Skip to main content
Log in

Geometric and electronic structures of new endohedral fullerenes: Eu@C72

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The geometric and electronic structures of rare earth metallofullerenes Eu@C72 were investigated using density functional theory (DFT) within a generalized gradient approximation (GGA). The geometric optimization revealed that the most favorable endohedral site for Eu is off-center along the C2 axis on the σv plane pointing to the (5, 5) bond at the fusion of two pentagons. Calculations for electronic structures show that two 6s electrons in Eu transfer to the lowest-unoccupied-molecular orbitals of C72 while 4f electrons remain in Eu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354–358

    Article  Google Scholar 

  2. Hennrich FH, Michel RH, Fischer A, Richard-Schneider S, Gilb S, Kappes MM, Fuchs D, Bürk M, Kobayashi K, Nagase S (1996) Angew Chem Int Ed 35:1732–1734

    Article  CAS  Google Scholar 

  3. Kroto HW (1987) Nature 329:529–531

    Article  CAS  Google Scholar 

  4. Ettl R, Chao I, Diederich F, Whetten RL (1991) Nature 353:149–153

    Article  CAS  Google Scholar 

  5. Diederich F, Whetten RL, Thilgen C, Errl R, Chao I, Alvarez MM (1991) Science 254:1768–1770

    Article  CAS  Google Scholar 

  6. Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho M, Achiba Y (1992) Nature 357:142–145

    Article  CAS  Google Scholar 

  7. Manolopoulos DE, Fowler PW (1992) J Chem Phys 96:7603–7614

    Article  CAS  Google Scholar 

  8. Kobayashi K, Nagase S (1998) Chem Phys Lett 282:325–329

    Article  CAS  Google Scholar 

  9. Akasaka T, Wakahara T, Nagase S, Kobayashi K, Waelchli M, Yamamoto K, Kondo M, Shirakura S, Okubo S, Maeda Y, Kato T, Kako M, Nakadaira Y, Nagahata R, Gao X, Caemelbecke EV, Kadish KM (2000) J Am Chem Soc 122:9316–9317

    Article  CAS  Google Scholar 

  10. Wang CR, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2000) Nature 408:426–427

    Article  CAS  Google Scholar 

  11. Stevenson S, Fowler PW, Heine T, Duchamp JC, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn HC (2000) Nature 408:427–428

    Article  CAS  Google Scholar 

  12. Olmstead MM, Lee HM, Duchamp JC, Stevenson S, Marciu D, Dorn HC, Balch AL (2003) Angew Chem Int Ed 42:900–903

    Article  CAS  Google Scholar 

  13. Beavers CM, Zuo T, Duchamp JC, Harich K, Dorn HC, Olmstead MM, Balch AL (2006) J Am Chem Soc 128:11352–11353

    Article  CAS  Google Scholar 

  14. Slanina Z, Ishimura K, Kobayashi K, Nagase S (2004) Chem Phys Lett 384:114–118

    Article  CAS  Google Scholar 

  15. Slanina Z, Kobayashi K, Nagase S (2003) Chem Phys Lett 372:810–814

    Article  CAS  Google Scholar 

  16. Slanina Z, Xiang Z, Grabuleda X, Ozawa M, Uhlík F, Ivanov P, Kobayashi K, Nagase S (2001) J Mol Graph Model 19:252–255

    Article  CAS  Google Scholar 

  17. Wakahara T, Nikawa H, Kikuchi T, Nakahodo T, Rahman GMA, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Horn E, Yamamoto K, Mizorogi N, Slanina Z, Nagase S (2006) J Am Chem Soc 128:14228–14229

    Article  CAS  Google Scholar 

  18. Liu XG, Chi M, Han PD, Zhang ZX, Fang XH, Jia W, Xu BX (2007) J Mol Struc (THEOCHEM) 818:71–75

    Article  CAS  Google Scholar 

  19. Park JK, Ahn JI, Lim MA, Kim CH, Park HD, Choi SY (2003) J Electrochem Soc 150:187–191

    Article  Google Scholar 

  20. Schweizer S, Hobbs LW, Secu M, Spaeth JM, Edgar A, Williams GVM (2003) Appl Phys Lett 83:449–451

    Article  CAS  Google Scholar 

  21. Kuran P, Krause M, Bartl A, Dunsch, L (1998) Chem Phys Lett 292:580–586

    Article  CAS  Google Scholar 

  22. Sun BY, Inoue T, Shimada T, Okazaki T, Sugai T, Suenaga K, Shinohara H (2004) J Phys Chem B 108:9011–9015

    Article  CAS  Google Scholar 

  23. Hideto M, Norio O, Takeshi K, Hiroyuki N, Isao I, Koichi K, Ko F, Kazunobu S, Daisuke S, Takeji T, Tatsuhisa K (2004) J Phys Chem B 108:13972–13976

    Article  Google Scholar 

  24. Bucher K, Epple L, Mende J, Mehring M, Jansen M (2006) Phys Status Solidi B 243:3025–3027

    Article  CAS  Google Scholar 

  25. Bucher K, Mende J, Mehring M, Jansen M (2007) Fuller Nanotub Car N 15:29–42

    Article  CAS  Google Scholar 

  26. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  27. Delley B (2000) J Chem Phys 113:7756–7763

    Article  CAS  Google Scholar 

  28. Delley B (2002) Phys Rev B 66(1–9):155125

    Article  Google Scholar 

  29. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  30. Douglas M, Kroll NM (1974) Ann Phys 82:89–155

    Article  CAS  Google Scholar 

  31. Kobayashi TK, Nagase S, Yoshida M, Osawa E (1997) J Am Chem Soc 119:12693–12695

    Article  CAS  Google Scholar 

  32. Suzuki S, Kushida M, Amamiya S, Okada S, Nakao K (2000) Chem Phys Lett 327:291–298

    Article  CAS  Google Scholar 

  33. Mizorogi N, Nagase S (2006) Chem Phys Lett 431:110–112

    Article  CAS  Google Scholar 

  34. Evance WJ, Hughes LA, Hanusa TP (1986) Organometallics 5:1285–1291

    Article  Google Scholar 

  35. Lu J, Sabirianov RF, Mei WN, Gao Y, Duan CG, Zeng XC (2006) J Phys Chem B 110:23637–23640

    Article  CAS  Google Scholar 

  36. Senapati L, Schrier J, Whaley KB (2004) Nano Lett 4:2073–2078

    Article  CAS  Google Scholar 

  37. De Nadaï C, Mirone A, Dhesi SS, Bencok P, Brookes NB, Marenne I, Rudolf P, Tagmatarchis N, Shinohara H, Dennis TJS (2004) Phys Rev B 69(1–7):184421

    Article  Google Scholar 

  38. Lu J, Zhang X, Zhao X, Nagase S, Kobayashi K (2000) Chem Phys Lett 332:219–224

    Article  CAS  Google Scholar 

  39. Lu J, Zhang X, Zhao X (2000) Chem Phys Lett 332:51–57

    Article  CAS  Google Scholar 

  40. Wang K, Zhao J, Yang S, Chen L, Li Q, Wang B, Yang S, Yang J, Hou JG, Zhu Q (2003) Phys Rev Lett 91(1–4):185504

    Article  Google Scholar 

  41. Kessler B, Bringer A, Cramn S, Schlebusch C, Eberhardt W, Suzuki S, Achiba Y, Esch F, Barnaba M, Cocco D (1997) Phys Rev Lett 79:2289–2292

    Article  CAS  Google Scholar 

  42. Lu GL, Deng KM, Wu HP, Yang JL, Wang X (2006) J Chem Phys 124:054305-1-5

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Key Laboratory of Coal Science & Technology (Taiyuan University of Technology), Ministry of Education, for the software. This research was financially supported by State Basic Research Development Program of China (973 program) (Grant No.2004CB217808), National Natural Science Foundation of China (Grant No.90306014, 20671068), Natural Science Foundation of Shanxi Province (Grant No.20050018 and 2006011053)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingshe Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, M., Zhang, Z., Han, P. et al. Geometric and electronic structures of new endohedral fullerenes: Eu@C72 . J Mol Model 14, 465–470 (2008). https://doi.org/10.1007/s00894-008-0304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0304-1

Keywords

Navigation