851.
- 34. Siddiki H, Kojicic M, Li G, Yilmaz M, Thompson TB, Hubmayr RD, Gajic O. Bedside quantification of dead-space fraction using routine clinical data in patients with acute lung injury: secondary analysis of two prospective trials. *Crit Care* 2010, 14:R141.
- 35. Tusman G, Sipmann FS, Bohm SH. Rationale of deadspace measurement by volumetric capnography. Anesth Analg. 2012;114(4):866-874.
- 36. Riley RL, Cournand A. Ideal alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J Appl Physiol 1949;1(12)825–847
- 37. Riley RL, Cournand A. Analysis of factors affecting partial pressures of oxygen and carbon dioxide in gas and blood of the lungs: theory. J Appl Physiol 1951;4(2):77–101
- 38. Hedenstierna G, Sandhagen B. Assessing dead space: a meaningful variable? Minerva Anestesiol 2006;72(6):521–528

- 39. Tusman G, Scandurra A, Böhm SH, Suarez-Sipmann F, Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput. 2009;23(4):197-206.
- 40. Tusman G, Suarez Sipmann F, Borges JB, Hedenstierna G, Bohm SH. Validation of Bohr deadspace measured by volumetric capnography. Intensive Care Med 2011;37(5):870–874.
- 41. Fowler WS. Lung function studies. II. The respiratory dead space. Am J Physiol. 1948 154(3):405-416.

Figure Legends

Figure 1

Correlation of $PeCO_2$ and V_D/V_T between the Drager XL ventilator and three different metabolic analyzers plotted against the line of identity. $PeCO_2$, r = 0.97, $r^2 = 0.93$ (p < 0.0001), V_D/V_T , r = 0.95, $r^2 = 0.91$ (p < 0.0001).

Figure 2

Bland – Altman plot comparing $PeCO_2$ calculated by measurements from the Drager XL ventilator and three different metabolic analyzers. Bias and precision = -1.04 \pm 1.47 mm Hg, 95 percent confidence interval limits of agreement -3.91 to 1.84 mm Hg.

Figure 3

Bland – Altman plot comparing V_D/V_T calculated by measurements from the Drager XL ventilator and three different metabolic analyzers. Bias and precision = 0.024 ± 0.034 , 95 percent confidence interval limits of agreement -0.05 to 0.09.

Figure 4

Correlation of $PeCO_2$ and V_D/V_T between the Drager XL ventilator and the NICO2 volumetric CO_2 monitor plotted against the line of identity. $PeCO_2$, r = 0.96, $r^2 = 0.92$ (p < 0.0001), V_D/V_T , 0.97, $r^2 = 0.95$ (p < 0.0001).

Figure 5

Bland – Altman plot comparing PeCO₂ calculated by measurements from the Drager XL ventilator and the NICO2 volumetric CO₂ monitor. Bias and precision = -0.19 ± 1.58 mm Hg, 95 percent confidence interval limits of agreement -3.30 to 2.91 mm Hg.

Figure 6

Bland – Altman plot comparing V_D/V_T calculated by measurements from the Drager XL ventilator and the NICO2 volumetric CO_2 monitor.. Bias and precision = 0.024 \pm 0.034, 95 percent confidence interval limits of agreement 0.006 to 0.033.

Figure 7

The three compartment lung model described by Riley^{36, 37} represents gas exchange in the lung in regards to the matching of alveolar ventilation (V_A) and perfusion (Q_T), shunt (Q_S), and deadspace (VD). Ideal Compartment represents areas of perfect V_A to Q_T matching. Pure Shunt Compartment represents areas of perfusion without ventilation. Pure Deadspace Compartment represents areas of ventilation with no perfusion. The sum of the regions of alveolar deadspace (VD_{alv}) and anatomic deadspace (VD_{anat}) equal the physiologic deadspace (VD_{phys}). Deadspace fraction is equal to tidal volume (V_T) divided by VD_{phys} . The partial pressure of arterial and venous carbon dioxide (VCO_2), The relationship between VCO_2 to minute VCO_2 production (VCO_2) and V_A , the partial pressure of mixed alveolar carbon dioxide (VCO_2), the

partial pressure of end tidal carbon dioxide (PETCO₂), and the partial pressure of mean expired carbon dioxide (PECO₂) in relation to the model and the volumetric capnogram are also shown. Modified from references 35 and 38.

Figure 8

Graphical representation of physiologic deadspace fraction determined by volumetric capnography using the approaches of Bohr and Enghoff which shows how use of the Enghoff equation can over estimate alveolar deadspace (VD_{alv}) (shaded areas) by substitution the partial pressure of arterial carbon dioxide (PaCO₂) for partial pressure of mixed alveolar carbon dioxide (PACO₂) determined by identifying the mid point of phase III of the expired volumetric capnogram. Airway or anatomical dead space (VD_{aw}) determined by the Fowler method identified at the mid point of phase II of the expired volumetric capnogram⁴¹, the partial pressure of end tidal carbon dioxide (PETCO₂), and the partial pressure of mean expired carbon dioxide (PECO₂) in relation to the volumetric capnogram are also shown. Modified from reference 35.

Table 1

Female / Male	8 / 28			
Age (mean +/- STDV)	49.4 +/- 14.5			
ALI / ARDS Day (mean +/- STDV)	7.9 +/- 3.8			
ALI / ARDS Etiology				
Pneumonia	8			
Trauma	17			
Burns	3			
Sepsis	5			
Pancreatitis	3			

Patient characteristics. ALI = acute lung injury. ARDS = acute respiratory distress syndrome. ALI / ARDS Day = number of days after ARDS protocol initiated and study data collected.

Table 2

		Correlation	R squared	p value	Bias	Precision
Combined			-	-		
Data	V_D/V_T	0.95	0.91	< 0.0001	0.02	0.04
(n = 31)	PECO ₂	0.97	0.93	<0.0001	-1.04	1.47
Metascope	V_D/V_T	0.98	0.96	<0.0001	0.002	0.02
(n = 9)	PECO ₂	0.98	0.97	<0.0001	-1.39	0.91
DeltaTrac						
(n = 4)	V_D/V_T	0.91	0.82	0.09	0.01	0.03
	PECO ₂	0.96	0.93	0.04	-0.84	1.69
Vmax						
(n = 18)	V_D/V_T	0.97	0.94	<0.0001	0.04	0.04
-	PECO ₂	0.98	0.95	<0.0001	-1.50	1.49

Correlation, bias, and precision between individual metabolic analyzers compared to the combined data from all three analyzers.

Table 3

	Correlation	Bias	Precision	Reference
Metabolic Analyzer vs Drager XL	0.95	0.024	0.035	-
NICO Monitor vs Drager XL	0.97	0.006	0.033	-
Douglas Bag vs Metabolic Analzer	0.92	0.004	0.034	MacKinnon 23
Douglas Bag vs Metabolic Analzer	0.99	-0.017	0.014	Lum ²⁴
Metabolic Analzer vs NICO Monitor	0.94	0.02	0.05	Kallet 25

Correlation, bias, and precision from four studies that compared different methods for calculating $V_D \! / \! V_T$ using the Enghoff equation.

Figure 1

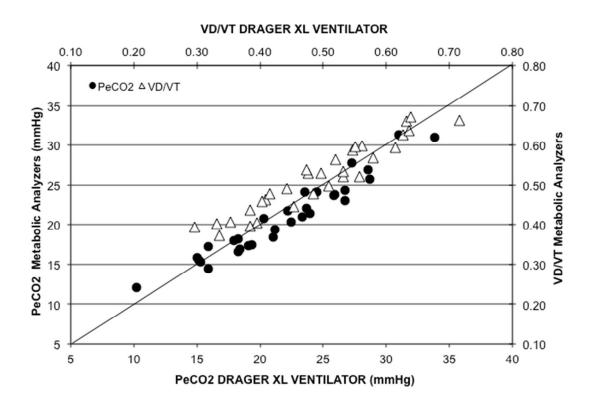


Figure 2

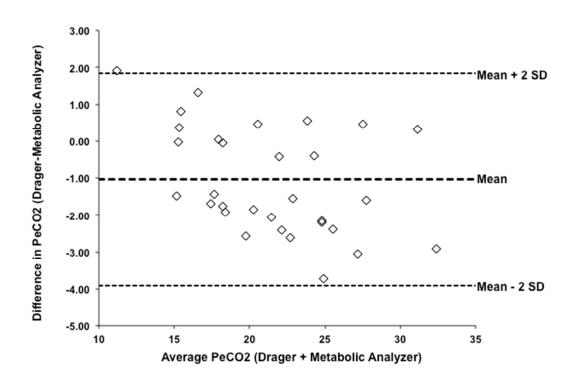


Figure 3

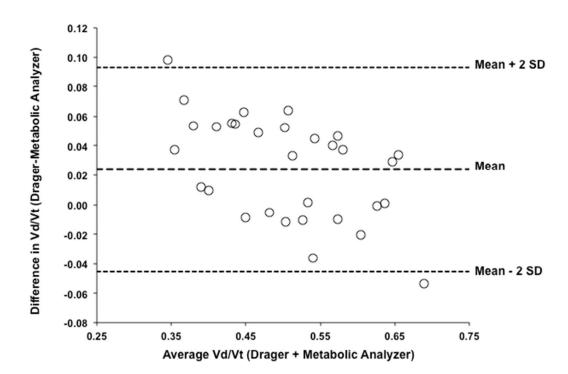


Figure 4

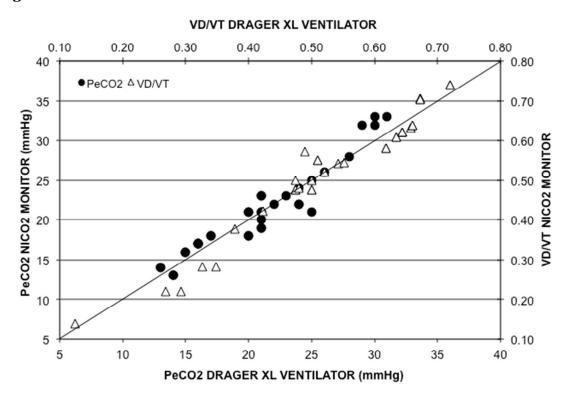


Figure 5

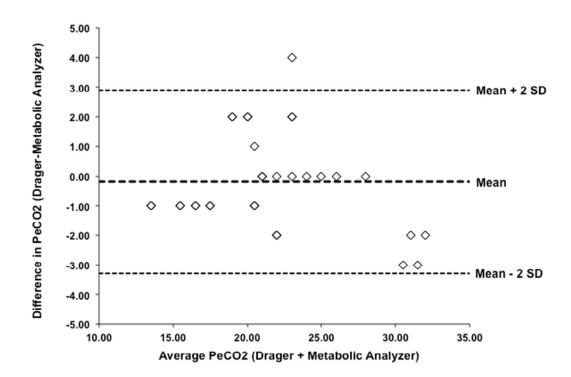
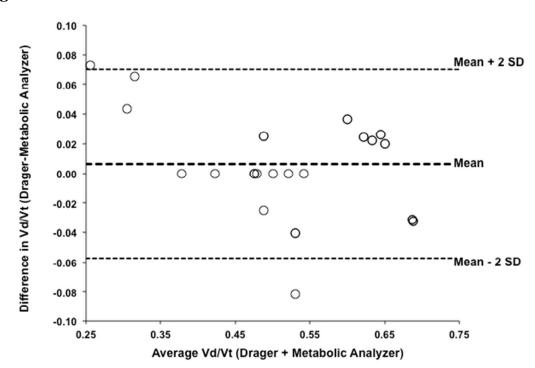



Figure 6

Figure 7

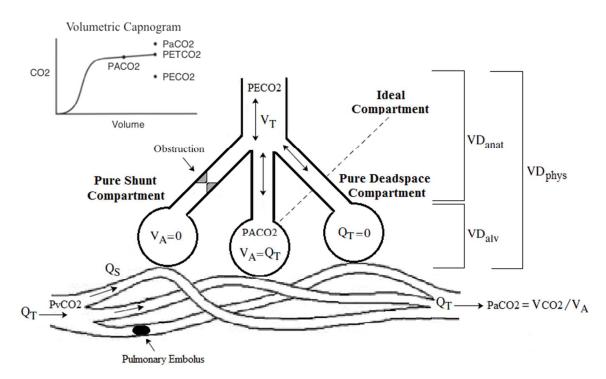
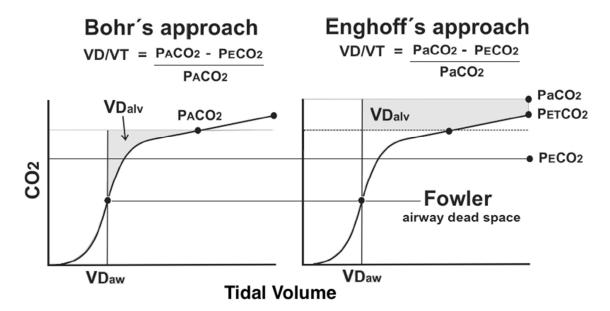



Figure 8

