Skip to main content

Impaired Vascular Endothelial Growth Factor Signaling in the Pathogenesis of Neonatal Pulmonary Vascular Disease

  • Conference paper
  • First Online:
Book cover Membrane Receptors, Channels and Transporters in Pulmonary Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 661))

Abstract

Abstract Of diverse growth factors that contribute to normal lung development, vascular endothelial growth factor (VEGF) plays an especially prominent role in the normal growth and development of the pulmonary circulation in the fetus and newborn. Strong experimental and clinical data support the role of impaired VEGF signaling in the pathogenesis of two major clinical disorders of the developing lung circulation: persistent pulmonary hypertension of the newborn (PPHN) and bronchopulmonary dysplasia (BPD). These disorders are each characterized by impaired vascular growth, structure and reactivity, which are at least partly due to endothelial cell dysfunction. This chapter will briefly discuss VEGF signaling during normal lung development and how disruption of VEGF signaling contribute to the pathogenesis of neonatal pulmonary vascular disease in these settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawes G, Mott JC, Widdicombe JG (1953) Changes in the lungs of the newborn lamb. J Physiol 121:141-162

    PubMed  CAS  Google Scholar 

  2. Abman SH, Chatfield BA, Hall SL, McMurtry IF (1990) Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol 259:H1921-H1927

    PubMed  CAS  Google Scholar 

  3. Cornfield DN, Reeve HL, Tolarova S, Weir EK, Archer S (1996) Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc Natl Acad Sci U S A 93:8089-8094

    Article  PubMed  CAS  Google Scholar 

  4. Velvis H, Moore P, Heymann MA (1991) Prostaglandin inhibition prevents the fall in pulmonary vascular resistance as the result of rhythmic distension of the lungs in fetal lambs. Pediatr Res 30:62-67

    Article  PubMed  CAS  Google Scholar 

  5. Ivy DD, Kinsella JP, Abman SH (1994) Physiologic characterization of endothelin A and B receptor activity in the ovine fetal lung. J Clin Invest 93:2141-2148

    Article  PubMed  CAS  Google Scholar 

  6. deMello DE, Reid LM (2002) Prenatal and postnatal development of the pulmonary circulation. In: Haddad CG, Abman SH, Chernick VC (eds) Basic mechanisms of pediatric respiratory disease. Decker, Hamilton, ON, pp 77-101

    Google Scholar 

  7. Jakkula M, Le Cras TD, Gebb S et al (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279:L600-L6L7

    PubMed  CAS  Google Scholar 

  8. Coalson JJ (2000) Pathology of chronic lung disease of early infancy. In: Bland RD, Coalson JJ (eds) Chronic lung disease of early infancy. Dekker, New York, pp 85-124

    Google Scholar 

  9. Abman SH (2000) Pulmonary hypertension in chronic lung disease of infancy. Pathogenesis, pathophysiology and treatment. In: Bland RD, Coalson JJ (eds) Chronic lung disease of infancy. Dekker, New York, pp 619-668

    Google Scholar 

  10. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669-672

    Article  PubMed  CAS  Google Scholar 

  11. Flamme I, Breier G, Risau W (1995) VEGF and VEGF receptor 2 are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev Biol 169:699-712

    Article  PubMed  CAS  Google Scholar 

  12. Millauer B, Wizigmann-Voos S, Schnurch H et al (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835-846

    Article  PubMed  CAS  Google Scholar 

  13. Akeson AL, Greenberg JM, Cameron JE et al (2003) Temporal and spatial regulation of VEGF-A controls vascular patterning in the embryonic lung. Dev Dyn 264:443-455

    CAS  Google Scholar 

  14. Carmeliet P, Ferreira V, Breier G et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435-439

    Article  PubMed  CAS  Google Scholar 

  15. Ferrara N, Carver-Moore K, Chen H et al (1992) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439-442

    Article  Google Scholar 

  16. Fong G, Rossant H, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66-70

    Article  PubMed  CAS  Google Scholar 

  17. Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62-66

    Article  PubMed  CAS  Google Scholar 

  18. Nishi J, Minamino T, Miyauchi H et al (2008) Vascular endothelial growth factor receptor-1 regulates postnatal angiogenesis through inhibition of the excessive activation of Akt. Circ Res 103:261-268

    Article  PubMed  CAS  Google Scholar 

  19. Gien J, Seedorf G, Balasubramaniam V, Markham N, Abman SH (2007) Chronic intrauterine pulmonary hypertension impairs endothelial cell growth and angiogenesis in vitro. Am J Respir Crit Care Med 176:1146-1153

    Article  PubMed  CAS  Google Scholar 

  20. van Tuyl M, Liu J, Wang J, Kuliszewski M, Tibboel D, Post M (2005) Role of oxygen and vascular development in epithelial branching morphogenesis of the developing mouse lung. Am J Physiol Lung Cell Mol Physiol 288:L167-L178

    Article  PubMed  Google Scholar 

  21. Muehlethaler V, Kunig A, Seedorf G, Balasubramaniam V, Abman SH (2008) Impaired VEGF and NO signaling after nitrofen exposure in rat fetal lung explants. Am J Physiol Lung Cell Mol Physiol 294:L110-L120

    Article  PubMed  CAS  Google Scholar 

  22. Yamamoto H, Yun EJ, Gerber HP, Ferrara N, Whitsett JA, Vu TH (2007) Epithelial - vascular cross talk mediated by VEGF A and HGF signaling directs primary septae formation during distal lung morphogenesis. Dev Biol 308:44-53

    Article  PubMed  CAS  Google Scholar 

  23. Ng Y, Rohan R, Sunday ME, deMello DE, D’Amore PA (2001) Differential expression of VEGF isoforms in mouse during development and in the adult. Dev Dyn 220:112-121

    Article  PubMed  CAS  Google Scholar 

  24. Galumbos C, Ng YS, Ali A et al (2002) Defective pulmonary development in the absence of heparin-binding VEGF isoforms. Am J Respir Cell Mol Biol 27:194-203

    Google Scholar 

  25. Greenberg JM, Thompson FY, Brooks SK et al (2002) Mesenchymal expression of VEGF D and A defines vascular patterning in developing lung. Dev Dyn 224:144-153

    Article  PubMed  CAS  Google Scholar 

  26. Nowak DG, Woolard J, Amin EM et al (2008) Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci 121:3487-3495

    Article  PubMed  CAS  Google Scholar 

  27. Ziche M, Morbidelli L, Choudhuri R et al (1997) NO synthase lies downstream from vascular endothelial growth factor - induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 99:2625-2634

    Article  PubMed  CAS  Google Scholar 

  28. Balasubramaniam V, Tang JR, Maxey A, Plopper CG, Abman SH (2003) Mild hypoxia impairs alveolarization in the endothelial nitric oxide synthase-deficient mouse. Am J Physiol Lung Cell Mol Physiol 284:L964-L971

    PubMed  CAS  Google Scholar 

  29. Han RN, Babei S, Robb M et al (2004) Defective lung vascular development and fatal respiratory distress in eNOS deficient mice: a model of alveolar capillary dysplasia. Circ Res 94:1115-1123

    Article  PubMed  CAS  Google Scholar 

  30. Tang JR, Markham NE, Lin YJ et al (2004) Inhaled NO attenuates pulmonary hypertension and improves lung growth in infant rats after neonatal treatment with a VEGF receptor inhibitor. Am J Physiol Lung Cell Mol Physiol 287:L344-L351

    Article  PubMed  CAS  Google Scholar 

  31. Loughna S, Sato TN (2001) Angiopoietin and Tie signaling pathways in vascular development. Matrix Biol 20:319-325

    Article  PubMed  CAS  Google Scholar 

  32. Dumont DJ, Gradwohl G, Fong GH et al (1994) Dominant negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis in the embryo. Genes Dev 8:1897-1909

    Article  PubMed  CAS  Google Scholar 

  33. Sato TN, Tozawa Y, Deutsch U et al (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Am J Respir Cell Mol Biol 22:157-165

    CAS  Google Scholar 

  34. Kim I, Kim JH, So Moon, Kwak NJ, Kim NG, Koh GY (2000) Angiopoietin-2 at high concentrations can enhance endothelial cell survival through the PI3K/Akt signal transduction pathway. Oncogene 19:4549-4552

    Article  PubMed  CAS  Google Scholar 

  35. Thébaud B, Ladha F, Michelakis ED et al (2005) VEGF gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112:2477-2486

    Article  PubMed  Google Scholar 

  36. Grover TR, Parker TA, Balasubramaniam V, Markham NE, Abman SH (2005) Pulmonary hypertension impairs alveolarization and lung growth in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 288:L648-L654

    Article  PubMed  CAS  Google Scholar 

  37. Abman SH, Shanley PF, Accurso FJ (1989) Failure of postnatal adaptation of the pulmonary circulation after chronic intrauterine pulmonary hypertension in fetal lambs. J Clin Invest 83:1849-1858

    Article  PubMed  CAS  Google Scholar 

  38. Morin FC (1989) Ligating the ductus arteriosus before birth causes persistent pulmonary hypertension of the newborn lamb. Pediatr Res 25:245-250

    Article  PubMed  Google Scholar 

  39. Villamor E, Le Cras TD, Horan M, Halbower AC, Tuder R, Abman SH (1997) Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. Am J Physiol 272:L1013-L1020

    PubMed  CAS  Google Scholar 

  40. Grover TR, Parker TA, Zenge JP, Markham NE, Abman SH (2003) Intrauterine pulmonary hypertension decreases lung VEGF expression and VEGF inhibition causes pulmonary hypertension in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 284:L508-L517

    PubMed  CAS  Google Scholar 

  41. Grover TR, Parker TA, Markham NE (2005) Abman SH. rhVEGF treatment improves pulmonary vasoreactivity and structure in an experimental model of pulmonary hypertension in fetal sheep. Am J Physiol Lung Cell Mol Physiol 289:L529-L535

    Article  PubMed  Google Scholar 

  42. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM (2001) Disrupted pulmonary vasculature and decreased VEGF, flt-1, and Tie 2 in human infants dying with BPD. Am J Resp Crit Care Med 164:1971-1980

    PubMed  CAS  Google Scholar 

  43. Lassus P, Turanlahti M, Heikkilä P et al (2001) Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med 164:1981-1987

    PubMed  CAS  Google Scholar 

  44. Abman SH (2001) BPD: a vascular hypothesis. Am J Respir Crit Care Med 164:1755-1756

    PubMed  CAS  Google Scholar 

  45. Maniscalco WM, Watkins RH, D’Angio CT, Ryan RM (1997) Hyperoxic injury decreases alveolar epithelial cell expression of vascular endothelial growth factor (VEGF) in neonatal rabbit lung. Am J Respir Cell Mol Biol 16:557-567

    PubMed  CAS  Google Scholar 

  46. Le Cras TD, Markham NE, Tuder RM, Voelkel NF, Abman SH (2002) Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol 283:L555-L562

    PubMed  Google Scholar 

  47. Maniscalco WM, Watkins RH, Pryhuber GS, Bhatt A, Shea C, Huyck H (2002) Angiogenic factors and the alveolar vasculature: development and alterations by injury in very premature baboons. Am J Physiol Lung Cell Mol Physiol 282:L811-L823

    PubMed  CAS  Google Scholar 

  48. Tang JR, Seedorf G Balasubramaniam V, Maxey A, Markham N, Abman SH (2007) Early inhaled NO treatment decreases apoptosis of endothelial cells in neonatal rat lungs after VEGF inhibition. Am J Physiol Lung Cell Mol Physiol 293:L1271-L1280

    Article  PubMed  CAS  Google Scholar 

  49. Young SL, Evans K, Eu JP (2002) Nitric oxide modulates branching morphogenesis in fetal rat lung explants. Am J Physiol Lung Cell Mol Physiol 282:L379-L385

    PubMed  CAS  Google Scholar 

  50. Afshar S, Gibson LL, Yuhanna IS et al (2003) Pulmonary NO synthase expression is attenuated in a fetal baboon model of chronic lung disease. Am J Physiol Lung Cell Mol Physiol 284:L749-L758

    PubMed  CAS  Google Scholar 

  51. MacRitchie AN, Albertine KH, Sun J et al (2001) Reduced endothelial nitric oxide synthase in lungs of chronically ventilated preterm lambs. Am J Physiol Lung Cell Mol Physiol 281:L1011-L1020

    PubMed  CAS  Google Scholar 

  52. Kunig AM, Balasubramaniam V, Markham NE, Seedorf G, Gien J, Abman SH (2006) Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol 291:L1068-L1078

    Article  PubMed  CAS  Google Scholar 

  53. Kunig AM, Balasubramaniam V, Markham NE et al (2005) Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 289:L529-L535

    Article  PubMed  CAS  Google Scholar 

  54. Schreiber MD, Gin-Mestan K, Marks JD, Huo D, Lee G, Srisuparp P (2003) Inhaled NO in premature infants with respiratory distress syndrome. N Engl J Med 349:2099-2107

    Article  PubMed  CAS  Google Scholar 

  55. Kinsella JP, Cutter GR, Walsh WF et al (2006) Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N Engl J Med 355:354-364

    Article  PubMed  CAS  Google Scholar 

  56. Ballard RA, Truog WE, Cnaan A et al (2006) Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med 355:343-353

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven H. Abman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Abman, S.H. (2010). Impaired Vascular Endothelial Growth Factor Signaling in the Pathogenesis of Neonatal Pulmonary Vascular Disease. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_21

Download citation

Publish with us

Policies and ethics