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BACKGROUND: Ventilator management for children with hypoxemic respiratory failure may
benefit from ventilator protocols, which rely on blood gases. Accurate noninvasive estimates for pH
or PaCO2

could allow frequent ventilator changes to optimize lung-protective ventilation strategies.
If these models are highly accurate, they can facilitate the development of closed-loop ventilator
systems. We sought to develop and test algorithms for estimating pH and PaCO2

from measures of
ventilator support, pulse oximetry, and end-tidal carbon dioxide pressure (PETCO2

). We also sought
to determine whether surrogates for changes in dead space can improve prediction. METHODS:
Algorithms were developed and tested using 2 data sets from previously published investigations. A
baseline model estimated pH and PaCO2

from PETCO2
using the previously observed relationship

between PETCO2
and PaCO2

or pH (using the Henderson-Hasselbalch equation). We developed a
multivariate gaussian process (MGP) model incorporating other available noninvasive measure-
ments. RESULTS: The training data set had 2,386 observations from 274 children, and the testing
data set had 658 observations from 83 children. The baseline model predicted PaCO2

within � 7 mm
Hg of the observed PaCO2

80% of the time. The MGP model improved this to � 6 mm Hg. When
the MGP model predicted PaCO2

between 35 and 60 mm Hg, the 80% prediction interval narrowed
to � 5 mm Hg. The baseline model predicted pH within � 0.07 of the observed pH 80% of the time.
The MGP model improved this to � 0.05. CONCLUSIONS: We have demonstrated a conceptual
first step for predictive models that estimate pH and PaCO2

to facilitate clinical decision making for
children with lung injury. These models may have some applicability when incorporated in venti-
lator protocols to encourage practitioners to maintain permissive hypercapnia when using high
ventilator support. Refinement with additional data may improve model accuracy. Key words: acute
lung injury; pediatrics; respiration; artificial; capnography; decision support techniques. [Respir Care
2014;59(8):1248–1257. © 2014 Daedalus Enterprises]

Introduction

Ventilator management for children with acute lung in-
jury (ALI) varies widely.1,2 Explicit ventilator protocols

can standardize mechanical ventilation, provided that prac-
titioners follow recommendations.1,3-6 Specifically, poten-
tially injurious ventilator settings are frequently not re-
duced, even with normal or over-ventilated pH or PaCO2

.1

Drs Khemani, Ross, Wetzel, and Newth and Mr Kale are affiliated with
the Department of Anesthesia and Critical Care, Children’s Hospital Los
Angeles, Los Angeles, California. Drs Khemani, Ross, Wetzel, and Newth
are also affiliated with the Keck School of Medicine, University of South-
ern California, Los Angeles, California. Ms Celikkaya and Dr Shelton are
affiliated with the Department of Computer Science, University of Cal-
ifornia, Riverside, California.

This work was supported by the Department of Anesthesiology and
Critical Care Medicine, Children’s Hospital Los Angeles, and by the
Laura P. and Leland K. Whittier Virtual Pediatric Intensive Care Unit.

Dr Khemani presented a version of this paper at the ATS 2012 Interna-
tional Conference, held May 18–23, 2012, in San Francisco, California.

The authors have disclosed no conflicts of interest.

Correspondence: Robinder G Khemani MD MsCI, Children’s Hospital
Los Angeles, 4650 Sunset Boulevard, Mailstop 12, Los Angeles, CA
90027. E-mail: rkhemani@chla.usc.edu.

DOI: 10.4187/respcare.02806

1248 RESPIRATORY CARE • AUGUST 2014 VOL 59 NO 8

RESPIRATORY CARE Paper in Press. Published on July 15, 2014 as DOI: 10.4187/respcare.02806

Copyright (C) 2014 Daedalus Enterprises ePub ahead of print papers have been peer-reviewed, accepted for publication, copy edited 
and proofread. However, this version may differ from the final published version in the online and print editions of RESPIRATORY CARE



In general, in the acute phase of illness, ventilator settings
are changed based on arterial blood gases (ABGs), requir-
ing an arterial catheter and frequent blood samples, which
is challenging in children.7 Accurate and reliable nonin-
vasive methods to estimate pH or PaCO2

could allow for
more frequent ventilator changes during the acute phase of
illness to maintain permissive hypercapnia and to help in
clinical decision making.

Pulse oximetry (SpO2
) is routinely used for clinical de-

cision making,8 and clinicians change PEEP or FIO2
in

response to either PaO2
or SpO2

both in the acute phase of
illness and during weaning. However, clinicians most fre-
quently make decisions to change ventilator rate, tidal vol-
ume, or peak inspiratory pressure during the acute phase of
illness based on arterial pH or PaCO2

. The most widely used
noninvasive sensor to estimate adequacy of ventilation is
end-tidal carbon dioxide pressure (PETCO2

). However, the
relationship between PETCO2

and PaCO2
changes as a func-

tion of alveolar dead space. Additionally, estimating pH
from PETCO2

is confounded by changing metabolic acido-
sis.

At the bedside, one can estimate PaCO2
from PETCO2

using the alveolar dead-space fraction (AVDSF � [PaCO2

� PETCO2
]/PaCO2

).9 Although this is not the same as a
dead-space-to-tidal-volume ratio, which requires volumet-
ric capnography, it is a clinical surrogate.10-13 Although
one can use this value, calculated from simultaneous mea-
surement of PETCO2

and PaCO2
, to estimate future PaCO2

from a known value of PETCO2
, it will not perform well in

the setting of changing alveolar dead space, as may be the
case during the acute phase of respiratory illness. To date,
most closed-loop algorithms incorporating PETCO2

for ven-
tilator management have been applied to the weaning phase
of mechanical ventilation.14 We sought to develop a pre-
dictive algorithm to estimate pH and PaCO2

that can ac-
count for changing alveolar dead space for application
during the acute phase of illness.

We have previously demonstrated that noninvasive sur-
rogates for intrapulmonary shunt (ie, oxygen saturation
index [OSI] or SpO2

/FIO2
) are correlated with changes in

AVDSF.8,9 We hypothesize that incorporating noninvasive
measures of intrapulmonary shunt, noninvasive continu-
ously available values from the ventilator, and previously
known values from the ABGs will permit development of
a predictive algorithm to estimate PaCO2

and pH accu-
rately. Such an algorithm could be incorporated into a
computer-ventilator protocol to encourage lung-protective
behavior and permissive hypercapnia for children with lung
injury.

Methods

We developed and tested algorithms using data sets from
previous studies on children with acute hypoxemic respi-

ratory failure.1,8,9,15 We constructed data sets with simul-
taneous measurements of arterial pH, PaCO2

, PaO2
, pulse

oximetry (when SpO2
was � 97%), PETCO2

(measured via
mainstream, with the same adapter size for all children as
per ICU standards), and ventilator settings (mode, venti-
lator rate, peak inspiratory pressure, PEEP, exhaled tidal
volume (mL/kg), and FIO2

). We created composite vari-
ables for deficits in oxygenation, including the OSI (mean
airway pressure � FIO2

� 100/SpO2
) and SpO2

/FIO2
. We ex-

cluded measurements if there was a leak around the en-
dotracheal tube of � 20%,16 if it had been � 24 h since the
previous ABG, or if there was only one ABG for an in-
dividual subject. The first ABG attained for each subject
was used as baseline, and the algorithms generated esti-
mates for pH and PaCO2

at the time of subsequent ABGs.
Predicted values for pH and PaCO2

were compared with
actual measured values. The study was approved by the
Committee on Clinical Investigation at Children’s Hospi-
tal Los Angeles with a waiver of informed consent (CCI-
09-00126 and CCI-09-00287).

Data Set 1: Single-Center Data Set

We assembled this data set from a single-institution
retrospective study. Children (� 18 y of age) were in-
cluded in this study if they were intubated and mechani-
cally ventilated with at least one PaO2

/FIO2
� 300 after in-

tubation. Children with left ventricular dysfunction or
cyanotic congenital heart disease were excluded. We have
previously published the methods regarding data collec-
tion, subject characteristics, and ventilator support.1,15 We
extracted data from the electronic medical record, time-

QUICK LOOK

Current knowledge

Ventilator protocols based on measurements of arterial
blood gases have proven useful in the management of
pediatric hypoxemic respiratory failure. Accurate non-
invasive measurements of arterial carbon dioxide could
allow ventilator changes to optimize lung-protective
ventilation without blood gas analysis.

What this paper contributes to our knowledge

In a group of mechanically ventilated pediatric patients
with hypoxemic respiratory failure, a predictive model
to estimate arterial carbon dioxide using the previously
observed relationship between end-tidal carbon dioxide
and PaCO2

or pH predicted PaCO2
within � 6 mm Hg.

The utility of these models in replacing arterial blood
gases remains to be determined.

NONINVASIVE ESTIMATES OF pH AND PaCO2

RESPIRATORY CARE • AUGUST 2014 VOL 59 NO 8 1249

RESPIRATORY CARE Paper in Press. Published on July 15, 2014 as DOI: 10.4187/respcare.02806

Copyright (C) 2014 Daedalus Enterprises ePub ahead of print papers have been peer-reviewed, accepted for publication, copy edited 
and proofread. However, this version may differ from the final published version in the online and print editions of RESPIRATORY CARE



ordered per subject. We extracted the closest charted value
for SpO2

and PETCO2
, which was at most 1 h before a study

ABG. We have previously used this methodology to dem-
onstrate that OSI, AVDSF, and SpO2

/FIO2
correlate with

mortality.9

Data Set 2: Multi-Center Data Set

We assembled this data set from a 6-center prospective
study in children. Children (�18 y of age) were included
in this study if they were intubated and mechanically ven-
tilated with an indwelling arterial line and SpO2

� 97%.
Children with left ventricular dysfunction or cyanotic con-
genital heart disease were excluded. We have previously
published the methods regarding data collection, subject
characteristics, and ventilator support.8 SpO2

and PETCO2

were recorded prospectively precisely at the time of the
ABG, with concurrent ventilator settings. Therefore, un-
like with the single-center data set, PETCO2

, SpO2
, ventilator

settings, and ABG results were simultaneous. ABG values
were not recorded if the pulse oximetry waveform was
inadequate or if the subject had received endotracheal tube
suctioning or invasive procedures for 30 min before the
blood gas. PETCO2

was recorded when available as part of
routine care. PETCO2

was not used routinely for all venti-
lated subjects in some of the study ICUs.

Analysis

We report the results of the statistical models trained on
data set 1 and tested on data set 2. To predict both PaCO2

and pH, we created 2 models. The first models used the
previous simultaneous values for PaCO2

and PETCO2
to cal-

culate AVDSF, which was used to estimate the expected
current value for PaCO2

, based on a new PETCO2
. We used

AVDSF instead of the difference between PaCO2
and PETCO2

to control for proportionality inaccuracies as PaCO2
in-

creased. The first model for pH used this estimate for
PaCO2

with the serum bicarbonate from the previous ABG
to predict pH using the Henderson-Hasselbalch equation.

The second models were generated using a multivariate
gaussian process (MGP), a machine-learning technique. A
gaussian process is a probability distribution over a func-
tion. The joint values of the function at any subset of times
have a multivariate normal distribution, defined by its mean
and covariance function. We used a squared-exponential
covariance function. The resulting process can be thought
of as a generalization of a Bayesian linear regression model
applied to higher dimensions. The covariance function of
an MGP is represented as a matrix:

C�t,t	
 � cov�F�t
,F�t	
� � Rnxn,

where the element C(t,t	)ij is the correlation between vari-
able i at time t and variable j at time t	. We used a sepa-
rable model,

C�t,t	
 � r�t,t	
S,

where r(t,t	) is the temporal covariance between 2 time
points, and S � Rnxn is the covariance matrix between the
variables. For an offset of observation times t1,t2, . . . tT,
the resulting observations are jointly gaussian with a co-
variance matrix of K � RnTxnT. We exploited the separable
nature of our model and the simultaneity of the observa-
tions to avoid explicit computations with such a large ma-
trix. We estimated the covariance matrix S from the train-
ing data (data set 1).

When testing on data set 2, we assumed we knew the
measurements for all components except for the current
values of PaCO2

and pH. We predicted the mean and co-
variance of the marginal distributions of PaCO2

and pH at
the current time given all known measurements for all
components up until and including the current time.

Additional Models

In addition to the AVDSF model, we computed a model
based on minute ventilation, which is often calculated at
the bedside (estimates the current PaCO2

from the current
minute ventilation and previous PaCO2

and minute ventila-
tion). It did not perform as well as AVDSF, so the results
are not shown. We tested 2 additional models to account
for changing dead space, including hierarchical linear re-
gression and continuous time-based Bayesian network,17

but they were not superior to the MGP model, so the
results are not shown. We have previously presented one
of these models in abstract form.18

Outcome Measures

Our primary outcome was the accuracy of different al-
gorithms to predict pH and PaCO2

. To evaluate these out-
comes, we generated 80% and 95% prediction intervals
around the point estimate for pH and PaCO2

. The purpose of
this outcome was to assess whether the model could gen-
erate estimates that fall into a range that may be acceptable
in certain clinical scenarios 80% or 95% of the time. To
mimic the decisions a ventilator protocol would make, we
binned observed and predicted values. PaCO2

was binned:
� 35, 35–60, and � 60 mm Hg. pH was binned using
guidance from the ARDS Network protocol: � 7.30, 7.30–
7.44, � 7.45.1,4 We report percent agreement between ob-
served versus predicted bins, kappa statistics, and 80% and
95% prediction intervals for PaCO2

or pH within each of the
predicted bins. We also report the percentage of observa-
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tions that fall within Clinical Laboratory Improvement
Amendments (CLIA) standards for PaCO2

(the greater of
� 5 mm Hg or 8%) and pH (� 0.04).19

Results

Of the 398 children enrolled in the single-center retro-
spective study (data set 1), 274 met inclusion criteria, with
SpO2

� 97% and PETCO2
results available at most 1 h be-

fore the ABG. Of the 103 children without cyanotic con-
genital heart disease enrolled in the multi-center study
(data set 2), 83 met inclusion criteria, with PETCO2

data
available at the time of the ABG. Hence, this training data
set (data set 1) had 2,386 observations (aligned PETCO2

,
SpO2

, ABG, and ventilator data) from 274 children. The
testing data set (data set 2) had 658 observations from 83

children. In general, the data sets were similar with respect
to disease severity, blood gas parameters, and ventilator
support. The subjects had moderate-to-severe lung injury,
with a median FIO2

of 0.6 (interquartile range of 0.4–0.8),
a median PaO2

/FIO2
of 127 (interquartile range of 86–192),

Table 1. Descriptive Statistics of Training and Testing Data Sets

Training
Data Set

Testing
Data Set

Subjects, n 274 83
No. of observations 2,386 658
No. of observations per subject,

median (IQR)
5 (2–11) 4 (2–8)

Age, mo, median (IQR) 17 (8–36) 36 (5–134)
Weight, kg, median (IQR) 4.6 (1.1–11.6) 13.5 (5.0–35.9)
Female, n (%) 115 (42) 27 (33)
Arterial blood gas, median (IQR)

pH 7.37 (7.30–7.44) 7.42 (7.35–7.46)
PaCO2

, mm Hg 49 (41–60) 51 (44–63)
PaO2

, mm Hg 72 (61–88) 69 (61–81)
Time between ABGs, h 6.4 (3.6–11.7) 6.5 (2.0–12.4)

Noninvasive support
SpO2

95 (92–97) 94 (92–96)
PETCO2

, mm Hg 38 (31–45) 40 (35–47)
Time between PETCO2

and
ABG, min

28 (20–46) Simultaneous

Ventilator settings
Peak inspiratory pressure, cm H2O 30 (25–35) 30 (26–37)
PEEP, cm H2O 10 (6–12) 8 (5–10)
Mean airway pressure, cm H2O 16 (12–20) 16 (13–20)
FIO2

0.60 (0.41–0.80) 0.55 (0.43–0.63)
Exhaled tidal volume, mL/kg 7.2 (5.8–8.8) 9 (7–11)
Ventilator frequency (breaths/min) 20 (16–26) 18 (16–24)

Lung disease severity
Oxygen saturation index 10 (6–16) 9.5 (6.2–14)
Oxygenation index 12.6 (6.7–22.0) 12.6 (7.7–18.8)
SpO2

/FIO2
162 (119–218) 166 (145–216)

PaO2
/FIO2

127 (86–192) 130 (95–178)
AVDSF (�PaCO2

� PETCO2
�/PaCO2

) 0.24 (0.14–0.34) 0.22 (0.15–0.30)

IQR � interquartile
ABG � arterial blood gas
PETCO2 � end-tidal carbon dioxide pressure
AVDSF � alveolar dead-space fraction Fig. 1. A: Observed versus predicted values of PaCO2

based on the
alveolar dead-space fraction equation to estimate PaCO2

from the
current value of PETCO2

, knowing the previous relationship be-
tween PaCO2

and PETCO2
. Red bounds are the 80% prediction in-

tervals (PI) of � 7 mm Hg, and green bounds are the 95% predic-
tion intervals of � 13 mm Hg. Shaded boxes represent the low,
normal, and high bins. The points that lie in the shaded boxes
would be classified into the correct bin (89% agreement,
kappa � 0.76). B: Observed versus predicted values of PaCO2

based
on the multivariate gaussian process model to estimate PaCO2

from
PETCO2

, ventilator support, and previous known values of pH and
PaCO2

. Red bounds are the 80% prediction intervals of � 6 mm Hg,
and green bounds are the 95% prediction intervals of � 11 mm Hg.
Shaded boxes represent the low, normal, and high bins. The points
that lie in the shaded boxes would be classified into the correct
bins (91% agreement, kappa � 0.80).
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and a median oxygenation index of 12.6 (interquartile range
of 6.7–22) in data set 1. Results for data set 2 were similar
(Table 1). The median time between observations (ABGs)
was 6.5 h in both data sets (Table 1).

Model Training (Data Set 1)

The model was trained (parameters were estimated) on
data set 1. Variables included in the model were PETCO2

,
OSI, peak inspiratory pressure, PEEP, ventilator rate, tidal
volume, minute ventilation, an interaction term of
PETCO2

/min of ventilation, dynamic compliance of the re-
spiratory system, and previous values for pH, PaCO2

, and
PETCO2

. Other variables considered but not used in the
model were pressure support and SpO2

/FIO2
. This is be-

cause pressure support varied little (the value was almost
always 10 cm H2O) and SpO2

/FIO2
was included in the

calculation of OSI, which was included in the model.

Prediction of PaCO2
in the Testing Data Set

(Data Set 2)

We constructed a baseline model to predict PaCO2
using

the previous AVDSF with the current PETCO2
. The pre-

dicted values were on average 0.3 � 7.2 mm Hg
(mean � SD) higher than the observed values. Overall,
67.5% of the predicted PaCO2

would fall within CLIA stan-
dards (greater of � 5 mm Hg or 8% difference) against the
measured PaCO2

. Eighty percent of the predicted values
were within � 7 mm Hg of the observed values, and 95%
were within � 13 mm Hg (Fig. 1A). When binning the
observed and predicted PaCO2

, the overall agreement was
89%, with a kappa of 0.76 (Table 2). The accuracy was
best in the normal or low PaCO2

bins, where 80% of the
predicted values were within � 6 mm Hg of the observed
values, and 95% were within � 12 mm Hg (Table 3 and
Fig. 2A).

The MGP model derived from data set 1 performed
slightly better than the baseline model using AVDSF. The
predicted values were on average 0.02 � 6.1 mm Hg
(mean � SD) higher than the observed values. Overall,
73.6% of the predicted PaCO2

would fall within CLIA stan-
dards against the measured PaCO2

. For the MGP model,
80% of the predicted values were within � 6 mm Hg of
the observed values and 95% were within � 11 mm Hg
(see Fig. 1B). When binning the observed and predicted
PaCO2

, the overall agreement was 91%, with a kappa of
0.80 (see Table 2). Within each PaCO2

bin, the prediction
intervals were narrower than with the AVDSF model, and
in the normal PaCO2

bin, 80% of the predicted values were
within � 5 mm Hg of the observed values, and 95% were
within � 10 mm Hg. In the low PaCO2

bin, 80% of the

predicted values were within � 3 mm Hg of the observed
values, and 95% were within � 4 mm Hg (see Table 3 and
Fig. 2B).

Table 2. Observed Versus Predicted Bins of PaCO2
Generated From

the AVDSF and MGP Models for PaCO2

Predicted PaCO2

Actual PaCO2

Total� 35
mm Hg

35–60
mm Hg

� 60
mm Hg

AVDSF model
� 35 mm Hg 13 (52) 12 (48) 0 25 (4)
35–60 mm Hg 5 (1) 402 (93) 26 (6) 433 (66)
� 60 mm Hg 0 30 (15) 170 (85) 200 (30)
Total 18 444 196 658

MGP model
� 35 mm Hg 8 (73) 3 (27) 0 11 (2)
35–60 mm Hg 10 (2) 426 (92) 30 (6) 466 (71)
� 60 mm Hg 0 15 (8) 166 (92) 181 (30)
Total 18 444 196 658

The overall agreement for the alveolar dead-space fraction (AVDSF) model was 89% with a
kappa of 0.76 compared with 91% with a kappa of 0.80 for the multivariate gaussian process
(MGP) model. The values in parentheses are percentages calculated across the rows to
represent the percentage of predicted values in which the actual PaCO2 fell in each bin. For
example, for the AVDSF model, PaCO2 was predicted to be between 35 and 60 mm Hg 433
times, and 402 (93%) of these times, the actual PaCO2 was also between 35 and 60 mm Hg.
The MGP model has better agreement between observed and predicted PaCO2 bins than the
AVDSF model, particularly when PaCO2 is estimated to be � 35 or � 60 mm Hg.

Table 3. The 80% and 95% PIs for the AVDSF and MGP Models
to Predict PaCO2

and the AVDSF Model Using the
Henderson-Hasselbalch Equation and the MGP Model to
Predict pH

AVDSF Model MGP Model

80% PI 95% PI 80% PI 95% PI

Predicted PaCO2

� 35 mm Hg 6 12 3 4
35–60 mm Hg 6 12 5 10
� 60 mm Hg 9 17 8 15

AVDSF/Henderson-
Hasselbalch Model MGP Model

80% PI 95% PI 80% PI 95% PI
Predicted pH

� 7.30 0.12 0.24 0.10 0.15
7.30–7.44 0.06 0.10 0.05 0.10
� 7.45 0.06 0.12 0.05 0.07

For the alveolar dead-space fraction (AVDSF) model, when PaCO2 is between 35 and
60 mm Hg, 80% of predicted values for PaCO2 would fall within � 6 mm Hg of the observed
values. For the multivariate gaussian process (MGP) model, the prediction intervals are
narrower than the AVDSF model in all 3 ranges of predicted PaCO2. For the AVDSF model
using the Henderson-Hasselbalch equation, when pH is between 7.30 and 7.44, 80% of
predicted values for pH would fall within � 0.06 of the observed values. For the MGP model,
the prediction intervals are narrower than the Henderson-Hasselbalch model in all 3 ranges of
predicted pH.
PI � prediction interval
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Prediction of pH in the Testing Data Set (Data Set 2)

We used the predicted PaCO2
from the AVDSF model

with the calculated serum bicarbonate from the previous
ABG with the Henderson-Hasselbalch equation to predict
pH. The predicted values were on average 0.004 � 0.064
(mean � SD) lower than the observed values. Overall,

59.3% of the predicted pH would fall within CLIA stan-
dards (� 0.04) against the measured pH. Using this model,
80% of the predicted pH values were within � 0.07 of the
observed values, and 95% were within � 0.13 (Fig. 3A).
When binning the observed and predicted pH, the overall
agreement between the observed and predicted bins was
70%, with a kappa of 0.48 (Table 4). The best accuracy

Fig. 2. A: Bland-Altman plot demonstrating mean bias and 95%
limits of agreement as a function of each PaCO2

bin for the alveolar
dead-space fraction model. For PaCO2

� 35 mm Hg, the mean bias
was � 2.69 (95% limits of agreement, � 11.8); for PaCO2

� 35–60
mm Hg, the mean bias was �0.5 (95% limits of agreement, � 11.1);
and for PaCO2

� 60 mm Hg, the mean bias was 0.6 (95% limits of
agreement, � 19.5). B: Bland-Altman plot demonstrating mean
bias and 95% limits of agreement as a function of each PaCO2

bin
for the multivariate gaussian process model. For PaCO2

� 35 mm
Hg, the mean bias was �4.0 (95% limits of agreement, � 9.0); for
PaCO2

� 35–60 mm Hg, the mean bias was �0.8 (95% limits of
agreement, � 8.7); and for PaCO2

� 60 mm Hg, the mean bias was
2.1 (95% limits of agreement, � 16.6). The vertical dashed lines
denote each PaCO2

bin, the thick black line shows the mean, and
the red dashed lines denote 95% limits of agreement.

Fig. 3. A: Observed versus predicted values of pH based on the
alveolar dead-space fraction equation to estimate PaCO2

and using
the previous calculated bicarbonate value to plug into the Hen-
derson-Hasselbalch equation. Red bounds are the 80% prediction
intervals (PI) of � 0.07, and green bounds are the 95% prediction
intervals of � 0.13. Shaded boxes represent the low, normal, and
high bins. The points that lie in the shaded boxes would be clas-
sified into the correct bins (70% agreement, kappa � 0.48). B:
Observed versus predicted values of pH based on the multivariate
gaussian process model to estimate pH from PETCO2

, ventilator
support, and previous known values of pH and PaCO2

. Red bounds
are the 80% prediction intervals of � 0.05, and green bounds are
the 95% prediction intervals of � 0.10. Shaded boxes represent
the low, normal, and high bins. The points that lie in the shaded
boxes would be classified into the correct bins (72% agreement,
kappa � 0.49).
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was in the normal pH bin, where 80% of the predicted
values were within � 0.06 of the observed values, and
95% were within � 0.10 (see Table 3 and Fig. 4A).

The same MGP model (trained on data set 1) was used
to predict pH for data set 2. In general, the MGP model
was slightly superior to the model using AVDSF and the
Henderson-Hasselbalch equation. The predicted values
were on average 0.002 � 0.05 (mean � SD) lower than
the observed values. Overall, 67.6% of predicted pH would
fall within CLIA standards against the measured pH. Us-
ing the MGP model, 80% of the predicted pH values were
within � 0.05 of the observed values, and 95% were within
� 0.10 (see Fig. 3B). When binning the observed and
predicted pH, the overall agreement between the observed
and predicted bins was 72%, with a kappa of 0.49 (see
Table 4). Within each pH bin, the prediction intervals were
narrower than with the Henderson-Hasselbalch model, and
in the normal pH bin, 80% of the predicted values were
within � 0.05 of the observed values, and 95% were within
� 0.10. In the high pH bin, 80% of the predicted values
were within � 0.05 of the observed values, and 95% were
within � 0.07 (see Table 3 and Fig. 4B).

Alternative Training and Testing Data Sets

We repeated the analysis using data set 2 as the training
data set and data set 1 as the testing data set. In general,

each model had larger prediction intervals and less agree-
ment between observed and predicted bins of pH and PaCO2

(data not shown).

Table 4. Observed Versus Predicted Bins of pH Generated From the
AVDSF Model Using the Henderson-Hasselbalch Equation
and the MGP Model for pH

Predicted pH
Actual pH

Total
� 7.3 7.3–7.44 � 7.45

AVDSF model using the
Henderson-Hasselbalch
equation

� 7.3 58 (60) 36 (38) 2 (2) 96 (14)
7.3–7.44 20 (6) 264 (73) 76 (21) 360 (55)
� 7.45 2 (1) 63 (31) 137 (68) 202 (31)
Total 80 363 215 658

MGP model
� 7.3 49 (77) 15 (23) 0 (0) 64 (10)
7.3–7.44 30 (7) 305 (71) 93 (22) 428 (65)
� 7.45 1 (1) 43 (26) 122 (73) 166 (25)
Total 80 363 215 658

The overall agreement for the alveolar dead-space fraction (AVDSF) model using the
Henderson-Hasselbalch equation was 70% with a kappa of 0.48 compared with 72% with a
kappa of 0.49 for the MGP model. The values in parentheses are percentages calculated across
the rows to represent the percentage of predicted values in which the actual pH fell in each
bin. For example, from the AVDSF model using the Henderson-Hasselbalch equation, the pH
was predicted to be between 7.3 and 7.44 360 times, and 264 (73%) of these times, the actual
pH was also between 7.3 and 7.44. The MGP model has better agreement between observed
and predicted pH bins than the AVDSF model, particularly when pH is estimated to be � 7.3
or � 7.45.

Fig. 4. A: Bland-Altman plot demonstrating mean bias and 95%
limits of agreement as a function of each pH bin based using the
alveolar dead-space function equation to estimate PaCO2

and the
previous calculated bicarbonate value to plug into the Henderson-
Hasselbalch equation to estimate pH. For pH � 7.3, the mean bias
was �0.017 (95% limits of agreement, � 0.17); for pH between
7.3 and 7.45, the mean bias was 0.001 (95% limits of agreement,
� 0.115); and for pH � 7.45, the mean bias was 0.015 (95% limits
of agreement, � 0.113). B: Bland-Altman plot demonstrating mean
bias and 95% limits of agreement as a function of each pH bin for
the multivariate gaussian process model. For pH � 7.3, the mean
bias was �0.059 (95% limits of agreement, � 0.13); for pH be-
tween 7.3 and 7.45, the mean bias was 0.001 (95% limits of agree-
ment, � 0.078); and for pH � 7.45, the mean bias was 0.032 (95%
limits of agreement, � 0.072). The vertical dashed lines denote
each pH bin, the thick black line shows the mean, and the red
dashed lines denote 95% limits of agreement.
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Discussion

We have demonstrated a first step in the application of
machine-learning algorithms to estimate pH and PaCO2

to
facilitate decision making regarding ventilator manage-
ment for children with moderate-to-severe lung injury. Over
the entire range of predicted values, these models may not
yet have an acceptable level of accuracy to replace blood
gas sampling. However, these algorithms may be useful in
certain clinical scenarios such as decreasing potentially
injurious ventilator settings for children who fall in the
over-ventilated range through a protocol with standardized
ventilator decisions. With model refinement, it may be-
come more clinically acceptable in other scenarios. Fur-
thermore, although models that use previous known rela-
tionships between PETCO2

and PaCO2
perform reasonably

well, we can modestly improve the accuracy by incorpo-
rating noninvasive markers of oxygenation as well as
changes to ventilator settings. It may be that these are
surrogates for changes in alveolar dead space. Our MGP
model predicts PaCO2

with 80% prediction intervals of
� 6 mm Hg and pH with 80% prediction intervals of
� 0.05. It performed best in the middle or over-ventilated
range of pH and PaCO2

. For example, if the model pre-
dicted PaCO2

to be 50 mm Hg, 80% of the time, the actual
PaCO2

(if one were to draw an ABG) would be between 45
and 55 mm Hg, and 95% of the time, it would be between
40 and 60 mm Hg. For pH in the over-ventilated range, for
example, if the model predicted pH to be 7.45, 80% of the
time, the actual pH would be between 7.4 and 7.5, and
95% of the time, it would be between 7.38 and 7.52.
Overall, the model would predict PaCO2

with CLIA-accept-
able equivalence to a blood gas machine 74% of the time
and pH 67% of the time.

Some may believe that the confidence in these predic-
tions is not adequate for clinical decision making. Al-
though in medicine we strive for 95% certainty for statis-
tical significance, clinical decisions are often based on
much more uncertainty than 20%. For example, pulse oxi-
metry in a low range (� 87%) may have 95% prediction
intervals greater than � 10% against co-oximetry.20 For
example, if the pulse oximeter reading is 85%, then 50%
of the time, the actual SaO2

on co-oximetry would lie be-
tween 75 and 83%, but for 95% certainty, the SaO2

could
range from 64 to 89%. Nevertheless, pulse oximetry in a
low range is routinely used for clinical decision making
for children with cyanotic congenital heart disease. Al-
though SpO2

is more accurate in the range frequently seen
for children with ALI, this example is meant to illustrate
that the parameters practitioners routinely use for clinical
decisions relating to mechanical ventilation may have more
uncertainty than 20%. As such, 80% certainty that the
PaCO2

is in a range of 10 mm Hg or that the pH is in a range
of 0.1 (as seen in our model in the normal or over-venti-

lated range) may be acceptable in certain situations to
facilitate a clinical decision such as decreasing potentially
injurious ventilator settings when the value is predicted to
be normal or high, embracing a permissive hypercapnia
strategy for ALI.

We believe that there are several potential applications
of these algorithms. First, noninvasive estimates of PaCO2

or pH may decrease the number of ABGs. If clinicians can
be 80% confident that the PaCO2

lies within a range of
10 mm Hg or that the pH lies within a range of 0.1, they
may be willing to forgo an ABG and instead change the
ventilator. This is likely applicable in the over-ventilated
range for patients with ALI, encouraging more continual
lung-protective behavior. Leaving the decision to act on
the estimated open loop allows providers flexibility re-
garding their comfort with the reported level of certainty,
as there may be scenarios when this level of accuracy is
not acceptable.

Second, these continuously available estimates may fa-
cilitate standardized assessment of ventilator support and
adherence to ventilator protocols. For example, an open-
loop computer protocol could be developed that requires
an assessment every 2–4 h. The decision support tool
could display an estimate for the predicted pH, with a
prediction interval. Clinicians could accept or reject the
protocol’s recommendation or obtain an ABG if they are
uncomfortable with the potential error in the prediction at
that time point. As we see in this analysis, the majority of
blood gas values for children with ALI lie in a normal
range, where the model performs well (� 90% agreement
in PaCO2

bins). We have previously demonstrated there are
many lost opportunities to be lung-protective when clini-
cians do not wean the ventilator even when settings are
high and the pH is normal or high.1 A continuously avail-
able estimate of pH or PaCO2

may make clinicians more
willing to wean ventilator settings because they can more
closely monitor the effects of their change. However, as is
clear from the analysis, these algorithms have limitations,
particularly in the low pH ranges, where there is substan-
tially more uncertainty in the actual pH seen in the limits
of agreement as well as in the Bland-Altman plots.

We specifically developed this model using data from
children with lung injury. We felt it important to start with
this population because it represents a more difficult sce-
nario, as children with lung injury have dynamic and chang-
ing degrees of dead space. It is likely that both models that
assume no change in dead space (such as the AVDSF
model) and those that try to capture surrogates for chang-
ing dead space (ie, the MGP model) would perform even
better in children with minimal or no lung injury. This
should be tested. The median AVDSF in these 2 data sets
was 
0.23, in line with our previous publication on AVDSF
demonstrating that such values are independently associ-
ated with mortality.9 As such, these data sets represent the
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lung-injured children we often take care of in our ICUs,
for whom lung-protective ventilation has the potential to
improve outcomes.

Although the predictive ability of the MGP algorithm is
fair, it is not ready for a closed-loop system (where the
provider’s feedback is not required to change the ventila-
tor) and will not replace blood gases. In fact, these models
are reliant upon blood gasses for their development and
calibration and are meant to facilitate decision making at
times between blood gasses. This analysis was meant as a
first step; the model must be refined with additional data
and tighter prediction intervals before the loop on venti-
lation is ready to be closed.

To our knowledge, this is the first application of gauss-
ian processes, a machine-learning technique, to predict pH
or PaCO2

. However, machine-learning techniques have been
used extensively in medicine,21 in gene expression stud-
ies,22-24 for classification of cardiac arrhythmias,25 for pre-
dicting morbidity after coronary artery bypass surgery,26

and for predicting when weaning from ventilator support
should begin.27 Gaussian processes have been applied in
adults with ALI to model the pressure-volume curve to
titrate PEEP.28 These techniques have been used in indus-
tries outside of medicine for years, and although the meth-
ods may appear complicated, the algorithms are not com-
putationally challenging. Therefore, they can easily be
applied in most ICUs using basic computers.

There are limitations to our analysis. First, this repre-
sents secondary analysis of data, which is inherently lim-
ited in reliability and accuracy. Second, the algorithms
performed worse when trained on the multi-center data set
and tested on the single-center data set. We believe that
this is a function of the simultaneous assessments of SpO2

,
PETCO2

, and ABG values in the prospective multi-center
data set compared with the retrospective single-center data
set. Because the real-time application of the algorithm will
be with controlled, continuously available data, we believe
that it will more likely perform as it did with the multi-
center data. This needs to be tested. Third, we elected not
to split the multi-center data set into training and testing
data because we were worried about sample size. Fourth,
the testing data set was relatively small (84 subjects), and
the algorithm should be evaluated in another group of
subjects. Fifth, there were no hemodynamic data, which
will also affect changes in dead space. Sixth, the MGP
model had a more visible proportional bias on Bland-Alt-
man analysis than the AVDSF model and may perform
differently when applied to a different validation data set.
This should be tested. Seventh, although application of
such an algorithm may have an intention to reduce the
frequency of blood gasses, it is possible that the early
phases of deployment of such an algorithm may prompt
clinicians to get more blood gases to verify what the al-
gorithm is displaying. In all likelihood, such a phenome-

non would be transient, and once clinicians became more
comfortable with its accuracy, they would draw fewer blood
gases.

We may be able to improve model accuracy with tem-
porally continuous values for PETCO2

and SpO2
, but this

may require alternative analytic methodologies to reduce
the dimensionality of the data. We may also be able to
improve the accuracy by incorporating hemodynamic vari-
ables such as heart rate and blood pressure. Finally, these
algorithms will likely perform better in less acute phases
of mechanical ventilation, such as weaning, when dead
space changes less frequently. These hypotheses need to
be tested.

Conclusions

Noninvasive, continuously available measurements and
ventilator settings may be helpful for predictive algorithms
that estimate PaCO2

and pH for children with hypoxemic
respiratory failure. The current level of accuracy offers
some applications, particularly for standardizing decisions
about decreasing ventilator support in line with lung-pro-
tective strategies when the pH or PaCO2

is predicted to be
normal or over-ventilated. With continued model refine-
ment, it is possible that these algorithms can be used for
decision support by incorporating them into computer-
ventilator protocols. These algorithms should be refined
and tested with additional prospectively gathered data from
mechanically ventilated children with a wide range of se-
verity of lung injury and hemodynamic support.
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