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BACKGROUND: New-generation ventilators display dynamic measures of respiratory mechanics,
such as compliance, resistance, and auto-PEEP. Knowledge of the respiratory mechanics is para-
mount to clinicians at the bedside. These calculations are obtained automatically by using the least
squares fitting method of the equation of motion. The accuracy of these calculations in static and
dynamic conditions have not been fully validated or examined in different clinical conditions or
various ventilator modes. METHODS: A bench study was performed by using a lung simulator to
compare the ventilator automated calculations during passive and active conditions. Three clinical
scenarios (normal, COPD, and ARDS) were simulated with known compliances and resistance set
per respective condition: normal (compliance 50 mL/cm H2O, resistance 10 cm H2O/L/s), COPD
(compliance 60 mL/cm H2O, resistance 22 cm H2O/L/s), and ARDS (compliance 30 mL/cm H2O, and
resistance 13 cm H2O/L/s). Each scenario was subjected to 4 different muscle pressures (Pmus):
0, �5, �10, and �15 cm H2O. All the experiments were done using adaptive support ventilation.
The resulting automated dynamic calculations of compliance and resistance were then compared
based on the clinical scenarios. RESULTS: There was a small bias (average error) and level of
agreement in the passive conditions in all the experiments; however, these errors and levels of
agreement got progressively higher proportional to the increased Pmus. There was a strong positive
correlation between Pmus and compliance measured as well as a strong negative correlation between
Pmus and resistance measured. CONCLUSIONS: Automated displayed calculations of respiratory
mechanics were not dependable or accurate in active breathing conditions. The calculations were
clinically more reliable in passive conditions. We propose different methods of calculating Pmus,
which, if incorporated into the calculations, would improve the accuracy of respiratory mechanics
made via the least squares fitting method in actively breathing conditions. [Respir Care 0;0(0):1–•.
© 0 Daedalus Enterprises] Key words: least squares fitting method; lung model; muscle pressure; respi-
ratory mechanics; simulation models.

Introduction

Monitoring of respiratory mechanics at the bedside dur-
ing mechanical ventilation is of utmost importance to the
clinician and the patient. Modern ventilators offer a variety
of waveforms, loops, graphics, and automated calculations

to guide the clinicians at the bedside. It is invaluable to
assess the respiratory mechanics quickly, easily, accurately
differentiate various diseases processes, assess progress or
regress during therapy, and to optimize mechanical venti-
latory support.1 Traditionally, static measurements of total
respiratory compliance, resistance, and auto-PEEP have
been obtained by using the end-inspiratory and end-expi-
ratory holding maneuvers during volume-controlled con-
tinuous mandatory ventilation with constant flow.2 These

Dr Daoud is affiliated with the Respiratory Care Program, Kapiolani
Community College, Honolulu, Hawaii, and John A Burns School of
Medicine, University of Hawaii Honolulu, Hawaii. Mr Katigbak is affil-
iated with Kaiser Permanente Respiratory Department, Kaiser Perma-
nente, Honolulu, Hawaii. Dr Ottochian is affiliated with the Shock Trauma
Center, University of Maryland, Baltimore, Maryland.

The authors have disclosed no conflicts of interest.

Correspondence: Ehab G Daoud MD, Kapiolani Community College, 4303
Diamond Head Rd, Honolulu, HI 96816. E-mail: ehab_daoud@hotmail.com.

DOI: 10.4187/respcare.06422

RESPIRATORY CARE • ● ● VOL ● NO ● 1

RESPIRATORY CARE Paper in Press. Published on July 16, 2019 as DOI: 10.4187/respcare.06422

Copyright (C) 2019 Daedalus Enterprises ePub ahead of print papers have been peer-reviewed, accepted for publication, copy edited 
and proofread. However, this version may differ from the final published version in the online and print editions of RESPIRATORY CARE



maneuvers are easy to do in the passive patient, that is,
with no respiratory effort, but usually become difficult and
inaccurate in the active patient with spontaneous respira-
tory efforts.

As an alternative to these static measurements, a com-
puted method evolved in 1990 by Gillard et al,3 which was
proposed to be accurate and provide a rapid approach to
respiratory mechanics. This method is known as the linear
least squares fitting method. It is a computed regression
analysis derived from the respiratory equation of motion,
which allows for breath-by-breath display of respiratory
mechanics in any mode of ventilation without any holding
maneuvers or certain flow pattern.1,4 The method attempts
to fit the equation of motion to the measured pressure,
volume, and flow data to calculate respiratory mechanics.
However, the pressure data will be distorted by muscle
pressure (Pmus) generated during active breathing, which
results in erroneous calculated values for resistance and
compliance. The simplified equation:

PTotal � Pvent � Pmus � VT/CRS � Raw � V̇ �
(PEEP � PEEPi)

Where PTotal is the total pressure required to move tidal
volume, Pvent is the airway pressure, Pmus is the patient’s
muscle pressure, all in cm H2O; VT is the tidal volume
in mL; CRS is respiratory system compliance in mL/cm H2O;
Raw is airway resistance in cm H2O/L/s; V̇ is flow in L/s;
and PEEPi is the intrinsic PEEP in cm H2O.

Some new ventilator manufacturers have incorporated
these automated calculation displays to simplify the pro-
cess at the bedside. These calculations, however, were
scrutinized by some investigators.5,6 The least squares
fitting method leads to gross underestimation of the respi-
ratory system resistance and overestimation of the respi-
ratory system compliance. Specifically, these errors are
due to the effect of Pmus decreasing Pvent during volume-
controlled continuous mandatory ventilation or increasing
volume and flow during pressure-controlled continuous
mandatory ventilation compared with passive inflation.

Given the ease and the availability of these calculations
on new ventilator displays, clinicians may be widely mis-
led regarding the real respiratory mechanics of their pa-
tients if these numbers were to prove inaccurate. This, in
turn, can lead to misdiagnosis and mismanagement of such
patients. Our hypothesis of the current descriptive study is
that the ventilator automated calculations of respiratory
mechanics are inaccurate during active breathing condi-
tions. We attempted to demonstrate the magnitude of er-
rors displayed by the ventilators when calculating mechan-
ics for passive and active breathing conditions by using
realistic simulation models. We discussed the reasons be-
yond these inaccuracies and offered some alternative ways
of improving these errors.

Methods

We compared the ventilator calculated compliance and
resistance with known parameters for these respective val-
ues set on a simulated lung model. The experiment was
conducted with a lung simulator (ASL 5000, IngMar Med-
ical, Pittsburgh, Pennsylvania). The “lung model” used
was one compartment model. Three clinical scenarios were
constructed as follows: normal lung, COPD, and ARDS,
with compliances of 50, 60, and 30 mL/cm H2O, respec-
tively, and resistances of 10, 20, and 13 cm H2O/L/s,
respectively (Table 1). The parameters used were in con-
cordance with Arnal et al7 recently published parameters
of simulation.

The accuracy of the simulated lung mechanics were
validated in each scenario by using the traditional end-
inspiratory and end-expiratory holding maneuvers in vol-
ume-controlled continuous mandatory ventilation with a
constant flow in the passive condition before the experi-
ment to confirm the set parameters. Each scenario was
subdivided into 4 experiments. First, the passive condition
with zero breathing frequency and zero Pmus. The second,
third, and fourth experiments were the simulated active
conditions “effort model” with a spontaneous respiratory
rate of 15 and 3 different maximum values of Pmus

of �5, �10, and �15 cm H2O, respectively. All sponta-
neous breaths were sinusoidal in pattern (pre-programmed
in the Active Servo Lung with 10% rise, 5% hold, and
10% release while exhalation was passive. All experiments
were conducted by using the adaptive support ventilation
mode on a Hamilton-G5 ventilator (Hamilton Medical AG,
Bonaduz, Switzerland). The adaptive support ventilation
mode is considered a pressure-controlled intermittent

QUICK LOOK

Current knowledge

New-generation ventilators display respiratory mechan-
ics (compliance, resistance, and auto-PEEP) as calcu-
lated by the least squares fitting method for the equa-
tion of motion. This continuous display is intended to
provide quick, easy understanding of patients’ condi-
tions in any ventilator mode and without any additional
maneuvers.

What this paper contributes to our knowledge

This current study showed that the displayed respira-
tory mechanics were not accurate or reliable in actively
breathing conditions. Clinicians should not base any
ventilator adjustments or conclusions based solely on
the ventilator displayed respiratory mechanics.
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mandatory ventilation with optimal and intelligent target-
ing scheme, in which the ventilator automatically adjusts
the targets of the ventilatory pattern to either minimize or
maximize some overall performance characteristic.8 The
studied mode and ventilator calculates the compliance and
resistance by using the linear regression method explained
in the introduction.

Settings used were for a male patient, height 170 cm,
with 100% minute ventilation support. Fifty breaths were
analyzed in each experiment (5 per minute for 10 min).
Only the spontaneous active breaths were included in the
active groups. We were able to only analyze the compli-
ances and resistances because the ventilator did not dis-
play the auto-PEEP in most of the active conditions.

To quantify the agreement between the parameters (com-
pliance and resistance) set on the simulated lung and those
displayed by the ventilator, we applied the Bland-Altman
method and obtained the mean bias and limits of agree-
ment for each one of the single experiments. Before each
analysis, we performed a Kolmogorov-Smirnov test to con-
firm the normal distribution of the differences between
values. This is a pre-requisite for the use of the Bland-
Altman method. The analysis was carried out by using R
(version 3.5.2) and RStudio (version 1.1.463). The Pear-
son correlation coefficient was used to test the relationship
between the Pmus and the resultant compliances and resis-
tances in each clinical scenario.

Results

The results are summarized in Tables 2 and 3. In all
3 scenarios, the ventilator-displayed compliances and re-
sistances showed a small mean bias and a narrow limits of
agreement for the passive effort model (Pmus � 0 cm H2O)
compared with the active effort model (Pmus � 0 cm H2O)
The mean bias progressively increased and the limits of
agreement progressively widened with the increase in Pmus

under the active effort model. There was a strong statisti-
cal positive correlation between the Pmus and the respira-
tory compliances (R � 0.99 in normal, 0.99 in ARDS, and
0.98 in COPD) (Fig. 1). Similarly, there was a strong
statistical negative correlation between the Pmus and the
resistances (R � �0.93 in normal, �0.98 in ARDS, and
�0.98 in COPD) (Fig. 2). The auto-PEEP could not be
obtained from the ventilator in any of the actively breath-
ing scenarios. An example of the displayed respiratory
mechanics in an active COPD experiment is shown in
Figure 3.

Discussion

As explained above, some modern-generation ventila-
tors use a computed multiple linear regression analysis
called the linear least squares fitting method to fit the
equation to the data to derive values for the equation pa-
rameters: respiratory system compliance, respiratory sys-

Table 1. Statistics By Using the Paired t-Test Between Lung Model
(test) and Each Experiment in Normal, COPD, and ARDS
Lungs

Parameter*
Compliance

(mL/cm H2O)
P

Resistance
(cm H2O/L/s)

P

Normal
Test 49.7 � 0.1 9.9 � 0.2
0 49.4 � 0.15 �.001 9.5 � 0.5 �.001
�5 58 � 1.6 �.001 3.5 � 0.5 �.001
�10 74.8 � 0.5 �.001 0.5 � 0.5 �.001
�15 86.6 � 1.1 �.001 0.3 � 0.5 �.001

COPD
Test 59.9 � 0.3 20.4 � 0.2
0 60.9 � 0.5 �.001 21.1 � 0.2 �.001
�5 65.6 � 0.6 �.001 17.8 � 0.5 �.001
�10 76.9 � 1.3 �.001 10.5 � 0.5 �.001
�15 89.8 � 1.4 �.001 5.8 � 0.6 �.001

ARDS
Test 30.2 � 0.1 13.3 � 0.1
0 29.8 � 0.1 �.001 12.6 � 0.5 �.001
�5 44.5 � 0.5 �.001 7.3 � 0.7 �.001
�10 51.4 � 0.5 �.001 2.1 � 0.1 �.001
�15 62.8 � 0.7 �.001 0.4 � 0.5 �.001

Data are presented as mean � SD.
* 0 is passive effort model with no muscle pressure (Pmus); �5, �10, �15 are the Pmus of
each experiment in the active effort model, expressed as cm H2O.

Table 2. Bland-Altman Analysis of Compliance Between Simulated
Lung and Ventilator Calculations: Each Experiment in
Normal, COPD, and ARDS Lungs

Parameter*
Mean Bias

(average error)
(mL/cm H2O)

Lower LOA
(mL/cm H2O)

Upper LOA
(mL/cm H2O)

Normal
0 �0.6 �0.9 �0.3
�5 8.0 4.9 11.1
�10 24.8 23.8 25.8
�15 36.6 34.6 38.7

COPD
0 0.9 0.1 1.8
�5 5.6 4.4 6.9
�10 16.9 14.4 19.3
�15 29.8 26.9 32.5

ARDS
0 �0.2 �0.4 �0.1
�5 14.5 13.5 15.4
�10 21.4 20.5 22.3
�15 32.8 31.4 34.1

* 0 is passive effort model with no muscle pressure (Pmus); �5, �10, �15 are the Pmus of
each experiment in the active effort model, expressed as cm H2O.
LOA � level of agreement
Pmus � muscle pressure
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tem resistance, and the total PEEP. The equation is dis-
played above in introduction section and is explained in
detail elsewhere9 The rationale for our finding was the
missing Pmus in the equation of motion during the respi-
ratory cycle. The ventilator measures the airway pressure,
volume, and flow, while assuming passive or zero Pmus.1

Now the questions that need to be answered are the
following: can the ventilator measure the Pmus? If yes, then
can that measurement be incorporated or plugged into the
equation of motion to give accurate measurements of the
respiratory mechanics? There are multiple ways to calcu-
late the Pmus, which would require additional equipment,
mainly esophageal balloon manometry. Given its many
useful features, various new-generation ventilators are cur-

rently equipped with built-in ports to measure the esoph-
ageal pressures.

A brief summary of the equations are displayed below,
detailed discussions of these equations are beyond the scope
of this study and are explained elsewhere. The Pmus is
estimated to be the difference between the static recoil
pressure of the relaxed chest wall (Pcw, rel) and the esoph-
ageal pressure (Pes).

Pmus � (Pcw, rel) � Pes

This is discussed in detail by Akoumianaki et al10 in
their review of this technology. A similar approach to
estimate the Pmus also requires esophageal balloon ma-
nometry by using the rapid interrupter technique.11 This
technique is used to calculate the pressure-time product.
The equation is described as

(Pmus, occl) � (Palv, occl) � (Pel, rs)
Where Pmus, occl is the Pmus during the occlusion ma-

neuver; Palv, occl is the alveolar pressure during the oc-
clusion maneuver; and Pel, rs is the elastic pressure of the
respiratory system. Another feasible and easy estimation
of the Pmus would be the difference in esophageal pressure
as a surrogate of pleural pressure (Ppl) during the passive
state and the active state if receiving same tidal volume
and flow.12

Pmus � Ppl (passive) � Ppl (active)
Although much less precise, the simple change of the

esophageal pressure during inspiration during airway oc-
clusion maneuver could be used as a bedside monitoring
tool, as done in some sleep studies13 or during a weaning
trial.14

A commercially available monitor, Patient Ventilator
Interaction (PVI Monitor, YRT, Winnipeg, Manitoba, Can-
ada), was designed in 2007 by Younes et al15 to monitor
and improve patient-ventilator interaction and asynchro-
nies. The monitor uses a signal generated by the equation
of motion by using improvised values for resistance and
elastance. The monitor was later tested by Kondili et al16

to quantify the inspiratory Pmus, which shows an excellent
estimate of Pmus calculated by the Campbell diagram of
the esophageal balloon volume-pressure curve.

Table 3. Bland-Altman Analysis of Resistance Between Simulated
Lung and Ventilator Calculations: Each Experiment in
Normal, COPD, and ARDS Lungs

Parameter*
Mean Bias

(average error)
(cm H2O/L/s)

Lower LOA
(cm H2O/L/s)

Upper LOA
(cm H2O/L/s)

Normal
0 �0.5 �1.5 0.5
�5 �6.5 �7.5 �5.5
�10 �9.5 �10.5 �8.5
�15 �9.7 �10.6 �8.8

COPD
0 1.1 0.6 1.5
�5 �2.2 �3.2 �1.2
�10 �9.5 �10.5 �8.5
�15 �14.2 �15.4 �12.9

ARDS
0 �0.5 �1.5 0.5
�5 �5.8 �7.2 �4.3
�10 �11 �11 �11
�15 �12.6 �13.6 �11.6

* 0 is passive effort model with no muscle pressure (Pmus); �5, �10, �15 are the Pmus of
each experiment in the active effort model, expressed as cm H2O.
LOA � level of agreement
Pmus � muscle pressure
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Fig. 1. Pearson correlation coefficient, showing a strong linear
positive correlation between muscle pressure (Pmus) and respira-
tory system compliance.
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Fig. 2. Pearson correlation coefficient, showing a strong linear
negative correlation between muscle pressure (Pmus) and respira-
tory system resistance.
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A recent index to quantify the inspiratory Pmus was
developed by Bellani et al,17 termed the Pmus/EAdi in-
dex, which relates the pressure generated by the respi-
ratory muscles (Pmus) to the electrical activity of the
diaphragm (EAdi). This index does not require an esoph-
ageal balloon but does require a different catheter to
measure the EAdi, currently available on only one com-
mercial ventilator (Servo, MAQUET, Rastatt, Germany).
Conceptually, measuring the airway occlusion pressure
at 0.1 s (P0.1) could be a substitute for Pmus. P0.1 is a
mechanical measurement of the output of the whole
complex of the inspiratory muscles during a short oc-
clusion at the beginning of inspiration and is expressed
as a negative value of cm H2O.18 It is a very simple
automatic measurement available on multiple new-gen-
eration ventilators, the occlusion can be measured the
airway pressure or the esophageal pressure. This param-
eter has been used for the prediction of weaning from
mechanical ventilation.19 P0.1 was found to correlate
well with the work of breathing and pressure-time prod-
uct. Interestingly there are no studies to compare the

correlation of the P0.1 measurements to actual Pmus to
determine if it could be a surrogate for the more com-
plex measurements of Pmus.

Our findings confirmed those of Iotti et al,5 who showed
wide discrepancies of the respiratory dynamics measured
during passive volume-controlled continuous mandatory
ventilation and incremental pressure support ventilation,
and concluded that the higher pressure support caused more
relaxation of Pmus estimated by P0.1. Similarly, Spa-
daro et al6 found that the least squares fitting method per-
formed better in neurally adjusted ventilatory assist com-
pared with pressure support ventilation, which was
attributed to more physiologic patient-ventilation interac-
tions.

Another interesting finding was that the ventilator was
not able to calculate the auto-PEEP in any of the sponta-
neous breaths. According to Iotti and Braschi,20 the least
squares fitting method greatly underestimates the static
auto-PEEP compared with measurements with the classic
approach, and, hence, the evaluation of auto-PEEP seems
to be the weakest point of the least squares fitting method.

Fig. 3. An example of the ventilator-displayed respiratory mechanics in the active COPD experiment.
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The worst results have been found in cases with dynamic
hyperinflation.

The Hamilton G5 ventilator operator’s manual includes
a note disclaiming, “Actively breathing patients can create
artifact or noise, which can affect the accuracy of these
measurements (Available at: http://abalardx.xyz/Docs/
Resp%20Hamilton-G5%20Operators%20Manual%20180213.
pdf. March 21, 2019). The more active the patient, the less
accurate the measurements. To minimize patient activity
during these measurements, you can choose increased
pressure support by 10 cm H2O. After completion, return
this control to its former setting.” This warning underes-
timates the issue of the missing Pmus. Increasing pressure
support by 10 cm H2O does not guarantee a relaxed patient
with a low Pmus. However, Hamilton medical has released
updated software that will not display the respiratory me-
chanics if there are 5 consecutive patient-triggered breaths
and has an additional option of turning the displayed me-
chanics off in the spontaneous breathing conditions.

To our knowledge, our study was the first to examine
the displayed respiratory mechanics by the least squares
fitting method in the adaptive support ventilation mode.
As mentioned above, least square fitting method has been
studied in continuous mandatory ventilation, neurally ad-
justed ventilatory assist, and pressure support ventilation.5,6

The findings of the present study must be interpreted in the
context of some potential limitations. The study was con-
ducted by using a lung simulator with the inherent limi-
tations of lung simulation. For more on ventilator simula-
tion, we refer the readers to the editorial by Chatburn21 on
simulation-based evaluation of mechanical ventilators. Our
lung model was a single chamber model, which was
identical to the model assumed by the ventilator in its
calculations of compliance and resistance but is far less
complex than the human lung in both health and disease
states. The Pmus used was only inspiratory, which as-
sumes a passive expiratory phase, which might not be
the case in various conditions or asynchronies. We only
selected 4 incremental Pmus (0, �5, �10, �15 cm H2O),
with constant parameters and amplitude during each
breath in the experiment, whereas it might be variable in
a real patient. We doubt that these limitations had any
effect on the measured numbers. A limitation of the
least squares fitting method itself is that it relies on a
linear single-compartment model, which is the most sim-
plified description of respiratory system mechanics,
whereas the human respiratory system is definitely not
linear by any means.

Conclusions

Our findings confirmed the hypothesis that the displayed
automated breath-by-breath respiratory mechanics calcu-
lations were unreliable and could be misleading, especially

in the actively breathing conditions. The more Pmus gen-
erated during the inspiratory cycle (more negative Pmus),
the more unreliable the calculations became, with overes-
timation of compliance and underestimation of resistance.
The bedside clinician should not base any decision making
or ventilator changes based solely on those calculations.
Additional research is needed to explore different methods
that would improve these calculations.
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2. Lucangelo U, Bernabè F, Blanch L. Lung mechanics at the bedside:
make it simple. Curr Opin Crit Care 2007;13(1):64-72.

3. Gillard C, Flémale A, Dierckx JP, Thémelin G. Measurement of
effective elastance of the total respiratory system in ventilated pa-
tients by a computed method. Comparison with the static method.
Intensive Care Med 1990;16(3):189-195.
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