

Center for **Healthcare Delivery Science and Innovation**

FEASIBILTY OF ADMINISTERING A BRONCHIODILATOR CONTINUOUSLY VIA VIBRATING MESH **NEBULIZER AND SYRINGE PUMP DURING MECHANICAL VENTILATION**

Background

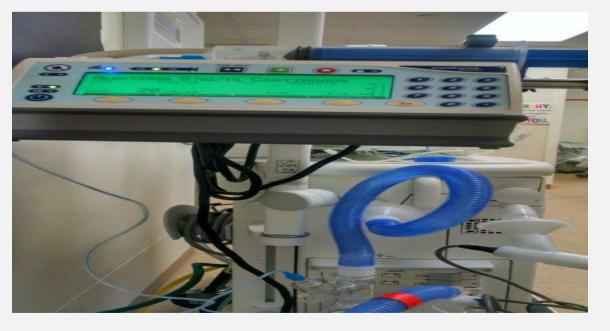
- Aerosolized medications (AM), (bronchodilators, antimuscarinic) may be administered via nebulizer (NEB) to treat episodic bronchospasm during mechanical ventilation (MV).
- Lung model (LM) studies suggest that aerosolize medication delivery (AMD) is suboptimal.
- Use of the vibrating mesh nebulizer (VMN) "Aerogen[®]" allows administration of albuterol continuously through a syringe pump (SP) without the need of an external gas source.
- The aim of this study was to determine if there were any undesirable impact from rate of nebulization (RON) on MV when used in conjunction with a SP+VMN.

Methods

- The Servo-I ventilator (SV) was used in conjunction with a SP plus VNM for the study.
- A pre-use performance check was performed on each individual device to verify that they were operating within manufactures specifications.
- The pharmacy downloaded software information for "Albuterol 0.5%, 5 mg/mL Continuous" into the Medfusion 4000 SP drug library; dose range (5 mg/h to 20 mg/h).
- A 60 mL syringe was filled with 20 mL of (0.9%) NaCL to simulate (0.5%) undiluted albuterol.
- The syringe was then attached to the SP: (Illustration #1).
- The investigation evaluated MV+SP+VMN performance at different RON; 15 and 20 mg/h.
- Before each simulation, a new ventilator circuit was installed along with a new SP set-up, fluid from the syringe was used to prime the SP tubing with 1 mL of fluid "bolus" or "wasted" directly into the VMN reservoir chamber to "START NEBULIZATION".
- 3.25 mL of fluid is needed to prime the SP connection tubing.
- The SV was connected to a LM, the VMN was "inserted on the dry side" of the Fisher & Paykel[®] Humidifier chamber (HC), (Illustration #2).
- The VMN control timer was set for "CONTINUOUS".
- SV settings; Tidal Volume (V_T) 0.45 mL, Volume Control (VC) 12 breaths/min, Peak Airway Pressure (P_{AW}) – 22 cm H_2O , plateau pressure (P_{plat}) – 14 cm H_2O , Positive End Expiratory Pressure (PEEP) - +8 cm H_2O .
- Acceptable MV+SP functionally was verified by observation of each individual device onboard monitoring systems, before and after initiation of MV with nebulization.
- Performance were monitored at 1 h and 4 h nebulization at different mL/h:

Morgan SE, Bilello Z, Logan GM, Thomas E, Tung A, Naureckas ET, Hall JB Department of Respiratory Care Services, Anesthesia Critical Care and Pulmonary Critical Care, UChicago Medicine, Chicago, IL

Results


- The RON is converted from mg/h into mL/h; 15 mg/h = 3 mL/h and 20 mg/h = 4 mL/h.
- Total AMD in 4 h; 12 mL + 1 at 15 mg/h and 16 mL + 1 and 20 mg/h.
- Test results demonstrated that RON volumes had a nominal effect on MV; $V_T 0.45$ mL \pm 0.08, P_{AW} – 22 \pm 2 cm H₂O, P_{plat} – 14 \pm 4 cm H₂O, PEEP - +8 cm H₂O.
- There were no notable adverse events related to set versus measured parameters; compliance, resistance, auto-PEEP, auto-cycling, minute ventilation, changes to waveform graphics or flow volume loops detected.

Conclusion

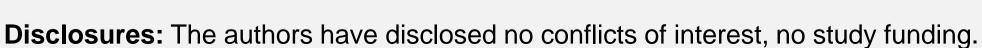

- This study confirmed that continuous delivery of Beta-agonist (β_2), albuterol via SP is feasible during MV.
- RON volumes were stable during the 4 h study intervals, medication dilution was not required which may improve AMD efficiency.
- In general, use of a SP for ≤ 1 h may not be advantageous at administering enough AM volume to optimize therapeutic objectives, therefore, clinically impractical.
- The interactions between the different equipment did not have an undesirable effect on the overall functionality of the SP+MV. Also, RON was not adversely altered.
- Further study is needed to determine RON effect on AMD deposition during MV.

Illustration 1 - SP operations configuration

of HC.

Illustration 2 - SP connected to VMN on dry side