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Improvement in the Prediction of Ventilator Weaning Outcomes by

an Artificial Neural Network in a Medical ICU

Hung-Ju Kuo MSc, Hung-Wen Chiu PhD, Chun-Nin Lee MD MSc, Tzu-Tao Chen MD,
Chih-Cheng Chang MD, and Mauo-Ying Bien PhD RPT CRT

BACKGROUND: Twenty-five to 40% of patients pass a spontaneous breathing trial (SBT) but fail
to wean from mechanical ventilation. There is no single appropriate and convenient predictor or
method that can help clinicians to accurately predict weaning outcomes. This study designed an
artificial neural network (ANN) model for predicting successful extubation in mechanically venti-
lated patients. METHODS: Ready-to-wean subjects (N = 121) hospitalized in medical ICUs were
recruited and randomly divided into training (n = 76) and test (n = 45) sets. Eight variables
consisting of age, reasons for intubation, duration of mechanical ventilation, Acute Physiology and
Chronic Health Evaluation II score, mean inspiratory and expiratory times, mean breathing fre-
quency, and mean expiratory tidal volume in a 30-min SBT (pressure support ventilation of 5 cm
H,0 and PEEP of 5 cm H,0) were selected as the ANN input variables. The prediction performance
of the ANN model was compared with the rapid shallow breathing index (RSBI), maximum in-
spiratory pressure, RSBI at 1 min (RSBI,) and 30 min (RSBI;,) in an SBT, and absolute percentage
change in RSBI from 1 to 30 min in an SBT (ARSBI;;) using a confusion matrix and receiver
operating characteristic curves. RESULTS: The area under the receiver operating characteristic
curves in the test set of the ANN model was 0.83 (95% CI 0.69-0.92, P < .001), which is better than any
one of the following predictors: 0.66 (95% CI 0.50-0.80, P = .04) for RSBI, 0.52 (95% CI 0.37-0.67, P =
.86) for maximum inspiratory pressure, 0.53 (95% CI 0.37-0.68, P = .79) for RSBI,, 0.60 (95% CI
0.44-0.74, P = .34) for RSBI;;, and 0.51 (95% CI 0.36-0.66, P = .91) for ARSBIL;,. Predicting suc-
cessful extubation based on the ANN model of the test set had a sensitivity of 82 %, a specificity of 73%,
and an accuracy rate of 80%, with an optimal threshold of =0.5 selected from the training set.
CONCLUSIONS: The ANN model improved the accuracy of predicting successful extubation. By
applying it clinically, clinicians can select the earliest appropriate weaning time. Key words: artificial
neural network; weaning prediction; rapid shallow breathing index; spontaneous breathing trial; airway
extubation; receiver operating characteristic curve. [Respir Care 0;0(0):1—=. © 0 Daedalus Enterprises]

Introduction

More than 39% of ICU patients require endotracheal
intubation with ventilatory support.! Choosing the appro-
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priate time for weaning a patient from mechanical venti-
lation and extubation is crucial for reducing the risks of
prolonged ventilatory support and premature weaning.>#
Various weaning predictors based on breathing pattern pa-
rameters have been used to assess weaning preparedness.>-
The rapid shallow breathing index (RSBI)3-!0 and the out-
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comes of a spontaneous breathing trial (SBT) with either a
T-piece or low-level pressure support ventilation (PSV)!!
are commonly used clinical methods. However, various
thresholds and sensitivities of the RSBI exist among dif-
ferent patient populations and measurement conditions, >4
and 25-40% of patients who pass an SBT develop failure
signs after being weaned from mechanical ventila-
tion.!0-15.16 Weaning patients from ventilatory support is a
complex issue.!” Until now, no single appropriate and con-
venient predictor or method could be used satisfactorily to
help clinicians predict weaning outcomes.%'8

Medical decision-support systems based on an artificial
neural network (ANN) have been developed in different
medical areas.'® ANNs are computer-based algorithms that
mimic the habits and structures of neurons. The most com-
mon application type of ANNs is a multilayer perceptron,
which includes an input layer, an output layer, and at least
one hidden layer.2° Each layer consists of several percep-
trons (or neurons), and each perceptron between layers is
connected by weights that are capable of autonomous ad-
justments and learning directly from experience during the
training phases. The perceptrons then output an optimal
result for solving nonlinear problems in the manner of the
human brain.??-2! Because the training behavior of ANNs
has yet to be satisfactorily explained, ANNs are often called
black boxes. Therefore, sensitivity analysis or cross-valida-
tion has been used to explain how ANN models work.20
Gottschalk et al?> were the first to report that an ANN model
that had been trained by using 4 variables (ie, tidal volume
[V1], minute ventilation, breathing frequency, and maximum
inspiratory pressure [Py ]) recorded during an SBT in ICU
subjects could be as effective as experts in predicting whether
patients could be successfully weaned from mechanical ven-
tilation. Mueller et al?® demonstrated that their ANN model
outperformed clinical expertise and multiple logistic regres-
sion in predicting extubation outcomes in premature new-
borns. However, other studies presented poor results using
ANN models to predict extubation outcomes in different re-
spiratory care facilities.” The main reasons for poor outcome
prediction may be due to the differences in clinical input data
and patient populations.

The purpose of this study was to develop a medical
decision-support ANN model for clinicians in making ex-
tubation decisions. The model contains variables selected
from a literature review with consideration for the conve-
nience of data collection and involves subjects’ character-
istics and respiratory pattern parameters during SBTs. The
optimal number of perceptrons in the hidden layer was de-
termined by using cross-validation. The ability to predict suc-
cessful extubation in ICU subjects with the final ANN model
was compared with RSBIL, Py, RSBl at 1 min (RSBI,) and
30 min (RSBI,,) in an SBT, and absolute percentage change
in RSBI from 1 to 30 min in an SBT (ARSBI;) by analyzing
the receiver operating characteristic (ROC) curves.

2

QUICK LOOK

Current knowledge

Daily spontaneous breathing trials (SBTs) along with
interruption of sedation is the current evidence-based
standard of care for facilitating ventilator discontinua-
tion. However, extubation failure remains between 10
and 20% in most trials. Methods to predict success
remain an important research focus.

What this paper contributes to our knowledge

In a small group of subjects, an artificial neural network
(ANN) developed based on subjects’ characteristics and
breathing pattern variables improved the accuracy of
predicting successful extubation compared with the rapid
shallow breathing index or maximum inspiratory pres-
sure. The ANN used subjects’ age, reasons for intuba-
tion, duration of mechanical ventilation, APACHE II
scores, and breathing patterns during a 30-min SBT.
The ANN had a sensitivity of 82%, a specificity of
73%, and an accuracy rate of 80%.

Methods

Study Population

All protocols were approved by the institutional review
board of the 2 hospitals that we investigated in Taipeli,
Taiwan, and written informed consent was obtained from
the study subjects or their next of kin. A total of 136
intubated, mechanically ventilated, and ready-to-wean sub-
jects®10 hospitalized in a medical ICU over a 13-month
period were included in this study. The subjects exhibited
no acute pulmonary or neuromuscular problems or signs
of increased intracranial pressure before the study, and
their Spoz was =95%. In addition, subjects had to meet the
following routine measurements of weaning profiles2+27:
bed position elevated to 30°, P; = —18 cm H,0, spon-
taneous breathing frequency = 38 breaths/min, and RSBI =
110 breaths/min/L. All subjects were mechanically venti-
lated with a Evita 4 (Dréger, Liibeck, Germany) or Galileo
Gold (Hamilton Medical, Reno, Nevada) ventilator in the
PSV mode to maintain a V. of ~10 mL/kg of ideal body
weight. Other ventilator settings were F;, = 0.4, PEEP =
5 cm H,O, flow sensitivity setting = 2—3 L/min, and rise
time = 0.1- 0.2 s. Sedatives, hypnotics, and narcotics were
discontinued for at least 8 h.

When the subject’s primary physician made the extu-
bation decision, an arterial blood gas or Spo2 was col-
lected, and the ventilator mode was changed to 30 min of
PSV at 5 cm H,O with PEEP at 5 cm H,O in an SBT
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Fig. 1. Flow chart. Extubation failure was defined as re-intubation
within 48 h. SBT = spontaneous breathing trial; ABG = arterial
blood gas test.

within 1 h. A computerized pulmonary mechanics moni-
toring system (CO,SMO+ Model 8100 [Novametrix Med-
ical Systems, Wallingford, Connecticut] or Ventilator Data-
logger 3.27.1 [Hamilton Medical, Reno, Nevada]) was used
to continuously record the flow, pressure, and volume sig-
nals during the trials. The trial was terminated, and the
ventilator was returned to the previous level of pressure sup-
port if the subject had one or more signs of cardiopulmonary
distress.>1© When the subject passed the 30-min SBT, an
arterial blood gas or S, was collected, and the subject was
then extubated and provided with a nasal cannula or air-
entrainment mask for oxygen therapy.

Fifteen subjects were excluded from the final analysis:
2 experienced respiratory failure during an SBT, 6 had
incomplete data collection, and 7 were not extubated within
24 h after the SBT. Therefore, the data of 121 subjects
were analyzed (Fig. 1). Extubation success was defined as
a subject free from mechanical ventilation for >48 h after
extubation. If a subject exhibited one or more signs of
cardiopulmonary distress within 48 h after extubation,'®
the subject was reconnected to the ventilator with either
noninvasive or invasive ventilation and was considered an
extubation failure.
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Feature Selections

Through the literature review, we found several poten-
tial parameters that can help clinicians predict the outcome
of extubation.>%-8.28.29 Cohen®° observed the clinical data
of subjects who had tolerated a 1-h SBT with CPAP at 5
cm H,O and reported that the RSBI measured at the end of
the SBT with automatic tube compensation was more sen-
sitive than that measured without compensation. Further-
more, airway pressure and breathing frequency were also
significantly different between the extubation failure and
success groups at the end of the SBT. Frutos-Vivar et al'>
collected clinical data from a multi-center study on sub-
jects who had successfully passed an SBT and analyzed
their data from the 24-h period before extubation, com-
paring the difference between the extubation and failure
groups. They concluded that the RSBI, positive fluid balance
24 h before extubation, and diagnosis of pneumonia upon
initiation of ventilation were most accurate in predicting ex-
tubation failure despite subjects completing the SBT.

Several physiological indexes have been developed to
predict weaning outcome, such as RSBI, CROP (compli-
ance, breathing frequency, oxygenation, and pressure) in-
dex, PIW, minute ventilation,? and airway-occlusion pres-
sure 0.1 s after the start of inspiration against an occluded
airway.’! Meade® performed a meta-analysis to compare
these physiological indexes in 65 observational studies by
using a likelihood ratio, determining that the RSBI is one
of the most powerful indexes of successful weaning. To
improve the prediction of weaning outcomes, more phys-
iological parameters may be considered. However, studies
have shown that it is still controversial to use an arterial
blood gas to facilitate elevating the accuracy rate of pre-
diction after subjects have passed an SBT.?8:29

In breathing pattern-related research, Casaseca-de-la-
Higuera et al’ reported that breathing patterns during SBTs
were more irregular in subjects who were eventually suc-
cessfully extubated than subjects who failed extubation.
The sample entropy of V. and the mean breathing fre-
quency during SBTs can help clinicians determine whether
patients can be successfully weaned from the ventilator.
Other parameters of respiratory signals obtained during
SBTs, such as frequency and V1, can also facilitate achiev-
ing this purpose.3?

After reviewing the potential parameters that may pre-
dict extubation outcomes, we considered the convenience
of data collection for future application and discarded vari-
ables that were not available at the bedside at all times.
Eight variables among 3 categories were selected for the
input of the ANN: (1) demographic data (age and duration
of mechanical ventilation), (2) physiological data
(APACHE II [Acute Physiology and Chronic Health Eval-
uation II] score at the time of ICU admission and reasons
for respiratory failure), and (3) breathing pattern obtained
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Table 1.  Subjects’ Physical and Clinical Characteristics

Characteristic Success (n = 90) Failure (n = 31) P
Age, mean * SD, y* 74 £ 15 805 19
Males/females, n 61/29 23/8 .50
BMI, mean * SD, kg/m*{ 21+5 19 =4 01
APACHE 1I score on admission to the ICU, mean *+ SD* 21 £7 2038 91
Mechanical ventilation duration, mean *= SD, d*¥ 12 =17 18 = 18 .01
Reasons for initiating mechanical ventilation, n
Acute COPD exacerbation 13 7 .30
Pneumonia 49 15 .56
Heart failure 16 6 .84
Neuromuscular disease 6 5 11
Otherst 37 5 .01
Past history, n
Respiratory disease 46 22 .05
Cardiovascular disease 59 24 22
Neuromuscular disease 27 4 .06
Routine weaning profiles, mean = SD
Py .. cm HOF 43+ 15 —-36*=13 .04
Breathing frequency, breaths/min 246 265 .26
V., mL/kg of ideal body weightf 384 = 143 317 = 67 .02
RSBI, breaths/min/L7 72 =31 84 = 18 .02
Physiological data before weaning trials, mean * SD
Systolic blood pressure, mm Hg 131 =22 130 =23 .83
Diastolic blood pressure, mm Hg 65 = 16 66 = 17 .79
Heart rate, beats/minf 85+ 13 96 = 17 <.001
Fio, 0.31 = 0.05 0.31 = 0.04 .66
Spo, % 98 2 97 £ 2 .05
Breathing pattern parameters during SBT, mean = SD
Breathing frequency, breaths/min*f 22*6 255 .01
T, ms*f 1058 + 259 922 *+ 169 .001
Tg, ms*f 1886 = 663 1612 = 495 .03
Expiratory V., mL*¥ 385 = 115 336 = 98 .03
Change in RSBI after 30 min, % 3.8 =30.7 6+ 24.6 .20
Physiological data after weaning trials, mean = SD
Systolic blood pressure, mm Hg 130 =23 132 =22 74
Diastolic blood pressure, mm Hg 66 = 16 65 = 18 .64
Heart rate, beats/min 86 £ 13 97 = 19 .01
Spo, % 98 = 1.8 97.6 = 1.9 .20
RSBI after 30 min, breaths/min/L} 65 = 32 86 + 33 .002
ICU stay, mean * SD, df 12 =12 20 = 14 <.001
Hospital stay, mean = SD, df 34 + 44 47 £ 39 .01

Success refers to subjects who were successfully weaned from ventilators and extubated, and failure refers to subjects who needed to be reconnected to a ventilator within 48 h after extubation.

* Input variables of the artificial neural network in the study.
T p < 0.05 was considered to be statistically significant.

BMI = body mass index

APACHE = Acute Physiology and Chronic Health Evaluation
Py = Maximum inspiratory pressure

Vr = tidal volume

RSBI = rapid shallow breathing index

SBT = spontaneous breathing trial

Ty = inspiratory time

Tg = expiratory time

during a 30-min SBT (mean frequency, mean inspiratory
time, mean expiratory time, and mean expiratory V) (Ta-
ble 1). The reasons for respiratory failure were classified
into 5 categories: COPD exacerbation, pneumonia, heart
failure, neuromuscular diseases, and others.

4

Structure of the ANN

The ANN prediction model was designed using
STATISTICA 8.0 (StatSoft, Tulsa, Oklahoma). The ap-
plied architecture was a multilayer perceptron combined
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Fig. 2. An artificial neural network: a multilayer perceptron. The
input layer included 8 variables; all of the perceptrons in the hid-
den and output layers had the same tangent sigmoid transfer func-
tion. APACHE Il = Acute Physiology and Chronic Health Evalua-
tion Il; COPD = COPD exacerbation; NMD = neuromuscular
diseases; f = frequency; T, = inspiratory time; Tg = expiratory
time; V4 = tidal volume; ES = extubation success; EF = extuba-
tion failure.

with a back-propagation algorithm. The designed ANN
model consisted of an input layer containing 17 percep-
trons defined according to the dummy variables of the
abovementioned 8 input parameters. Two perceptrons in
the output layer were used to export the prediction results.
Because there was no standard method for determining a
fixed perceptron number in the hidden layer,33 the number
of perceptrons in the hidden layer was set empirically. To
obtain an unbiased estimate of the generalization error and
to determine the optimal number of perceptrons in the
hidden layer, we used the leave-5-out-cross-validation
(L50CV) method.?° The LSOCV method generated 5 ANN
models that had the same number of perceptrons in the
hidden layer. For each model and its number of percep-
trons in the hidden layer, the median of the area under the
ROC curve was used to assess its performance. The model
with the largest median of the area under the ROC curve
was selected as the final ANN model. Figure 2 shows the
architecture of the final ANN model designed in this study.

Statistical Analysis

The Kolmogorov-Smirnov or Shapiro-Wilk test was used
to verify the normality of the data. The chi-square or Fisher
exact test was used to analyze categorical variables, which
were expressed as a frequency or a percentage. The con-
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tinuous variables were analyzed using a f test or Wilcoxon
2-sample test and expressed as the mean = SD. The area
under the ROC curve was used to compare the final ANN
model with that of each RSBI, PIW, RSBI,, RSBI;,, and
ARSBI;, in predicting successful extubation.?* The opti-
mal threshold value for each prediction model was estab-
lished by analyzing the subjects in the training set, and all
of the models were compared using only the test sets.
Sensitivity represented subjects who had successful extu-
bations and who had been predicted to be successful,
whereas specificity stood for subjects who had unsuccess-
ful extubations and who had been predicted to be unsuc-
cessful. Diagnostic accuracy indicated the ability of the
model to predict subject extubation outcome accurately.
Data were analyzed using statistical software (SAS 9.4
[SAS Institute, Cary, North Carolina] and MedCalc 14.8
[MedCalc Software, Mariakerke, Belgium]), and P < .05
was considered to be statistically significant.

Results
Subjects’ Characteristics

Table 1 presents the physical and clinical characteristics
of all subjects studied (N = 121). The diagnosis for initi-
ating mechanical ventilation of the study subjects included
COPD exacerbations (16.5%), pneumonia (52.9%), heart
failure (18.2%), neuromuscular disease (9.1%), and mis-
cellaneous (eg, upper gastrointestinal bleeding and influ-
enza, 34.7%). All subjects passed a 30-min SBT, but 31
subjects exhibited signs of respiratory failure and had to be
reconnected to mechanical ventilation within 48 h after
extubation. Compared with the extubation success group
(n = 90), subjects in the extubation failure group (n = 31)
had significantly lower body mass indexes, longer dura-
tion of ventilatory support, longer ICU or hospital stays,
and higher pulse rates. In addition, for initiating mechan-
ical ventilation, fewer subjects in the extubation failure
group were classified into the miscellaneous category. In
the routine measurement of weaning profiles, PIW, RSBI,
and RSBI;, were significantly lower in the extubation suc-
cess group, and V. was significantly lower in the extuba-
tion failure group. Regarding breathing pattern parameters
during the SBT, subjects in the extubation failure group
had significantly lower mean inspiratory times, mean ex-
piratory times, and mean expiratory V. and faster mean
breathing frequencies. Percentage change in the RSBI af-
ter the SBT yielded no significant difference.

Weaning Prediction of the ANN Model
All recruited subjects were randomly divided into a train-

ing set (n = 76) for training the final ANN model and a
test set (n = 45) for validating the performance of the
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Table 2.  Comparisons of the ANN Input Variables Between the
Training and Test Sets

Training Set Test Set

Variable o = 76) (n = 45) P
Age, mean = SD, y 77 £ 11 73 =17 52
APACHE II score, mean = SD 20+ 7 22+ 8 1
COPD exacerbation, n
Yes 11 9 43
No 65 36
Pneumonia, n
Yes 40 24 .94
No 36 21
Heart failure, n
Yes 17 5 12
No 59 40
Neuromuscular disease, n
Yes 5 6 21
No 71 39
Others, n
Yes 26 16 .88
No 50 29
Duration of mechanical ventilation, 13 £ 17 1418 .84

mean * SD, d
T,, mean = SD, ms 1005 =948 1062 =991 .23

Tg, mean £ SD, ms 1774 = 647 1923 = 631 .11

Breathing frequency, mean = SD, 23 £6 22*5 .10
breaths/min
V1, mean = SD, mL/kg of ideal 366 = 112 390 =118 .33
body weight
Outcome
Extubation success 56 34 .82
Extubation failure 20 11

There was no statistical difference between the training and test sets.
ANN = artificial neural network

APACHE = Acute Physiology and Chronic Health Evaluation

Ty = inspiratory time

Tg = expiratory time

Vr = tidal volume

model. To prevent over-fitting during model training, a
comparison between the training and test data sets regard-
ing ANN variables was performed. As shown in Table 2,
there was no significant difference between the training
and test sets regarding the ANN input variables. To deter-
mine the optimal number of perceptrons in the hidden
layer of the ANN prediction model, we developed a series
of 5 cross-validated models and calculated the area under
the ROC curves for both the training and test data sets
based on the hidden-layer perceptron numbers, which
ranged from 10 to 39. The median of the area under the
ROC curve represented the performance of each ANN
model. The ANN model that contained 19 hidden percep-
trons had the largest median of the area under the ROC
curve (0.82) and was used as the final ANN model, which
consisted of 17 perceptrons in the input layer, 19 percep-

6

trons in the hidden layer, and 2 perceptrons in the output
layer (multilayer perceptron 17-19-2) (Fig. 3).

The area under the ROC curves in the test set of the
ANN model was 0.83 (95% CI 0.69-0.92, P < .001),
which is better than any one of the following predictors:
0.66 (95% CI 0.50-0.80, P = .04) for RSBI, 0.52 (95%
C10.37-0.67, P = .86) for P; , 0.53(95% CI 0.37-0.68,
P =.79) for RSBI,, 0.60 (95% CI 0.44—-0.74, P = .34) for
RSBI;, and 0.51(95% C10.36-0.66, P = .91) for ARSBI5,
(Fig. 4). Predicting successful extubation based on the
ANN model of the test set had a sensitivity of 82%, a
specificity of 73%, and an accuracy rate of 80% with the
optimal threshold of =0.5 selected from the training set.
The optimal threshold values selected from the ROC curves
of the training set for RSBI, PIW, RSBI,, RSBI,,, and
ARSBI;,, and their sensitivity, specificity, and diagnostic
accuracy in predicting successful extubation from the test
set are listed in Table 3.

Discussion

The challenges of minimally complicated measurement
methods for weaning prediction have traditionally involved
accuracy. Existing SBTs!0-15.16 and weaning parame-
ters,%253%.36 such as V., frequency, minute ventilation, PIW,
and RSBI, do not demonstrate a high degree of accuracy in
predicting extubation outcomes. In this study, the ANN
model was designed according to 8 input variables con-
sisting of subjects’ age, reasons for intubation, duration of
mechanical ventilation, APACHE II scores, and breathing
patterns obtained during a 30-min SBT. The proposed ANN
model had better discrimination than existing predictors,
such as RSBI, PIM, RSBI,, RSBI,,, and ARSBI;, in pre-
dicting successful extubation.

The SBT has become a routine diagnostic test for de-
termining whether patients can be successfully liberated
from a ventilator, and patients’ breathing patterns during
SBTs have the potential to become weaning predictors.37-38
Because there is no difference in re-intubation or mortality
rates for 30- and 120-min SBTs,3° we chose a 30-min SBT
for data collection rather than a 120-min trial. Based on
our literature review, breathing pattern parameters in an
SBT have never been used as inputs of an ANN model. In
comparing breathing pattern variables during an SBT with
those of other studies,>*° we observed that mean breathing
frequency, mean inspiratory time, mean expiratory time,
and mean V., showed statistically significant differences
between the extubation success and failure groups, which
indicated that the subjects developed a shallow breathing
pattern during SBTs. Other studies have reported different
results.” The possible reasons for the difference may be
attributed to the definition of extubation failure or the
different level of pressure support during SBTs when col-
lecting the breathing pattern parameters. Because of ethi-
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Fig. 3. Areas under the receiver operating characteristic (ROC) curves for both the training and testing data sets based on a number of
hidden-layer perceptrons from 10 to 39. The largest median area under the ROC curve of the test set represented the optimal number of
perceptions in the hidden layer. With the neuron numbers set to 19 in the hidden layer, the area under the ROC curve became 0.82. ANN =

artificial neural network.

cal concerns, the subjects in this study had to pass routine
weaning profiles before the SBT and be extubated. This
may have introduced a selection bias and affected the re-
sults when we compared the breathing pattern variables
between the 2 groups.

Breathing patterns and their variability could also be
influenced by different SBT methods.?* We collected sub-
jects’ breathing pattern parameters by conducting an SBT
with a low level of pressure support, which could help
specific medical ICU patients pass the SBT and also im-
prove the success rate of extubation.*! Moreover, the ef-
ficiency and convenience of collecting data directly from
a microprocessor ventilator met one of the criteria for an
ideal weaning parameter. This facilitated designing a model
by using the machine learning method, which may help
clinicians to assess whether patients can be weaned from
the ventilator quickly in a daily trial.

In this study, subjects in the extubation failure group all
passed the routine weaning predictors, SBTs, and the pri-
mary physician’s assessment. However, 25.6% of the sub-
jects still experienced extubation failure. P; , Vi, and
RSBI were found to be significantly different between the
extubation failure and success groups. These results indi-
cate that the threshold values of these routinely used pre-
dictors were not suitable for the subjects in this study.
Therefore, their threshold values must be redefined. No
significant difference was found in the percentage change
in RSBI after a 30-min SBT, which was different from a
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previous study.*?> The possible reasons for this difference
may be attributed to different SBT methods used when
collecting the breathing pattern parameters. Breathing pat-
tern during SBTs under minimal ventilatory support (eg,
CPAP or PSV) may reduce the predictive performance of
breathing pattern variability.?+43

Although PIW, RSBI, RSBI,, RSBI;,, and ARSBI;, were
not used as the input parameters for the ANN model, the
prediction performance of the ANN model was more
precise than any one of them. This result may indicate
that more clinical parameters from the subject should be
taken into consideration during an SBT before extuba-
tion. The ANN model can help clinicians make the final
decision by learning from past experience like the hu-
man brain.

Previous studies reported that breathing pattern during
SBTs may be a potential marker to predict weaning out-
come.> The prediction accuracy rate and area under the
ROC curve of the ANN model in this study were similar
to those in other studies even when we took breathing
pattern variables into consideration.”.?? Different patient
populations may have different key factors that determine
who may be liberated from the mechanical ventilator. Mu-
eller et al>® observed that gestational age, arterial blood
gas, and ventilator settings were critical factors when de-
ciding whether newborns could be successfully extubated.
APACHE 1I, the Glasgow coma scale, RSBI, duration of
mechanical ventilation, and other underlying diseases may
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Fig. 4. Diagnostic performance of the artificial neural network (ANN) model (A), rapid shallow breathing index (RSBI) (B), maximum
inspiratory pressure (P, ) (C), RSB, (RSBI at 1 min in an SBT) (D), RSBI5, (RSBI at 30 min in an SBT) (E), and ARSBI;, (absolute percentage
change in RSBI from 1 to 30 min in an SBT) (F) in receiver operating characteristic (ROC) curve analyses. The areas under the ROC curves
were 0.83 (95% CIl 0.69-0.92, P < .001) for the test set of the ANN model, 0.66 (95% CI 0.50-0.80, P = .04) for RSBI, 0.52 (95% CI
0.37-0.67, P = .86) for P, __, 0.53 (95% CI 0.37-0.68, P = .79) for RSBI;, 0.60 (95% CI 0.44-0.74, P = .34) for RSBl and 0.51 (95% ClI
0.36-0.66, P = .91) for ARSBlI5,.

Table 3. Sensitivity, Specificity, and Diagnostic Accuracy for Predicting Successful Extubation in the ANN Model, RSBIL, P;_ ., RSBI;, RSB,
and ARSBI, in the Test Set Using the Optimal Threshold Values From the Training Set

ANN RSBI (Threshold P RSBI, (Threshold RSBI;, (Threshold ARSBI;,
(Threshold Value = 79 (Threshold Value Value = 634 Value = 62.8 (Threshold
Value = 0.5)* breaths/min/L) = —38 cm H,0) breaths/min/L) breaths/min/L) Value = 5.9%)
Sensitivity, % 82 62 71 62 62 32
Specificity, % 73 55 36 36 55 73
Diagnostic accuracy, % 80 60 62 56 60 42

* There was no physiological or clinical meaning for the threshold in the artificial neural network (ANN) model.
RSBI = rapid shallow breathing index

Py, = maximum inspiratory pressure

RSBI; = RSBI at 1 min in a spontaneous breathing trial (SBT)

RSBI;; = RSBI at 30 min in an SBT

ARSBI3 = absolute percentage change in RSBI from I to 30 min in an SBT

affect the success rate of extubation in patients who are
ventilated for >21 d.7 In this study, we applied 8 variables
that were different from those mentioned previously. In
addition, breathing patterns in the medical ICU were in-
cluded as input variables of the ANN model. Based on
these differences and the lack of a satisfactory explanation

8

for the training behavior of the ANN model, comparison
of the performance of the ANN model with that of previ-
ous studies is difficult.

This study has certain limitations. First, no subjects or
key factors related to laryngeal edema after extubation
were trained in the ANN model. Therefore, the ANN model
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may not be able to predict extubation failure caused by
postextubation laryngeal edema. Second, selection bias
could not be avoided because of ethical concerns, which
may have caused an underestimation of the specificity in
predicting the possibility of weaning failure of the ANN
model. Finally, model-generated outcomes that do not pro-
vide explanations (eg, black box) constitute a major the-
oretical concern of the ANN model when applied to clin-
ical studies. However, the success of ANNSs in the medical
decision-making system, such as high performance in pre-
dicting clozapine response** and pain management,* sug-
gests that ANNs may be the solution to making complex
decisions in clinical practice. Similar to a previous study,??
the L5SOCV method was used in this study in an attempt to
optimize the ANN model to prevent over-learning and
obtain an unbiased estimate of the generalization error. We
believe that our study is limited and do not know whether
the proposed ANN model developed will perform simi-
larly well in other institutions. However, because the ANN
model can learn based on previous data, as a predictive
model, it can be easily reconstructed in other institutions
for local application by adopting the processes used in this
study. When electronic medical records are fully imple-
mented in the future, the proposed ANN model could be-
come an efficient decision-support system.

Conclusions

The proposed ANN model, developed based on sub-
jects’ characteristics and breathing pattern variables, im-
proved the accuracy of predicting successful extubation.
By applying this ANN model clinically, clinicians can
select the appropriate earliest weaning time, which could
decrease the risks of unnecessarily prolonged ventilatory
support and premature weaning. Therefore, the incidence
of patients’ complication rates and medical costs related to
ventilatory support will decrease.
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