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During the last few decades, attention has increasingly focused on noninvasive ventilation (NIV) in
the treatment of chronic respiratory failure. The University of Leuven and the University Hospitals
Leuven therefore chose this topic for a 2-day working group session during their International
Symposium on Sleep-Disordered Breathing. Numerous European experts took part in this session
and discussed (1) NIV in amyotrophic lateral sclerosis (when to start NIV, NIV and sleep, secretion
management, and what to do when NIV fails), (2) recent insights in NIV and COPD (high-intensity
NIV, NIV in addition to exercise training, and NIV during exercise training), (3) monitoring of NIV
(monitoring devices, built-in ventilator software, leaks, and asynchronies) and identifying events
during NIV; and (4) recent and future developments in NIV (target-volume NIV, electromyogra-
phy-triggered NIV, and autoregulating algorithms). Key words: noninvasive ventilation; amyotrophic
lateral sclerosis; chronic obstructive pulmonary disease; sleep; exercise training; sleep monitoring.
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Introduction

Over the last 2 decades, long-term noninvasive ventila-
tion (NIV) delivered by a nasal or oronasal mask has been

well established in the treatment of patients with chronic
hypercapnic respiratory failure arising from different eti-
ologies.1,2 COPD, restrictive thoracic diseases, obesity-hy-
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poventilation syndrome, and neuromuscular disorders are
the main indications for long-term NIV.1-4 More recently,
adaptive servo-ventilation (ASV) devices were developed
to treat periodic breathing due to heart failure or other
conditions associated with central sleep apnea.

Therefore, in February 2014, the University of Leuven
and the University Hospitals Leuven organized a 2-day
working group session on NIV to which numerous Euro-
pean experts in the field of NIV were invited. The aim was
to review recent studies on NIV and to share insights and
future directions on 4 major topics: amyotrophic lateral
sclerosis (ALS), COPD, interpretation of NIV signals, and
recent and future developments in NIV.

ALS

When to Start NIV?

Respiratory failure typically develops in the late stages
of ALS, being the presenting feature in only 3% of pa-
tients.5 Respiratory symptoms include progressive dyspnea,
orthopnea, nightmares, fragmented sleep, morning head-
aches, daytime sleepiness, and cough inefficacy. Inspira-
tory and expiratory muscle weakness can be assessed by
routine respiratory function measurements.6,7 Patients with
ALS usually die from hypoventilation,8 with hypoxemia
and hypercapnia often precipitated by respiratory infec-
tions, aspiration pneumonia, or bronchial impaction.9

The first study of NIV in ALS reported that continuous
daily use delayed or even eliminated the need for a tra-
cheostomy.10 Two years later, Pinto et al11 published a
prospective controlled trial with ALS subjects with respi-
ratory failure and demonstrated that total survival and sur-
vival from respiratory symptom onset were better in sub-
jects with ALS receiving NIV compared with palliative
care. Two other studies described an increased survival
with NIV use of � 4 h/d as opposed to those using less or
refusing NIV.12,13

In 2006, Bourke et al14 published the only prospective
randomized controlled trial (RCT) of NIV in ALS. Sub-
jects began on NIV when presenting with either orthopnea
and a predicted maximum inspiratory pressure of � 60%
or symptomatic hypercapnia. In addition to increasing sur-
vival, NIV also improved quality of life (QOL), probably
due to reduced nocturnal hypoventilation symptoms.13-15

Subanalysis suggested that survival and QOL significantly
improved only in ALS subjects without bulbar involve-

ment. In subjects with marked bulbar involvement, most
authors report lower tolerance to NIV,13-16 possibly related
to orofacial paresis, sialorrhea, and inefficient cough. Tech-
nical improvements and sialorrhea treatment might im-
prove tolerance.

The timing to initiate NIV in patients with ALS is cru-
cial due to the risks of rapid onset of respiratory failure,
sudden death, and unanticipated invasive mechanical ven-
tilation.16 The need for ventilatory support must be dis-
cussed with the patients and their families. The patient’s
decision must be respected.17 Mechanisms of action of
NIV on symptoms and gas exchange may include: resting
of respiratory muscles, resetting central CO2 receptors,
improving respiratory mechanics, increasing pulmonary
compliance, and resolving atelectatic segments. Over the
last 15 years, 2 reports suggested that early NIV treatment
could have additional benefits.18,19 Carratù et al20 found no
significant difference in the 1-y survival rate between sub-
jects not receiving NIV with an FVC of � 75% of pre-
dicted and those receiving NIV for � 4 h/d with an FVC
of � 75% of predicted.

The first recommendations to initiate NIV were made in
1999 by the American Academy of Neurology (AAN) and
the American College of Cardiology.3,21 In 2009, AAN
criteria were updated.22 NIV was recommended in the pres-
ence of nocturnal hypoventilation symptoms (orthopnea,
frequent awakenings, morning headaches, excessive day-
time sleepiness, and inefficient sleep) plus one of: an FVC
of � 50% of predicted, a maximum inspiratory pressure of
� 60 cm H2O, a sniff nasal inspiratory pressure of
� 40 cm H2O, or abnormal nocturnal oximetry. Recent
European guidelines recommend NIV adaptation in ALS
patients with one or more symptoms of respiratory failure
(dyspnea, tachypnea, orthopnea, hypoxemia, sleep distur-
bances, morning headaches, respiratory accessory muscle
usage, paradoxical respiration, daily fatigue, or sleepiness)
and one or more objective parameters similar to the AAN
criteria, except for an FVC of � 80% of predicted and the
presence of hypercapnia.17

There is a general agreement that NIV must be initiated
in the presence of respiratory symptoms in patients with
ALS. However, there are still no clear recommendations
about when to start NIV in asymptomatic ALS patients
with abnormal respiratory tests. The decision must con-
sider patients’ will and comfort, QOL and survival bene-
fits, health-care and caregiver support, and NIV costs.

NIV and Sleep

Sleep is often disturbed in patients with ALS.23-25 Lo
Coco et al26 found poor sleep quality in 59% of subjects
with ALS before the occurrence of hypoventilation. In the
presence of diaphragmatic dysfunction, rapid-eye-move-
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ment sleep decreased, possibly as a defense mechanism
against alveolar hypoventilation.

Few studies have evaluated the effect of NIV on sleep
quality in subjects with ALS, and most of these studies
were based on subject-reported outcomes.14,15,27-29 NIV
improved sleep quality shortly after initiation27,29 and up
to 10 months27 or longer,15,29 whereas daytime sleepiness
decreased.15,28 Subjects with bulbar involvement seemed
to be less tolerant of NIV, but subjects who tolerated NIV,
even those with severe bulbar involvement, seemed to
achieve better sleep quality.14

Katzberg et al30 used home polysomnography (PSG)
before NIV and during follow-up. NIV was titrated during
the daytime to ensure adequate mask fitting, volume, pres-
sure, and rate targets. The only improvements were an
increase in nadir SpO2

and the time spent overnight with
oxygen levels below 90%. No improvement was found in
sleep efficiency, arousal index, or sleep architecture. The
authors suggested that a more meticulous NIV titration, by
guidance with an additional PSG during NIV initiation,
could have been helpful to optimize treatment.30 The choice
of interface, ventilator settings, and the presence of bulbar
involvement could possibly influence the effect of NIV on
sleep. Atkeson et al31 found a high frequency of patient-
ventilator asynchrony with an index of 69 � 46/h of sleep
and 17% of the nocturnal recording time spent in asyn-
chrony. Once more, NIV was set up at home according to
awake efficacy. A recent study in which NIV was titrated
by in-hospital PSG with incorporation of transcutaneous
CO2 measurement showed an improved sleep efficiency,
sleep architecture, and arousal-awakening index in sub-
jects without or with mild bulbar involvement.32

The effects of leaks and bulbar involvement on sleep
quality and patient-ventilator asynchrony should be exam-
ined in future studies. Finally, the impact of reduced pa-
tient-ventilator asynchrony and enhanced sleep quality on
clinical outcomes, including survival, should be evaluated.

Cough Augmentation

A recent Italian survey reported that difficulty in clear-
ing secretions is one of the main reasons to refer subjects
with ALS to a respiratory specialist.33 The ability to clear
bronchopulmonary secretions is essential to prevent spu-
tum retention and associated complications, including lower
respiratory tract infection, which is the most common cause
of hospital admission in these subjects.34 The act of cough-
ing involves 3 main components: a deep inspiration up to
85–90% of total lung capacity, glottic closure for �0.2 s
(which requires intact bulbar function), and effective con-
traction of the expiratory muscles to generate intrapleural
pressures of � 190 cm H2O.35 If one or more of these 3
main components are impaired, coughing becomes less
effective.36 Cough can be assessed simply and noninva-

sively in this group of patients. The inspiratory and expi-
ratory components of the cough indicate the inspiratory
and expiratory muscle function. Furthermore, asking pa-
tients to repeat the letter e helps in assessing their bulbar
function. If the phonation of the letter e is normal, the
bulbar function is intact.37 The simplest way to measure
cough strength is to ask the patient to perform a cough
peak flow through a face mask attached to a flow meter. A
minimum assisted cough peak flow of 160 L/min is re-
quired to clear airway secretions.34,38,39 Patients with ALS
should be taught cough augmentation techniques when
their unassisted cough peak flow falls below 270 L/min,
aiming to prevent secretion retention,38 respiratory infec-
tion, and subsequent respiratory decompensation.40 The
consequence of a respiratory infection in these patients is
a further reduction in respiratory strength and likely dete-
rioration to the critical cough peak flow threshold of 160
L/min.34,38,39 In patients with ALS, a cough peak flow of
�330 L/min indicates a survival of � 18 months.41

Assisted cough techniques should be targeted to the
component of cough that is reduced. If sole expiratory
muscle weakness occurs, a manually assisted cough will
improve cough peak flow.42,43 In the presence of inspira-
tory weakness, the inspiratory component can be supported
with maximum insufflation capacity via a face mask at-
tached to a one-way valve and Ambu bag.44 If inspiratory
and expiratory muscle weakness occurs, the inspiratory
component can be supported with maximum insufflation
capacity, and the expiratory component can be supported
with a manually assisted cough.43 If the cough is extremely
impaired (� 160 L/min), the patient may require mechan-
ical insufflation-exsufflation. However, when bulbar func-
tion is severely impaired and maximum insufflation ca-
pacity is equal to vital capacity, the chances of improving
cough strength are poor.45 It may be appropriate in these
circumstances to consider a tracheostomy.

One study evaluating cough efficacy in ALS showed
that greater improvements in cough peak flow were seen
in non-bulbar compared with bulbar ALS subjects for both
manually assisted cough and mechanical in-exsufflation.46

Sancho et al47 reported that stable ALS subjects with a
cough peak flow of �245 L/min were able to clear secre-
tions effectively when unwell with a manually assisted
cough. However, those with a lower cough peak flow
(155 L/min) required mechanical in-exsufflation for effec-
tive airway clearance. Vitacca et al48 reduced hospital ad-
mission in subjects with ALS by implementing a protoco-
lized management approach. This included rapid access to
home mechanical in-exsufflation devices if subjects were
unable to clear secretions and improve SpO2

to � 95% on
room air with other cough augmentation techniques.

In conclusion, subjects with ALS are at high risk of
secretion retention. Routine measurements of cough peak
flow should be carried out at each clinic visit. When cough
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peak flow is � 270 L/min, cough augmentation techniques
should be taught. When cough peak flow is �245 L/min,
a manually assisted cough may be sufficient to clear air-
way secretions. When cough peak flow is low (� 160
L/min), mechanical in-exsufflation devices are required.
However, in patients with severe bulbar impairment, all
cough augmentation techniques will possibly be ineffec-
tive. Access to mechanical in-exsufflation devices is rec-
ommended when managing patients with ALS.

Invasive Ventilation

In patients with ALS, NIV and mechanically assisted
coughing may prolong survival, reduce hospitalizations,
and improve QOL.14,49 In patients with severe bulbar in-
volvement, these therapies are inadequate, and long-term
invasive ventilation may be the only option to enhance
survival. However, in most patients (30–92%), long-term
invasive ventilation is started following endotracheal in-
tubation due to a respiratory emergency.50-52 Although con-
tinuous NIV and mechanically assisted coughing may en-
able weaning from endotracheal intubation, most patients
with saliva aspiration and glottic spasticity cannot be ex-
tubated.53

Following elective or emergency tracheostomy, me-
dian survival varied from 8 to 49 months (range of
0–155 months)andwassignificantlyshorter insubjects�60y
of age.50-52,54-56 The reported overall 1-, 2-, 3-, and 5-y sur-
vival was 37–78, 45, 23, and 12%, respectively. Survival of
subjects receiving NIV followed by long-term invasive ven-
tilation was much better compared with long-term invasive
ventilation alone.

Very few studies have examined QOL in subjects with
ALS following long-term invasive ventilation. Although
these subjects frequently experienced depression, hope-
lessness, a feeling of loneliness, and loss of control, 85%
estimated their QOL as acceptable with a positive attitude
toward long-term invasive ventilation.54,57 In a question-
naire-based study, health-related quality of life (HRQOL)
scores did not differ significantly between subjects receiv-
ing NIV and those receiving long-term invasive ventila-
tion: 94% of the former and 81% of the latter would have
chosen their mode of ventilation again. Although 97% of
NIV caregivers would advise NIV, only 75% of long-term
invasive ventilation caregivers would do so. Notably, 30%
of long-term invasive ventilation caregivers rated their own
QOL lower than that of the subject.58

Although the patient’s interests are central, the impact
on the caregivers (often family members) must be taken
into account. Long-term invasive ventilation restricts the
patient to total dependence on others and often imposes a
very high burden on the caregivers. The most important
factors reported in the decision-making process are QOL,
severity of the disability, ability to return home, ability to

discontinue long-term invasive ventilation, and concern
about the family’s QOL.59 Whether to propose long-term
invasive ventilation remains a matter of debate, and there
are marked differences in practice across Europe. In Italy,
only 10% of pulmonologists chose not to initiate long-
term invasive ventilation for ALS, compared with the ma-
jority of respiratory physicians in France, Switzerland, and
The Netherlands, who encouraged shared decision making
and early advanced care planning and who tended to dis-
courage long-term invasive ventilation for ALS.33,60 De-
spite all doubts, long-term invasive ventilation may be
indicated in the following situations: non-acceptance, in-
tolerance, or ineffectiveness of NIV; failure to transfer to
NIV following invasive ventilation; ineffective noninva-
sive management of airway secretions; or severe bulbar
dysfunction with recurrent aspiration.

If professional home care is reimbursed, patients with
ALS on long-term invasive ventilation may be discharged
home.60 As most of these patients will need constant care
and supervision to provide a safe environment, staying at
home may become very expensive, with annual costs of
over $400,000.60 When insurance companies are not will-
ing to pay (anymore) and patients do not have financial
support from family, friends, and volunteers, patients are
force to decide between continued living in a nursing home
or withdrawal from long-term invasive ventilation and
death.

In conclusion, if patients with ALS want to prolong
survival, long-term invasive ventilation may become the
only option. Long-term invasive ventilation may improve
survival at the expense of a further loss of functional ca-
pabilities, prolonged suffering, and high costs and burden
of care. Apart from selected cases, long-term invasive ven-
tilation should be discouraged. Shared decision making
and advanced care planning are encouraged as early as
possible. Emergency tracheostomy should be avoided by
close monitoring of the ventilatory status and starting NIV
or mechanically assisted cough instead of intubation in the
acute care setting. There is a definite need for more studies
into the merits and burdens of long-term invasive ventila-
tion for ALS.

NIV and COPD: Recent Insights

High-Intensity NIV in COPD

Although the role of long-term NIV in the care of re-
strictive patients is undisputed, it is still a matter of debate
as to whether long-term NIV should be used for patients
with chronic hypercapnic respiratory failure arising from
COPD.1-4 As a consequence, COPD was targeted for dis-
cussions on the best ventilatory strategies to use, focusing
particularly on appropriate inspiratory pressures and backup
rates.
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In 2003, a meta-analysis concluded that 3 months of
NIV did not improve lung function, gas exchange, or sleep
efficiency in subjects with stable hypercapnic COPD.61

Four RCTs qualified to be included in this meta-analy-
sis.63-66 Overall, PaCO2

non-significantly decreased by
1.5 mm Hg.62 Therefore, long-term NIV did not measur-
ably augment alveolar ventilation. However, assisted (but
not controlled) ventilation was used, and inspiratory pos-
itive airway pressures (IPAPs) were considerably low, rang-
ing between 10 and 18 cm H2O.

Subsequently, 2 RCTs also assessed long-term outcomes
in subjects with COPD receiving NIV.67,68 Again, venti-
lator settings were comparably low. As a consequence,
physiological parameters (most importantly, PaCO2

) did not
improve. In addition, survival did not improve in one trial,67

whereas small survival improvements were reported at a
cost of reduced HRQOL in the other trial following long-
term NIV.68 Interestingly, the most recent meta-analysis
concluded that insufficient evidence is available to support
the use of routine NIV in subjects with stable COPD, but
that higher IPAPs, better adherence, and higher baseline
PaCO2

seem to impact improvements in physiology.69 Ob-
viously, ventilator settings play a predominant role when
deciding whether NIV is beneficial in stable hypercapnic
COPD.

In an attempt to maximally decrease severely elevated
PaCO2

, pressure control ventilation was used with stepwise
titration of mean IPAP up to 30 cm H2O in subjects with
chronic hypercapnic respiratory failure due to COPD.70

This technique has been described as high-intensity
NIV.71,72 Both physiological and clinical studies have fur-
ther shown that improvements in blood gases, lung func-
tion, and breathing pattern are achievable with high-inten-
sity NIV.73,74

Another important issue for patients on long-term NIV
is HRQOL. The Severe Respiratory Insufficiency Ques-
tionnaire was designed to specifically assess HRQOL in
patients receiving NIV.75-77 A multi-center trial confirmed
that HRQOL benefits, measured by the Severe Respiratory
Insufficiency Questionnaire, are substantial in patients with
COPD when NIV is instituted, and overall HRQOL ben-
efits were comparable to those for subjects with restrictive
diseases.78 Finally, an RCT using a crossover design dem-
onstrated that subjects with COPD who were familiar with
controlled NIV and high IPAPs (29 � 6 cm H2O) were
also able to use NIV while walking by placing the device
on a rollator. In this setting, oxygenation, dyspnea, and
walking distance were substantially improved when NIV
was added to supplemental oxygen.79

One study on subjects with stable hypercapnic COPD
directly compared the new concept of high-intensity NIV
(mean IPAP 29 cm H2O) with the conventional approach
using considerably lower IPAP (mean IPAP 15 cm H2O),
which has been termed low-intensity NIV.80 In this ran-

domized crossover trial, the mean treatment effect between
low- and high-intensity NIV, both used for 6 weeks at
home, was � 9 mm Hg for nocturnal PaCO2

, which served
as the primary outcome, in favor of high-intensity NIV.
Therefore, high-intensity NIV was shown to be superior to
the conventional and widely used low-intensity NIV in
terms of controlling nocturnal hypoventilation. As a con-
sequence, the novel approach of high-intensity (but not
low-intensity) NIV improved dyspnea during physical ac-
tivity, lung function, and HRQOL as specifically mea-
sured by the Severe Respiratory Insufficiency Question-
naire.

One might speculate that high-intensity NIV with con-
trolled ventilation and high IPAPs would not be nearly as
well tolerated as low-intensity NIV with assisted ventila-
tion and almost 50% lower IPAPs. However, one study
revealed the opposite to be true, as subjects spent an av-
erage of an additional 3.6 h/d on high-intensity NIV com-
pared with low-intensity NIV.80 In addition, dropouts oc-
curred only while on low-intensity (but high-intensity) NIV.
Thus, more effective ventilation achieved by more aggres-
sive forms of NIV resulted in better subject adherence,
which could be attributed to improved HRQOL and better
symptom control. However, it should be mentioned that
more days (2.5 d on average) were spent in the hospital to
acclimatize subjects to high-intensity NIV compared with
low-intensity NIV. This seems to be justified given the
clear advantages of high-intensity NIV. For this reason,
high-intensity NIV offers a new and promising therapeutic
option in the treatment of COPD patients with chronic
hypercapnic respiratory failure.

Despite these benefits, it has been argued that high-
intensity NIV may substantially increase air leaks and there-
fore lead to sleep disturbances.80 These concerns were
addressed by Dreher et al,81 who comparably measured
sleep quality, as assessed by PSG, during low- and high-
intensity NIV using a crossover approach. Again, high-
intensity NIV was reportedly superior to low-intensity NIV
regarding gas exchange, as already shown by previous
trials.70–72,80 Importantly, sleep quality was comparably
good during both approaches, with high-intensity NIV
clearly not producing impaired sleep quality. Thus, this is
further evidence to support the use of high-intensity NIV
in patients with stable hypercapnic COPD.

The most recent RCT demonstrated both substantial sur-
vival and HRQOL benefits gained by long-term NIV es-
tablished electively in subjects with COPD.82 In this study,
subjects were recruited from 36 respiratory units in Ger-
many and Austria. This was a large study, with 195 sub-
jects being randomly assigned to the NIV group (n � 102)
or the control group (n � 93). The 1-y mortality was 12%
(12 of 102 subjects) in the NIV group and 33% (31 of 93
subjects) in the control group, with a hazard ratio of 0.24
(95% CI 0.11–0.49, P � .001). The mean inspiratory pres-
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sure was 22 cm H2O. The mean backup rate was 16/min
(range of 2–24/min), and 69% of the subjects had backup
rates of 14/min or higher. However, it must be noted that
data on ventilatory pressures and backup frequencies were
available for only 83% of the subjects receiving NIV.
Nevertheless, long-term NIV was sufficient to lower ele-
vated PaCO2

and to maintain the reduced PaCO2
, with the

1-y change from baseline PaCO2
reported to be 7.4% (95% CI

�8.6 to �6.2%). There were also significant changes in
HRQOL as assessed by the 36-item Short Form question-
naire, St George Respiratory Questionnaire, and Severe
Respiratory Insufficiency Questionnaire. This study clearly
contrasts with all previous long-term trials, which may be
due to the NIV settings, which were aimed at substantially
reducing elevated PaCO2

, as has been proposed for high-
intensity NIV. In conclusion, there are now robust data to
support that long-term NIV has the potential to improve
HRQOL and long-term survival in subjects with stable
hypercapnic COPD, but physiologically efficient ventila-
tory strategies capable of improving hypercapnia are man-
datory for NIV success.82

Nocturnal Ventilatory Support in Addition to
Exercise Training

Pulmonary rehabilitation was defined by the 2013 Amer-
ican Thoracic Society/European Respiratory Society state-
ment and 2013 British Thoracic Society guidelines as an
interdisciplinary comprehensive intervention of care for
patients with chronic respiratory impairment that includes,
but is not limited to, exercise training, education, and be-
havior change. The intervention is designed to optimize
the physical and psychosocial performance and autonomy
of the patient.83,84

Numerous studies on subjects with COPD have demon-
strated that pulmonary rehabilitation improves dyspnea and
health status, and, to a lesser extent, physical activities,
self-reported activities of daily living, self-efficacy, and
medical consumption.84 Exercise training is generally con-
sidered to be the cornerstone of a pulmonary rehabilitation
program for patients with COPD and is the best way to
improve their muscle function. Improvements in skeletal
muscle function after exercise training lead to improve-
ments in exercise capacity and symptoms85 and reductions
in hospital admissions.86 The effects of pulmonary reha-
bilitation on daytime physical activity appear to be small.87

In 2000, one of the first studies investigating the value
of nocturnal NIV in addition to rehabilitation was pub-
lished.88 Forty-five subjects with severe stable COPD (mean
FEV1 1.0 L) were randomized either to a combination of
domiciliary NIV and exercise training (n � 23) or to ex-
ercise training alone (n � 22). After an 8-week training
program, a mean significant improvement of 72 m in the
shuttle walk test was found in the NIV-and-exercise-train-

ing group compared with the exercise-training-alone group.
In addition, a significant mean improvement between both
groups on the Chronic Respiratory Disease Questionnaire
of 12.3 was found, which related to a clinically important
difference. This suggested that domiciliary NIV can be
used successfully to augment the effects of rehabilitation
in severe COPD. Interestingly, this benefit was observed
while normocapnic subjects were on NIV. In addition, the
adherence to NIV was low, as the mean number of hours
of overnight use was 2.1 h, and 50% of the subjects were
on NIV for � 2 h. Although the minimum number of
hours to define adherence is not known, this is generally
considered as low.

A more recently published study investigated the ben-
efits of nocturnal ventilatory support in addition to reha-
bilitation in hypercapnic subjects.89 Seventy-two subjects
with COPD were randomly assigned to nocturnal NIV in
addition to rehabilitation (n � 37) or to rehabilitation alone
(n � 35). Outcome measurements were assessed before
and after the 3-month intervention period. Although the
primary outcome of the Chronic Respiratory Disease Ques-
tionnaire total score improved by 15.1 points with NIV
and rehabilitation, the score improved by 8.7 points with
rehabilitation alone, although the difference was not sta-
tistically significant between the groups (P � .08). How-
ever, it is unclear whether the Chronic Respiratory Disease
Questionnaire is the best questionnaire to use for subjects
with respiratory failure. In contrast, the Maugeri Respira-
tory Failure Questionnaire identified significant improve-
ments in total score and the cognition domain with the
addition of NIV. Furthermore, the addition of NIV im-
proved daytime PaCO2

(P � .01) and daily step count (mean
difference of 1,269 steps/d, P � .01). This was accompa-
nied by increased daytime minute ventilation (V̇E; mean
difference of 1.4 L, P � .001). In 2011, the long-term
results of this study were published and showed that the
benefits increased even further over time.90

A prospective observational nonrandomized study was
conducted on subjects with COPD Global Initiative for
Chronic Obstructive Lung Disease stage 4.91 Forty sub-
jects received nocturnal NIV with rehabilitation for a mean
of 29 d, and their results were compared with 40 matched
control subjects who underwent the same rehabilitation
program. Subjects in the NIV group received �8 h of
ventilation, with a mean IPAP of 17.5 cm H2O and a mean
expiratory positive airway pressure (EPAP) of 4.5 cm H2O.
Significant between-group differences were found for the
6-min walk test, FEV1, and lung hyperinflation, whereas
significant within-group differences were found for blood
gases and QOL in the NIV group. These positive effects
were also found for normocapnic subjects, suggesting that
NIV should be started early in the course of COPD.

In summary, nocturnal NIV might be an effective ad-
ditional tool to augment the benefits of rehabilitation. Al-

HOT TOPICS IN NIV

6 RESPIRATORY CARE • ● ● VOL ● NO ●

RESPIRATORY CARE Paper in Press. Published on June 30, 2015 as DOI: 10.4187/respcare.03796

Copyright (C) 2015 Daedalus Enterprises ePub ahead of print papers have been peer-reviewed, accepted for publication, copy edited 
and proofread. However, this version may differ from the final published version in the online and print editions of RESPIRATORY CARE



though positive effects have been found in several clini-
cally relevant outcomes, several issues are still open for
discussion, for example, when to start NIV, optimum pres-
sure settings, and defining the primary goals of NIV. As
long as many of these issues remain unsolved, in combi-
nation with the lack of adequately powered studies, noc-
turnal NIV cannot be advocated as part of routine man-
agement of patients with COPD who start a rehabilitation
program.

Ventilatory Support During Exercise Training

It is generally accepted that training intensity is crucial
to achieve a true physiological benefit in patients: mini-
mum increases in maximum exercise capacity are observed
following low-intensity exercise training, whereas high-
intensity training improves maximum and submaximum
exercise and induces cardiorespiratory and peripheral mus-
cle adaptations. Extreme breathlessness and muscle fa-
tigue may limit the ability of patients with severe COPD to
train at the recommended high levels of exercise. This may
prevent the intended physiological improvement for these
patients. Additional interventions in standard multidisci-
plinary pulmonary rehabilitation have been proposed to
maximize the effect of the intervention in patients with
severe COPD. The most frequently used adjuncts are op-
timization of bronchodilator therapy, inspiratory muscle
training, supplementation with anabolic steroids and growth
hormone, administration of oxygen and helium-hyperoxic
gas mixtures, breathing strategies, neuromuscular electri-
cal stimulation, walking aids, and NIV via mask or mouth-
piece.83,84,92

Laboratory evidence shows that CPAP, pressure support
ventilation, and proportional assist ventilation improve
breathlessness and exercise tolerance in subjects with
COPD by unloading the respiratory muscles while increas-
ing ventilation.93,94 A subsequent systematic review con-
cluded that NIV application during exercise in subjects
with COPD resulted in immediate improvements in exer-
tional dyspnea and exercise endurance.95 This effect was
obtained mainly with pressure support ventilation, with
smaller effects with CPAP and proportional assist venti-
lation.

These immediate effects of NIV on exercise-related dys-
pnea and exercise endurance have prompted several re-
search groups to investigate the effects of NIV during
training sessions on long-term outcomes of pulmonary re-
habilitation programs in subjects with COPD.96-103 This
topic has been further addressed in 3 systematic reviews.104-106

In all studies, the included study population was small
(generally 7–10 per group and study). Moreover, a con-
siderable heterogeneity between studies makes it difficult
to draw firm conclusions from the published data. Subjects
also differed in their pathophysiological characteristics

(mean FEV1 varied between 26 and 48% of predicted) and
in the cause of exercise limitation. Different ventilator
settings and modes were used, and training varied from 12
to 24 sessions. Considerable differences existed between
studies in training schedules, which consisted either of
treadmill or cycle training, occasionally completed with
either upper- or lower-limb training. During the rehabili-
tation sessions, training intensity was higher in the NIV
group,98,102,103 whereas ventilatory requirements de-
creased.96,98,101 Long-term physiological outcomes, such
as maximum work load assessed at the end of the pro-
gram,99,102,103,106 improved significantly in favor of the
NIV group, with a difference of 17% compared with the
control group. Conversely, differences in endurance exer-
cise capacity, assessed with a constant work rate exercise
ergometer test, failed to reach statistical significance be-
tween the intervention and control groups.106 Likewise,
training with NIV did not affect the 6-min walk distance,103

exercise dyspnea,97,102,103 or QOL.98,103 Dropouts were sim-
ilar between ventilated and nonventilated subjects. Physi-
cal activity was not assessed as an outcome in any of the
published studies.

In a systematic review, Ricci et al105 concluded that
although NIV beneficially affected heart rate and oxygen
consumption, these effects were not statistically signifi-
cant. Similarly, Corner and Garrod104 suggested that NIV
may allow increased exercise intensity and duration during
pulmonary rehabilitation in subjects with moderate-to-very-
severe COPD, making it reasonable to propose this treat-
ment for patients with severe COPD. Finally, the authors
of a Cochrane Review concluded that NIV during lower-
limb exercise training may allow subjects with COPD to
exercise at a higher intensity than subjects without NIV,
and some evidence suggests that NIV during exercise train-
ing improves the percentage change in peak and endurance
exercise capacity.106 However, the authors remarked that
these findings are not consistent across other measures of
exercise capacity, questioning whether these relative ben-
efits of NIV during exercise training are clinically worth-
while and cost-effective.

Monitoring of NIV

NIV is predominantly administered during sleep. Sleep
greatly influences ventilatory behavior by inducing mod-
ifications of ventilatory control, upper-airway patency, and
respiratory muscle recruitment, in particular in patients
with respiratory insufficiency. Therefore, NIV settings cho-
sen empirically during the daytime may not predict opti-
mum nocturnal ventilatory support. Consequently, NIV
effectiveness might be more correctly assessed during sleep
than during the daytime.107

Patients on NIV could be considered as adequately ven-
tilated when the ventilator provides a proportional assis-
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tance to their needs without limiting the expression of
respiratory activity. Additional criteria include signs of
improvement or correction of alveolar hypoventilation,
along with an improvement or at least a preservation of
sleep quality (Table 1).108 However, until now, neither a
unified definition of effective ventilation nor a strategy to
evaluate its effectiveness was established. The optimum
monitoring of patients on long-term NIV is still a matter of
debate. Physicians caring for these patients may vary greatly
in their methods of monitoring NIV, from a single blood
gas measurement to full PSG.

Oximetry and Capnography

As already mentioned, ventilator settings established
when the patient is awake may not be sufficient to improve
nocturnal alveolar hypoventilation. Therefore, it has been
suggested that NIV evaluation may be performed by mon-
itoring nocturnal SpO2

.109 There is an agreement on SpO2

recording as a minimum prerequisite, but some studies
have shown that overnight monitoring of transcutaneously
measured partial pressure of carbon dioxide (PtcCO2

) is also
indicated, as subjects may remain hypercapnic despite nor-
mal SpO2

.110,111 PaCO2
sampling is performed mostly after

an arousal or awakening and thereby followed by a period
of appropriate breathing, not reflecting the abnormal breath-
ing during sleep. Nocturnal PtcCO2

monitoring should there-
fore be considered as a reliable alternative, as it shows
good accordance with PaCO2

measurement.112 A lag time
(� 2 min) was observed in PtcCO2

measurement, not al-
ways indicating rapid changes in CO2 measurement due to
respiratory events or leaks at the correct time.113 In addi-
tion, simplified built-in monitoring systems coupled with

some ventilators may allow interesting additional data to
be collected.114-116 A plugged interface permits SpO2

and
PtcCO2

data to be obtained during the same recording. Fur-
thermore, obtaining derivations from pulse plethysmo-
graphic parameters can provide useful autonomic markers
of sympathetic tone and information on sleep fragmenta-
tion.117-121

PSG

These data (SpO2
and PtcCO2

) lack some critical signals
(eg, thoracoabdominal movements), which is why some
authors suggest that this strategy may not be suffi-
cient.107,108,122 Combined with flow and pressure record-
ings, thoracoabdominal signals are crucial to understand
patient-ventilator synchrony. Recognizing thoracoabdomi-
nal movements without synchronous pressurization is a
good marker of unrewarded inspiratory efforts.108 Addi-
tionally, a qualitative estimation of the effectiveness of
ventilation can be obtained from these signals. Thus, when
these signals are recorded together, an accurate picture of
the synchronization between patient and ventilator and of
the efficacy of NIV can be obtained. Using full PSG gives
additional information on sleep efficiency and sleep archi-
tecture during NIV treatment and could provide more in-
formation on the occurrence of specific respiratory events
during different sleep stages.

These data, together with a patient’s clinical status, al-
low the quality of NIV to be determined. Frequently used
therapeutic goals include clinical improvement plus reduc-
tion of daytime PaCO2

, mean nocturnal SpO2
of � 90%,

� 90% of the recording time without residual oscillations,
and use of nocturnal NIV for � 4 h without discomfort
(fragmented use or multiple short periods of ventilator
use).123

Built-In Ventilator Software

Home ventilators have evolved rapidly since the first
cohort studies, with increased use of pressure-preset ven-
tilators over the past 20 years.124 The latest generation of
home ventilators has built-in software that provides the
clinician with potentially valuable information, such as
adherence, estimation of leaks, tidal volume (VT), V̇E,
breathing frequency, percentage of breaths triggered by
the patient, percentage of pressurizations interrupted by
the patient (cycling), and apnea and/or apnea-hypopnea
index. Rabec et al116 were the first to evaluate the validity
(reliability) of data collected by built-in software in a home
ventilator and found that machine-derived leak and V̇E

data highly correlated with objective laboratory-based mea-
sures of these parameters.

Table 1. Therapeutic Goals of NIV

Patient satisfaction
Symptom improvement
Perceived good quality of ventilation
Improved QOL

Preserved/improved sleep structure
Efficacy of ventilatory support

Improved daytime PaCO2

Improved nocturnal hypoventilation
Appropriate nocturnal SpO2

No respiratory events during NIV
No apneas during NIV
Low level of unintentional leaks
Optimum patient-ventilator synchrony

Improved prognosis
Reduced respiratory morbidity and disease-related burden
Improved survival

NIV � noninvasive ventilation
QOL � quality of life
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Estimation of VT. To date, 2 publications have evalu-
ated VT monitored by built-in software.114,125 These stud-
ies showed an underestimation of VT for the 11 ventilators
tested. The ability of a home ventilator to maintain a stable
VT is related to the pressurization capacities of the de-
vice,126 as well as to its assessment of VT, especially in the
presence of leaks.127 One study showed that 4 of 6 devices
designed to maintain a preset VT tended to underestimate
VT.127 Also, all but one of these devices failed to maintain
a preset VT in the presence of unintentional leaks. Fur-
thermore, underestimation of VT increased significantly at
higher pressure support levels.114 Overall, the bias in VT

ranged from 66 to 236 mL, thus introducing a considerable
possibility of error in adjusting ventilator settings. As data
provided by software tend to underestimate VT, this can
lead clinicians to increase pressure support, which can in
turn aggravate leaks.

Estimation of Leaks. Different devices do not estimate
leaks in the same way. One study showed an important
variability in the estimation of leaks.114 Simulating a con-
tinuous leak over a long period in standard home ventila-
tors generally revealed an underestimation of leaks. In this
case, precision of leak estimation varied significantly be-
tween devices. In some ventilators, bias for estimation of
leaks clearly increased with significant unintentional leaks.
In a recent publication, Sogo et al128 generated a leak
during the inspiratory phase, which more closely mimics a
clinical situation. In this study, the 4 commercial tools
overestimated unintentional leaks.

In conclusion, data provided by ventilator software can
be a useful adjunct and an important contribution to mon-
itoring long-term domiciliary NIV.123 However, the clini-
cian must be aware of the lack of standardization in the
reporting of collected data and the variable reliability of
results provided according to the device used. Items that
have not yet been independently assessed, such as apnea
and apnea-hypopnea indexes, need to be further evaluated
both in bench studies and clinically by comparison with
PSG. Finally, a consensus between manufacturers on mea-
suring and reporting data would be helpful. Alternatively,
as discussed by Luján and Pomares,129 the development of
independent monitoring tools would better assist clinicians.

Leaks and Patient-Ventilator Asynchrony

Leaks are inherent to NIV. They are divided into inten-
tional leaks (ie, those associated with the exhalation valve
either placed in the tubing or built into the interface) and
unintentional leaks (ie, leaks occurring anywhere between the
ventilator and the patient’s airways, but not through the ex-
halation valve). Intentional leaks are mandatory for elimina-
tion of CO2 from the ventilation circuit and avoiding re-
breathing. They can vary considerably from one interface to

another, and choice of interface may affect the capacity to
achieve preset pressure support.130 Unintentional leaks al-
ways occur to some extent during NIV. Bi-level pressure
support ventilators or ICU ventilators with an NIV mode are
designed to detect and compensate for these leaks.

Patient-ventilator asynchrony refers to the presence of
an asynchrony between the patient’s neural respiratory drive
and effective ventilation or pressurization.108 It encom-
passes respiratory events such as ineffective or unrewarded
inspiratory efforts, autotriggering, double or multiple trig-
gering, and prolonged dissociation between pressurizations
and inspiratory efforts. Intracycle patient-ventilator asyn-
chrony (ineffective or delayed triggering, premature or late
cycling) may also result from unintentional leaks.131 These
events have been shown to affect sleep structure and may
affect work of breathing.132,133

Patient-ventilator asynchrony has been observed to in-
crease the microarousal index and stage 1 and 2 sleep and
to decrease slow-wave and rapid-eye-movement sleep in
subjects with stable obesity-hypoventilation syndrome on
long-term NIV.133 Ineffective efforts may also affect effi-
cacy of NIV and lead to deterioration in nocturnal gas
exchange and arterial blood gases.132

Leaks have a clinically relevant deleterious impact in
NIV.134-136 In volume-cycled NIV, they lead to insuffi-
cient compensation of hypoventilation, lower VT, and lower
PEEP and affect the ability of the patient to trigger the
ventilator (Fig. 1). A study on pressure-preset NIV showed
that unintentional leaks disrupted sleep architecture; in-
creased the arousal index and PtcCO2

; and decreased total
sleep time and slow-wave and rapid-eye-movement
sleep.135 Leaks may decrease the FIO2

when supplemental
oxygen is administered during NIV and may lead to sig-
nificant pressure drops, poor inspiratory triggering, in-
creases in duration of inspiratory pressurization, and even
inversion of the inspiratory-expiratory ratio.135-137 Pres-
sure drops induced by unintentional leaks depend on the
ventilators tested because leak compensation varies mark-
edly from one ventilator to another (Fig. 2).138 In fact,
leaks may suffice to explain residual nocturnal hypoven-
tilation as has been documented in subjects on NIV for
respiratory failure resulting from neuromuscular disor-
ders.139

Leaks and patient-ventilator asynchrony are related: in
ICU subjects, leaks have been shown to be significantly
correlated with ineffective breath efforts, delayed cycling,
and presence of an asynchrony index above 10% of the
total recording time.131 Conversely, using an NIV algo-
rithm in ICU ventilators significantly decreases the impact
of leaks on patient-ventilator asynchrony.140 In subjects on
long-term NIV for neuromuscular disorders, patient-ven-
tilator asynchrony was shown to occur in relation to leaks.141

In this setting, patient-ventilator asynchrony events were
mainly ineffective inspiratory efforts, autotriggering, and
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prolonged insufflations. Patient-ventilator asynchrony rates
were correlated with arousals and awakenings.

Bench tests have demonstrated a clear relationship be-
tween induced unintentional leaks and delayed cycling
(leading to prolonged insufflations and even inverted in-
spiratory-expiratory ratios).138 More recently, 9 ICU ven-
tilators were tested with increasing levels of leaks: all were
able to maintain their VT, but several required adjustment
of triggering or cycling criteria, and some switched to
backup breathing frequency.142

In summary, unintentional leaks are frequent during NIV.
They have a major impact on ventilation efficacy in vol-
ume-cycled devices that do not compensate for these leaks.
In bi-level positive airway pressure ventilation (or NIV
mode for ICU ventilators), these leaks are partially or
totally compensated according to the devices used. How-
ever, unintentional leaks are associated with patient-ven-
tilator asynchrony. Patient-ventilator asynchrony may in
turn affect NIV efficacy and sleep structure, although con-
siderable patient-ventilator asynchrony may occur without
any adverse effect on arterial blood gases and correction of
nocturnal hypoventilation.133 The relationship between
sleep disruption resulting from patient-ventilator asyn-
chrony, leaks, and clinical outcomes such as adherence,
HRQOL, or even survival requires further evaluation.

Identifying Respiratory Events During NIV

Previous observations have shown that standard defini-
tions for nocturnal respiratory events in spontaneous breath-

ing do not lend themselves well to the description of respi-
ratory events occurring during positive-pressure ventilation.
Indeed, one major difference during NIV is the continuous
interaction between the ventilator, generating an intermittent
positive pressure, and the patient’s neural respiratory drive.107

During NIV, the patient is assisted by a ventilator, and events
can result from the patient, the ventilator, or poor patient-
ventilator synchrony. These different events have been de-
scribed by Gonzalez-Bermejo et al108 (Table 2).

A respiratory event is defined as the occurrence of a
modification, discontinuity, or instability of ventilation that
has deleterious consequences on SpO2

, PtcCO2
, and/or sleep.

The SomnoNIV Group considered the presence of signals
for pressure, flow, abdominal and thoracic movements,
and SpO2

as a minimal prerequisite for analysis of these
events.108

Few studies have tried to relate these respiratory events to
alterations in sleep structure and/or reductions in SpO2

. Study-
ing a pediatric population on long-term NIV, Caldarelli et al143

demonstrated that respiratory events were common even in
compliant children who did not complain of any symptoms.
A recent study analyzing 125 polygraphies during NIV in
adults demonstrated that the mean time spent overnight with
respiratory events was � 20%.144 Time spent with respira-
tory events significantly correlated with lower nocturnal SpO2

and higher diurnal PaCO2
. In both studies, pathophysiology-

based adjustment of ventilator settings led to a significant
improvement in the quality of ventilation.143,144 This empha-
sizes the benefit of performing PSG in ventilated patients to
optimize NIV efficacy.

Fig. 1. Leaks lead to disappearance of thoracic and abdominal movements, a major decrease in tidal volume, and desaturation.
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Unintentional Leaks. As discussed above, the impact of
leaks on ventilatory efficacy depends not only on the ab-
solute amount of leaks, but also on the capability of the
device to compensate for them.114,125 Furthermore, the in-

fluence of leaks could vary with the underlying pathology
(ie, the difference in respiratory mechanics).144 Therefore,
detecting unintentional leaks and particularly their impact
on quality of ventilation is of major importance when mon-
itoring NIV.

The importance of leaks and the ability of the ventilator to
compensate for them determine whether the pressure signal
amplitude remains stable or decreases.108 A fall in positive
pressure (inspiratory and expiratory) indicates major uninten-
tional leaks. With pressure control ventilators, an increase in
ventilator flow signal during insufflation with a simultaneous
decrease in thoracic and abdominal belt signal amplitude is
suggestive of unintentional leaks (Fig. 3). Ventilator flow
increases to compensate for the drop in pressure, but leaks
result in an effective reduction in VT delivered to the patient.
Because of the inability of volume control ventilators to com-
pensate for leaks, a decrease in thoracic and abdominal belt
signal amplitude can occur even in the presence of small
leaks without any increase in flow signal. However, a decrease
in the pressure signal is usually observed. Furthermore, as
target-volume ventilation is usually provided by a circuit in

Fig. 2. Traces show a significant increase in ventilator flow to compensate for leaks, inversion of inspiratory flow tracing, and decreases in
inspiratory pressure and thoracic and abdominal movements.

Table 2. Respiratory Events During NIV

Specific to NIV
Unintentional leaks
Decrease in ventilatory drive
Upper-airway obstruction

With reduced ventilatory drive
With increased ventilatory drive

Common to NIV and invasive ventilation
Asynchronies

Ineffective effort
Double triggering
Autotriggering
Late cycling
Premature cycling

Residual hypoventilation

NIV � noninvasive ventilation
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which inspiration and expiration are separated by a true ex-
piratory valve, a sharp reduction in the expiratory part of the
flow curve indicates the loss of expiratory flow in the circuit
and thus suggests the presence of leaks (Fig. 4).

Decrease in Ventilatory Drive. During sleep, the vol-
untary controller is abolished, and ventilation becomes
exclusively dependent on automatic control. In addition,
ventilatory control is physiologically altered during sleep,
with a decreased responsiveness to chemical, mechanical,
and cortical inputs. If NIV settings lead to hyperventila-
tion, bursts of central apnea or hypopnea can occur, par-
ticularly during transitions between sleep onset and wake-
fulness.145 Adduction of the vocal cords resulting in
progressive closure of the glottis has also been described
in response to ventilator-induced hyperventilation.147

The essential feature of a decrease in ventilatory com-
mand is a proportional and simultaneous reduction in flow
and thoracic and abdominal belt signal amplitudes without
phase opposition.108 In the absence of a backup breathing
frequency (ventilator in spontaneous mode), thoracic and
abdominal belt signals may disappear completely, gener-
ating a pattern of recurrent central apneas (Fig. 5A). With
a backup breathing frequency, the length of events is limited
by the preset maximum interval between breaths (Fig. 5B).

Partial or Total Upper-Airway Obstruction With or
Without Reduction in Ventilatory Drive. Intermittent
obstruction of the upper airway is common during NIV
and may be related to 2 mechanisms. The first corresponds
to obstructive events at the oropharyngeal level because of
upper-airway collapse as a result of insufficient EPAP.

Fig. 3. Typical patterns: increase in machine flow amplitude, reduction in thoracic and abdominal belt signals, and mild reduction in
inspiratory pressure. Unintentional leaks as estimated by the ventilator software coupled to the polygraph are represented at the bottom
of the graph.
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This mechanism may be present in patients with an unsta-
ble upper airway, such as patients with obstructive sleep
apnea or obesity-hypoventilation syndrome. The second
mechanism corresponds to episodes of intermittent ob-
struction at the glottic level, reflecting cyclic glottic clo-
sure induced by hyperventilation. Positive-pressure venti-
lation-induced hyperventilation has been shown to promote
active glottic closures in normal subjects when awake or
asleep.147 Glottic closure was shown to be proportional to
total ventilation and inversely proportional to end-tidal
CO2. By using simple tools such as nocturnal SpO2

, these
mechanisms are indistinctly expressed as desaturation dips
during NIV because SpO2

cannot distinguish between ap-
neas at oropharyngeal and glottic levels.116

Moreover, both mechanisms are located at different lev-
els in the airway and represent different pathophysiologi-
cal mechanisms. They also have a distinct semiology in
the curves, and their therapeutic approach is different. Al-
though both cases are characterized by a sudden reduction
in flow amplitude during insufflation, obstruction at the
oropharyngeal level will be accompanied by progressively
increased inspiratory activity, indicating a struggle against
upper-airway collapse. This will be expressed as a pro-
gressive increase in abdominal and thoracic belt signals,
with or without a phase opposition or a phase angle be-
tween thoracic and abdominal belt signals, suggesting par-
tial or total closure of the upper airways (Fig. 6A).108 In
this case, the strategy is to increase the level of expiratory
pressure to stabilize the upper airway.

Conversely, if the underlying mechanism is glottic closure,
the essential feature of a decrease in ventilatory command is
a decrease in flow with a simultaneous reduction or disap-
pearance of thoracic and abdominal belt signals, which oc-
curs without phase opposition as a result of an excessive level
of ventilation promoting respiratory pauses (Fig. 6B).108 In
this case, the suggested approach is to reduce V̇E.147,148 Once
again, this emphasizes analysis of thoracoabdominal belts to
assess NIV quality and guide therapy.

Asynchrony. Synchrony between a patient’s sponta-
neous breathing activity and the ventilator’s parameters
is one of the key factors determining efficacy and tol-
erance to NIV. Asynchrony during triggering and cy-
cling is quite common during sleeping patients on long-
term NIV. According to different published series, the
estimated prevalence of significant asynchronies varies
from 17 to 55%.132,133,143 Periods of desynchronization
are frequently associated with arousals.133 Although no
increase in PtcCO2

is observed during asynchronies,133

data on nocturnal SpO2
measurement are divergent.132,133

During NIV, leaks may greatly affect patient-ventilator
synchrony, and most asynchronies in subjects on NIV
are related to unintentional leaks.140 Different types of
leak-induced asynchronies are shown Figure 7. It has
been suggested that patient-ventilator synchrony should
be monitored nocturnally in all patients starting long-
term NIV to identify those for whom a change in ven-
tilator settings would be beneficial.149,150 Future studies

Fig. 4. Inspiratory pressure is not maintained (arrows). Inspiratory flow amplitude is maintained with reduction in thoracic and abdominal belt
signals. Note the amputation of the expiratory part of the flow curve (arrows).

HOT TOPICS IN NIV

RESPIRATORY CARE • ● ● VOL ● NO ● 13

RESPIRATORY CARE Paper in Press. Published on June 30, 2015 as DOI: 10.4187/respcare.03796

Copyright (C) 2015 Daedalus Enterprises ePub ahead of print papers have been peer-reviewed, accepted for publication, copy edited 
and proofread. However, this version may differ from the final published version in the online and print editions of RESPIRATORY CARE



should focus on whether the presence of these asynchro-
nies and minimization of these events have an effect on the
efficacy of ventilation, adherence, QOL, and survival.

NIV Modes: Recent and Future Developments

Target-Volume NIV

Generally, there are 2 modes of NIV that can be applied:
pressure- and volume-preset NIV. During pressure-preset

NIV, a fixed IPAP is provided by the ventilator, and the VT

can vary depending on chest-wall and lung compliance. In
contrast, during volume-preset NIV, a fixed inspiratory vol-
ume is set using a variation of IPAP.151 In the past, both
modes of NIV have been successfully used in different pa-
thologies, with comparable improvements in gas exchange,
lung function, sleep quality, and HRQOL.152,153

To combine the advantages of pressure- and volume-
preset NIV, a hybrid mode called target-volume NIV was

Fig. 5. A: In the absence of backup ventilation: loss of pressure signal, flow signal, and thoracic and abdominal belt signals. Shaded areas
denote desaturations. B: With backup breathing frequency: reduction in abdominal and thoracic belt signal amplitudes without phase
opposition. Note the switch to backup ventilation.
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Fig. 6. A: Without reduction of ventilatory drive: sudden reduction in flow amplitude, phase opposition or phase angle in thoracic and
abdominal belts, increase in breathing frequency at the end of the event due to increase in patient efforts to open the airways, and
patient-ventilator asynchrony. Shaded areas denote desaturations. B: With decrease in ventilatory command: progressive decrease in flow,
pressure signal unchanged, disappearance of thoracoabdominal movements and switch to backup breathing frequency without thoraco-
abdominal movements (indicating recurrent airway closure with reduced ventilatory command), and entirely synchronous resumption of
flow and thoracoabdominal movements without fighting movements.
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Fig. 7. Example of leak-induced asynchrony during pressure control ventilation. A: Autotriggering is defined as the occurrence of at least
3 consecutive pressurizations at a ventilator frequency of � 40/min not synchronized with patient inspiratory effort as defined by Guo
et al.132 B: Double triggering is defined as 2 cycles separated by a very short expiratory time, defined as less than half of the mean
inspiratory time and concomitant inspiratory activity at the thoracoabdominal bands. (continued)
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introduced over 10 years ago.151 In this mode, a preset
target volume (per breath or per min) and 2 levels of IPAP
(minimal and maximal) are combined. Several studies have
been performed with target-volume NIV in different sub-
ject cohorts (Table 3). In one study by Storre et al,154

target-volume NIV reduced nocturnal PtcCO2
more than the

conventional mode of pressure-preset NIV in subjects with
obesity-hypoventilation syndrome. This finding was con-
firmed by Janssens et al,155 but sleep quality was found to
be worse with target-volume NIV, possibly due to IPAP
variations during sleep. Interestingly, the opposite results
were detected by Crisafulli et al156 in subjects with COPD,
in whom a better subjective sleep efficiency was reported
with target-volume NIV compared with conventional NIV.
Thus, the effect of target-volume NIV on sleep quality
currently remains unclear.

The first trials reported that target-volume NIV is
superior to conventional NIV in reducing nocturnal
PCO2

.154,155,157 However, 3 more recent trials could not
confirm this advantage (Table 3).158-160 Murphy et al159

reported comparable results regarding daytime PCO2
,

QOL, weight loss, and improvements in Epworth Sleep-
iness Scale scores after a 3-month RCT in subjects with
obesity-hypoventilation syndrome. Importantly, in this
trial, an individual adjustment of ventilator settings ac-

cording to a predefined protocol with inclusion of a
nocturnal assessment period and aiming to achieve op-
timum nocturnal respiratory control was applied. Two
other studies investigated target-volume versus pres-
sure-preset NIV in subjects with chronic hypercapnic
COPD.158,160 In line with the results of the previous
study,159 control of daytime and nocturnal hypoventila-
tion, HRQOL, lung function, and exercise capacity were
similar between these 2 modes.158,160 A possible expla-
nation for the disparity between the earlier studies and
the more recent ones may be that protocolized NIV
titration was performed in one study,158 and higher in-
spiratory pressures were applied in the pressure-preset
groups.158-160

In 2 recently published bench studies, the effect of
unintentional leaks on target-volume ventilation was in-
vestigated under different conditions. In a study by Khi-
rani et al,161 single-limb circuits with intentional leaks
estimated the expiratory target volume more accurately
compared with single circuits with an expiratory valve
or ventilators using a double circuit. Additionally, Car-
lucci et al162 reported that vented circuits are able to
better compensate for leaks compared with nonvented
circuits with an active valve.

Fig. 7. C: Ineffective inspiratory efforts are defined by the presence of a respiratory movement on thoracoabdominal bands and/or a positive
deflection in expiratory flow (arrow), without a concomitant breath delivered by the ventilator (arrows). In this example, as leaks impede the
detection of patient inspiratory effort, the ventilator switches to backup breathing frequency. Unintentional leaks as estimated by the
ventilator software coupled to a polygraph are represented at the bottom of each graph.
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In conclusion, target-volume NIV showed similar clin-
ical benefits compared with the conventional treatment
of pressure-preset NIV, but general recommendations
for its application cannot be given. If target-volume
NIV is used, a single-limb circuit with intentional leaks
is recommended.

Electromyogram-Triggered NIV

Although the neural output of the brainstem cannot be
measured directly in humans, neural respiratory drive can be

assessed indirectly by an electromyogram (EMG) of the re-
spiratory muscles. Neural respiratory drive provides a breath-
by-breath measurement of the balance between the respira-
tory muscle load and capacity. Respiratory muscle EMG
measurements have demonstrated reproducibility in healthy
subjects and subjects with COPD, cystic fibrosis, asthma,
obesity, and motor neuron disease and subjects requiring me-
chanical ventilation.163-169

The accepted standard method for quantifying neural
respiratory drive is the diaphragm EMG using multipair

Table 3. Clinical Studies on Target-Volume NIV

Study Design Cohort Target-Volume Setting Main Target-Volume Outcomes*

Storre et al153† 6-wk crossover RCT
(n � 10)

Obesity-hypoventilation
syndrome‡

7 mL/kg of IBW
(n � 5)

Greater reduction in nocturnal PtcCO2

10 mL/kg of IBW
(n � 5)

Comparable effect on PSG
Comparable effect on QOL

Janssens et al154† 1-d crossover RCT (n � 12) Obesity-hypoventilation
syndrome§

7.5 � 0.8 mL/kg of
body weight

Greater reduction in nocturnal PtcCO2

Worse PSG
Crisafulli et al155† 5-d crossover RCT (n � 9) COPD‡ 8 mL/kg of IBW Comparable improvements in

morning PaCO2

Subjective improvement in sleep
efficiency

Ambrogio et al156† 1-d crossover RCT (n � 28) Mixed§ 8 mL/kg of IBW or
110% of baseline VT

Comparable effect on PSG
Greater nocturnal V̇E

Oscroft et al157� 8-wk crossover RCT
(n � 24)

COPD§ V̇E � 11.0 � 3.9 L/min Comparable effects on:
Daytime blood gases
Lung function and exercise capacity
QOL
Nocturnal PtcCO2

Murphy et al158† 3-mo RCT (n � 46) Obesity-hypoventilation
syndrome‡

Individual adjustments
aimed at achieving
control of nocturnal
hypoventilation while
abolishing obstructive
events

Comparable effects on:
Daytime PaCO2

improvements
QOL
Weight loss
Comparable improvements in ESS

score
Storre et al159 3-mo transfer to target-

volume NIV from high-
intensity NIV (n � 10)

COPD RCT: 8 mL/kg of IBW
or 110% of baseline
VT under high-
intensity NIV

Comparable effects on:
Sleep quality
Nocturnal PtcCO2

Daytime hypercapnia
Nocturnal ventilation patterns
Lung function and exercise capacity
QOL
Patient adherence

Modified from Reference 150, with permission.
* Compared with conventional pressure-preset noninvasive ventilation (NIV).
† Mode for target volume: average volume-assured pressure support.
‡ Patients naive to any form of NIV.
§ Patients already established on pressure-preset NIV.
� Mode for target volume: intelligent volume-assured pressure support.
RCT � randomized controlled trial
IBW � ideal body weight
VT � tidal volume
V̇E � minute ventilation
PtcCO2 � transcutaneously measured partial pressure of carbon dioxide
PSG � polysomnography
QOL � quality of life
ESS � Epworth Sleepiness Scale
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esophageal electrodes attached to a nasogastric catheter
positioned across the diaphragm crus.170-172 Diaphragm
EMG has been used to quantify the respiratory muscle
load-capacity balance and to identify the timing of inspira-
tory effort. The diaphragm EMG signal has also been in-
corporated into mechanical ventilation to improve patient-
ventilator asynchrony and to optimize the delivery of
pressure support. This mode of mechanical ventilation is
termed neurally adjusted ventilator assist.173,174

Conceptually, using neural respiratory drive to trigger
NIV has advantages. The diaphragm EMG signal is inde-
pendent of interface leaks and intrinsic PEEP (observed in
subjects with obstructive lung disease), both of which im-
pact trigger performance.168,174-176 Furthermore, using neu-
ral respiratory drive to detect patient-ventilator asynchrony
may lead to improvements in outcomes, including respi-
ratory muscle unloading, gas exchange, comfort, and sleep
quality.131,132,149,177 Quantifying neural respiratory drive
using diaphragm EMG is challenging, however, in awake
and nonsedated subjects due to the invasive nature of cath-
eter insertion. The operator must be experienced in placing
the catheter in a conscious subject to acquire a diaphragm
EMG signal, and there are also concerns that the signal
may be affected by a cardiac artifact, changes in body
position, and lung volume.178,179

The second intercostal space parasternal intercostal mus-
cles are obligate inspiratory muscles that contract in con-
cert with diaphragm muscles during inspiration to stabilize
the upper chest wall.180-182 Adjacent to the sternum, sec-
ond intercostal space parasternal intercostal muscles have
inspiratory mechanical advantage with little postural arti-
fact, and mapping the neural respiratory drive of the chest-
wall muscles has confirmed this to be the point of maxi-
mum inspiratory neural respiratory drive.181,182 The timing
of the peak parasternal intercostal muscle EMG is similar
to diaphragm EMG, and it thus can be considered as a
noninvasive surrogate.183,184 Parasternal intercostal muscle
EMG has also been correlated with breathlessness, with
changes in diaphragm EMG activity with threshold and
hypercapnic loading.167,185 Parasternal intercostal muscle
EMG is suitable for overnight monitoring of respiratory
muscle activity in subjects with asthma and subjects on
NIV.165,186

Previous work used surface diaphragm EMG measure-
ments to identify patient-ventilator asynchrony during NIV.
However, this is prone to interference with crosstalk from
abdominal muscle groups.130,178,182 Alternative markers of
inspiratory effort include respiratory inductance plethys-
mography. However, respiratory inductance plethysmog-
raphy may underestimate the prevalence of patient-venti-
lator asynchrony if neural respiratory drive is insufficient
to result in chest-wall expansion or if there is a delay
between onset of neural respiratory drive and chest-wall
excursion. A combination of parasternal intercostal muscle

EMG and respiratory inductance plethysmography has been
proposed to identify the type and frequency of patient-
ventilator asynchrony, with adequate interobserver reli-
ability demonstrated.187

Parasternal intercostal muscle EMG allows quantifica-
tion of respiratory muscle loading and unloading, which
may enhance the understanding of ventilator modes and
settings under different pathophysiological conditions. In
addition, parasternal intercostal muscle EMG may be used
as direct feedback to optimize ventilator settings, enhance
triggering, and provide a patient-centered approach to set
up and deliver NIV. If parasternal intercostal muscle EMG
is to drive NIV, then an understanding of the attenuation in
peak parasternal intercostal muscle EMG activity during
different sleep stages must be obtained to ensure adequate
overnight pressure support without the risk of hypoventi-
lation. Conditions in which neural respiratory drive would
not be useful to drive NIV require clarification, such as
metabolic acidosis, when elevated levels of neural respi-
ratory drive could induce hyperventilation and indeed risk
lung injury.188 Finally, for parasternal intercostal muscle
EMG to be used routinely, acquisition, processing, and
analysis of the signal must be automated and inform the
clinician of the neural respiratory drive level and type and
proportion of patient-ventilator asynchrony and differen-
tiate between EMG-triggered and ventilator-delivered
breaths.

Autoregulating Algorithms

Central breathing disturbances may appear due to 2 dif-
ferent pathophysiological situations. Central sleep apnea
may be associated with hypercapnia in patients with a
reduction in respiratory drive (ie, hypoventilation); how-
ever, central sleep apnea may emerge due to hyperventi-
lation (non-hypercapnic central sleep apnea). These breath-
ing disturbances appear at high altitude in subjects with
heart or renal failure or acromegaly or without known
predisposition or risk factors (idiopathic central sleep
apnea).

An increasing number of patients who suffer from both
sleep-related breathing disorders and cardiovascular dis-
eases have been identified. The Canadian Continuous Pos-
itive Airway Pressure for Patients with Central Sleep Ap-
nea and Heart Failure Trial demonstrated that treatment
with CPAP failed to sufficiently treat half of the subjects
with central sleep apnea and Cheyne-Stokes respiration
due to cardiovascular diseases.189 However, a post hoc
analysis suggested that optimum suppression of central
sleep apnea in cardiac subjects might improve survival.190

ASV represents an algorithm that automatically varies
the pressure support on a breath-by-breath analysis to de-
crease the ventilatory over- and undershoot of the respi-
ratory system in periodic breathing. Several studies showed
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that ASV is superior to CPAP in terms of suppressing
respiratory disturbances and improving left-ventricular
function in subjects with heart failure.191,192 A multina-
tional multi-center randomized parallel trial (SERVE-HF)
is ongoing and will provide important data on the effect of
ASV treatment on morbidity and mortality in subjects with
chronic heart failure and central sleep apnea/Cheyne-Stokes
respiration.193

However, the question remains as to whether ASV should
be used in only patients with Cheyne-Stokes respiration.
Allam et al194 retrospectively analyzed 100 subjects with
different phenotypes of central disturbances, including cen-
tral sleep apnea, Cheyne-Stokes respiration, and CPAP-
emergent complex sleep apnea. They found that ASV was
superior to bi-level positive airway pressure in spontane-
ous and spontaneous-timed mode, CPAP, and CPAP plus
oxygen. In addition, Morgenthaler et al195 compared the
efficacy of NIV and ASV in 21 subjects with central sleep
apnea/Cheyne-Stokes respiration, mixed apneas, and com-
plex sleep apnea. Although both treatment options im-
proved respiratory disturbances, arousals, and sleep pro-
files, ASV was significantly superior to NIV.

Most recent algorithms combine auto-adjusting EPAP,
expiratory pressure relief, and ASV. They automatically
vary the expiratory pressure to adapt to different levels of
upper-airway obstruction, reduce pressure during early ex-
piration to facilitate patient respiration, and variably adapt
pressure support to overcome periods of central sleep ap-
nea/Cheyne-Stokes respiration. There is a lack of high-
level evidence confirming the superiority of these enhanced
algorithms compared with conventional ASV with fixed,
manually titrated EPAP, although results from pilot stud-
ies show a possible benefit on the control of respiratory
events in subjects with central sleep apnea.196,197

However, a clear differentiation of hypoventilation and
hyperventilation disorders is crucial for optimum treat-

ment. A general principle of the adaptive algorithm is the
continuous comparison of the V̇E or VT with target pa-
rameters in a moving window gliding throughout the night.
The reaction of the ASV algorithms might be diminished
during long-term periods of hypoventilation, which may
lead to misdiagnosis due to the moving window. Hence, it
is not appropriate to use ASV in hypoventilating patients
(ie, patients with neuromuscular or lung disease and day-
time hypercapnia). As discussed above, the use of target-
volume ventilation could be considered for these patients
if there is a variable need for pressure support.

Thus, requirements of autoregulating algorithms depend
on different comorbidities. (1) Coexisting obstructive sleep
apnea and central sleep apnea are characterized by vari-
able levels of obstruction, with a risk of emerging complex
sleep apnea upon positive airway pressure application. (2)
Subjects with extreme obesity require high treatment pres-
sures to overcome upper-airway obstruction. However, ven-
tilation varies according to body position and central re-
spiratory drive. (3) Neuromuscular diseases are associated
with continuous hypoventilation due to low VT and in-
creased upper-airway collapsibility. (4) Obstructive lung
disease is characterized by dynamic hyperinflation and
increased lung compliance. These different situations re-
quire different therapeutic responses (Fig. 8).

In conclusion, hyperventilation disorders may be asso-
ciated with cardiac diseases, chronic hypocapnia, reduced
CO2 reserve, increased central and peripheral chemosen-
sitivity, and changes in acid/base balance. CPAP is gen-
erally recommended as the first therapeutic approach, but
it fails in �50% of the patients. ASV has proven to be
superior to CPAP in terms of respiratory disturbances,
sleep, and cardiac parameters. Coexisting obstructive sleep
apnea and hypoventilation syndromes are associated with
reduced respiratory drive, upper-airway obstruction, and
reduced thoracic compliance. If CPAP fails, NIV can be

Fig. 8. Therapeutic algorithm. AHI � apnea-hypopnea index; V̇/Q̇ � ventilation/perfusion; EPAP � expiratory positive airway pressure.
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applied. However, algorithms that combine automatic
CPAP, respiratory pressure relief, and pressure support
should be studied systematically in these complicated
breathing patterns.

Conclusions

NIV is a well-established therapeutic option for chronic
respiratory failure due to a variety of underlying diseases.
The report of this 2-day working group discusses several
questions regarding the management of patients with NIV,
and the following conclusions can be made. (1) Early initia-
tion of NIV in ALS seems to provide beneficial effects, but
its use in combination with secretion management is of major
importance. The effect of NIV on sleep in patients with ALS
needs further research. (2) Long-term invasive ventilation
could improve survival, but as it is a very expensive treat-
ment with high burden of care, early discussion about this
decision is recommended. (3) In patients with COPD, high-
intensity NIV seems to be associated with better outcomes
compared with low-intensity NIV. (4) NIV in combination
with or during exercise training has beneficial effects in pa-
tients with COPD, but more research on this topic is needed.
(5) Monitoring of NIV has evolved during the last decades.
Currently, polygraphy seems to be the minimum tool re-
quired to provide detailed information about the patient, the
ventilator, and their interaction. The new-generation ventila-
tors with built-in software can provide additional information
on NIV use in the home setting, although data quality can
differ between different manufacturers. (6) More studies are
needed on the advantages of target-volume NIV in different
subject populations. (7) EMG-triggered NIV could be a new
feature to optimize ventilation, but its incorporation in daily
use and its goals still need to be defined. (8) ASV seems to
have found a place in the treatment of central sleep apnea
/Cheyne-Stokes respiration.

Additional work is required to clarify the optimum NIV
modes and settings for specific diseases and patients. In fu-
ture research, we should be mindful that the ultimate goal is
not only to improve survival, but also sleep quality and
HRQOL.
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