Skip to main content
Log in

Increased Oxidative Stress and Altered Levels of Antioxidants in Chronic Obstructive Pulmonary Disease

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

An imbalance between oxidative stress and antioxidative capacity has been proposed to play an important role in the development and progression of chronic obstructive pulmonary disease. We carried out a study to assess the systemic oxidant-antioxidant status in patients with chronic obstructive pulmonary disease (COPD) and relate it to the severity of disease. We measured a wide range of parameters of oxidant-antioxidant balance in leukocytes, plasma and red cells of 82 patients with COPD and 22 healthy non-smoking controls (HNC). Lung function was measured by spirometry. Staging of COPD was done as per the recommended guidelines. Red cell antioxidative enzyme activities were altered, with glutathione peroxidase (GSH-Px) having lower, superoxide dismutase (SOD) having greater and catalase having similar activity in patients as compared to HNC. In plasma, ferric reducing antioxidant power (FRAP) and total protein sulfhydryls were lower and GSH-Px, lipid peroxides measured as MDA-TBA products, and protein carbonyls were higher in the patients as compared to HNC. Plasma total nitrates and nitrites (NO x ) were similar in the two groups. Superoxide anion (O2•−) release from leukocytes upon stimulation with N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) and total blood glutathione were also higher in patients as compared to HNC. Plasma FRAP had a positive whereas total blood glutathione had a significant negative correlation with the severity of airways obstruction (FEV1% predicted). Further, comparisons between clinical stages of severity of COPD revealed significant differences in plasma FRAP and total blood glutathione. Our observations suggest there is a systemic oxidant-antioxidant imbalance in the patients with COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

COPD:

chronic obstructive pulmonary disease

HNC:

healthy non-smoking controls

GSH-Px:

glutathione peroxidase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

NO x :

total nitrates and nitrites

AM:

alveolar macrophages

BAL:

bronchoalveolar lavage

(O2•−):

superoxide radical

NO:

nitric oxide

FRAP:

ferric reducing antioxidant power

KRP-D:

krebs-ringer phosphate buffer with dextrose

fMLP:

N-formyl-L-methionyl-L-leucyl-L-phenylalanine

MDA-TBA products:

malondialdehyde-thiobarbituric acid products

NADPH:

nicotinamide adenine dinucleotide phosphate, reduced form

INT:

2-(4-iodophenyl)-3-(4-nitrophenol)-5-phenyltetrazolium chloride

DTNB:

5,5′-dithiobis(2-nitrobenzoic acid)

Hb:

hemoglobin

References

  1. American Thoracic Society. 1995. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. ATS Statement (supplement). Am. J. Respir. Crit. Care Med. 152:S77–S121.

    Google Scholar 

  2. Martin, T. R., G. Raghu, R. J. Maunder, and S. C. Springmeyer. 1985. The effects of chronic bronchitis and chronic airflow obstruction on lung populations recovered by bronchoalveolar lavage. Am. Rev. Respir. Dis. 132:254–260.

    CAS  PubMed  Google Scholar 

  3. Hubbard, R. C., F. Ogushi, G. A. Fels, A. M. Cantin, M. Courtney, and R. G. Crystal. 1987. Oxidants spontaneously released by alveolar macrophages of cigarette smokers can inactivate the active site of alpha-1-antitrypsin, rendering it ineffective as an inhibitor of neutrophil elastase. J. Clin. Invest. 80:1289–1295.

    CAS  PubMed  Google Scholar 

  4. Rahman, I., D. Morrison, K. Donaldson, and W. MacNee. 1996. Systemic oxidative stress in asthma, COPD and smokers. Am. J. Respir. Crit. Care. Med. 159:1055–1060.

    Google Scholar 

  5. Pryor, W. A., and K. Stone. 1993. Oxidants in cigarette smoke: Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann. N.Y.Acad. Sci. 686:12–28.

    CAS  PubMed  Google Scholar 

  6. Eiserich, J. P., C. E. Cross, and A. vanderVliet. 1997. Nitrogen oxides are important contributors to cigarette smoke induced ascorbate oxidation. In: Vitamin C in health and disease, L. Packer and J. Fuchs, eds. Dekker, New York, pp. 399–412.

  7. Schaberg, T., H. Haller, M. Rau, D. Kaiser, M. Fassebender, and H. Lode. 1992. Superoxide anion release induced by platelet-activating factor is increased in human alveolar macrophages from smokers. Eur. Resp. J. 5:387–393.

    CAS  Google Scholar 

  8. Morrison, D., I. Rahman, S. Lannan, and W. MacNee. 1999. Epithelial permeability, inflammation, and oxidant stress in the airspaces of smokers. Am. J. Respir. Crit. Care Med. 159:473–479.

    CAS  PubMed  Google Scholar 

  9. Fishman, A. 1985. The pulmonary circulation. In: Handbook of Physiology, Section 3: The Respiratory System, A. Fishman, ed. American Physiological Society. Bathesda, MD, pp. 93–165.

    Google Scholar 

  10. MacNee, W., W. Wiggs, A. S. Belzberg, and J. C. Hogg. 1989. Regional pulmonary transit times in man. J. Appl. Physiol. 66:844–850.

    CAS  PubMed  Google Scholar 

  11. Richards, G. A., A. J. Therson, A. Carel, V. D. Merwe, and R. Anderson. 1989. Spirometric abnormalities in young smokers correlate with increased chemiluminiscence responses of activated blood phagocytes. Am. Rev. Resp. Dis. 139:181–187.

    CAS  PubMed  Google Scholar 

  12. Pinamonti, S., M. Muzzoli, M. C. Chicca, A. Papi, F. Ravenna, L. M. Fabbri, and A. Ciaccia. 1996. Xanthine oxidase activity in bronchoalveolar lavage fluid from patients with chronic obstructive pulmonary disease. Free. Rad. Biol. Med. 21:147–155.

    Article  CAS  PubMed  Google Scholar 

  13. Postma, D. S., T. E. J. Renkema, J. A. Noordhock, H. Faber, H. J. Sluiter, and H. Kauffman. 1988. Association between nonspecific bronchial hyperreactivity and superoxide anion production by polymorphonuclear leukocytes in chronic airflow obstruction. Am. Rev. Resp. Dis. 137:57–61.

    CAS  PubMed  Google Scholar 

  14. Ludwig, P. W., and J. R. Hoidal. 1982. Alterations in leukocyte oxidative metabolism in cigarette smokers. Am. Rev. Resp. Dis. 126:977–980.

    CAS  PubMed  Google Scholar 

  15. Toth, K. M., D. P. Clifford, E. M. Berger, C. W. White, and J. E. Repine. 1984. Intact human erythrocyte prevents hydrogen peroxide mediated damage to isolated perfused rat lungs and cultured bovine pulmonary artery endothelial cells. J. Clin. Invest. 74:292–295.

    CAS  PubMed  Google Scholar 

  16. Van Asbeck, B. S., J. Hoidal, G. M. Vercelloti, B. A. Schwartz, C. F. Moldow, and H. S. Jacob. 1985. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione. Science 227:756–759.

    CAS  PubMed  Google Scholar 

  17. Agar, N. S., S. N. H. Sadradeh, P. E. Hallaway, and J. W. Eaton. 1986. Erythrocyte catalase. A somatic oxidant defense. J. Clin. Invest. 77:319–321.

    CAS  PubMed  Google Scholar 

  18. Heffner, J. E., and J. E. Repine. 1991. Antioxidants and the lung. In: The lung: Scientific foundations, R. G. Crystal and W. B. West, eds. Raven Press, New York, pp. 1811–1820.

    Google Scholar 

  19. McCusker, K., and J. Hoidal. 1990. Selective increase of antioxidant enzyme activity in the alveolar macrophages from cigarette smokers and smoke–exposed hamsters. Am. Rev. Resp. Dis. 141:678–682.

    CAS  PubMed  Google Scholar 

  20. Kondo, T., S. Tagami, A. Yoshioka, M. Nishimura, and Y. Kawakami. 1994. Current smoking of elderly men reduces antioxidants in alveolar macrophages. Am. J. Respir. Crit. Care Med. 149:178–182.

    CAS  PubMed  Google Scholar 

  21. Morrow, J. D., B. Frei, and A. W. Longwire. 1995. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. N. Engl. J. Med. 332:1198–1203.

    Article  CAS  PubMed  Google Scholar 

  22. Pratico, D., S. Basili, M. Vieri, C. Cordova, F. Violi, and G. A. FitzGerald. 1998. Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F-III, an index of oxidant stress. Am. J. Respir. Crit .Care Med. 158:1709–1714.

    CAS  PubMed  Google Scholar 

  23. Pauwels, R. A., S. A. Buist, P. M. A. Calverley, C. R. Jenkins, and S. S. Hurd. 2001. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop Summary. Am. J. Respir. Crit. Care Med. 163:1256–1276.

    Google Scholar 

  24. Chhabra, S. K., S. Rajpal, and R. Gupta. 2001. Patterns of smoking in Delhi: Comparison of respiratory morbidity among Bidi and Cigarette smokers. Ind. J. Chest. Dis. Allied. Sci. 43:19–26.

    CAS  Google Scholar 

  25. Lehmeyer, J. E., R. Synderman, and R. B. Johnson. 1979. Stimulation of neutrophil oxidative metabolism by chemotactic peptides: Influence of calcium ion concentration and cytochalasin B and comparison with stimulation by phorbol myristate acetate. Blood 54:35–45.

    CAS  PubMed  Google Scholar 

  26. Little, C., R. Olinescu, K. G. Reid, and P. J. O'Brien. 1970. Properties and regulation of glutathione peroxidase. J. Biol. Chem. 245:3632–3636.

    CAS  PubMed  Google Scholar 

  27. Benzie, I. F. F., and J. J. Strain. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP Assay. Anal. Chem. 239:70–76.

    CAS  Google Scholar 

  28. Tracey, W. R., J. Tse, and G. Carter. 1995. Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J. Pharm. Exptl. Ther. 272:1011–1015.

    CAS  Google Scholar 

  29. Dousset, J., M. Trouilh, and M. Foglietti. 1983. Plasma malonaldehyde levels during myocardial infarction. Clin. Chim. Acta. 129:319–322.

    Article  CAS  PubMed  Google Scholar 

  30. Hu, M.-L., C. J. Dillard, and A. Tappel. 1988. In vivo effects of aurothioglucose and sodium thioglucose on rat tissue sulfhydryls and plasma sulfhydryl reactivity. Agents. Actions 25:132–137.

    Article  CAS  PubMed  Google Scholar 

  31. Levine, R. L., D. Garlard, C. N. Oliver, A. Amici, I. Climent, A. G. Lenz, B. W. Ahn, S. Shaltiel, and E. Stadman. 1990. Determination of carbonyl content in oxidatively modified proteins. In: Methods in Enzymology. Vol. 186, N. Packer and A. N. Glazer, eds. Raven Press, New York, pp. 464–472.

    Google Scholar 

  32. Aebi, H. 1974. Catalase. In: Methods in Enzymatic Analysis Vol 2, H. U. Bergmeyer, ed. Academic Press, New York, pp. 673–678.

    Google Scholar 

  33. McCord, J. M. and I. Fridovich. 1969. Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–6055.

    CAS  PubMed  Google Scholar 

  34. Griffith, O. W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106:207–212.

    Article  CAS  PubMed  Google Scholar 

  35. Montuschi, P., S. A. Kharitonov, and P. J. Barnes. 2001. Exhaled carbon monoxide and nitric oxide in COPD. Chest 120:496–501.

    Article  CAS  PubMed  Google Scholar 

  36. Dekhuijzen, P. N. R., K. K. H. Aben, I. Dekker, L. P. H. J. Aarts, P. L. M. L. Wielders, C. L. C. Van Herwaarden, and A. Bast. 1996. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 154:813–816.

    CAS  PubMed  Google Scholar 

  37. Petrone, W. F., D. K. English, K. Wong, and J. M. McCord. 1980. Free radicals and inflammation: Superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc. Natl. Acad. Sci. USA. 77:1159–1163.

    Google Scholar 

  38. Lehr, H.-A., E. Kress, M. D. Menger, H. P. Friedl, C. Hubner, K. E. Arfors, and K. Messmer. 1993. Cigarette smoke elicits leukocyte adhesion to endothelium in hamsters:Inhibition by CuZn-SOD. Free. Rad. Biol.Med. 14:573–581.

    Article  CAS  PubMed  Google Scholar 

  39. Balint, B., L. E. Donnelly, T. Hanazawa, S. A. Kharitonov, and P. J. Barnes. 2001. Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. Thorax 56:456–461.

    Article  CAS  PubMed  Google Scholar 

  40. Rutgers, S. R, T. W. V. Mark, W. Coers, H. Moshage, W. Timens, H. F. Kauffman, G. H. Koeter, and D. S. Postma. 1999. Markers of nitric oxide metabolism in sputum and exhaled air are not increased in chronic obstructive pulmonary disease. Thorax. 54:576–580.

    CAS  PubMed  Google Scholar 

  41. Blum, J., and I. Fridovich. 1985. Inactivation of glutathione peroxidase by superoxide radical. Arch. Biochem. Biophys. 249:500–508.

    Google Scholar 

  42. Comhair, S. A. A., M. J. Thomassen, and S. C. Erzurum. 2000. Differential induction of extracellular glutathione peroxidase and nitric oxide synthase 2 in the airways of healthy individuals exposed to 100% O2 or cigarette smoke. Am. J. Respir. Cell. Mol. Biol. 23:350–354.

    CAS  PubMed  Google Scholar 

  43. Rahman, I., C. A. D. Smith, M. F. Lawson, D. J. Harrison, and W. MacNee. 1996. Induction of gamma-glutamylcysteine synthetase by cigarette smoke is associated with AP-1 in human alveolar epithelial cells. FEBS. Lett. 396:21–25.

    Article  CAS  PubMed  Google Scholar 

  44. Lynch, R. E. and I. Fridovich. 1978. Permeation of the erythrocyte stroma by superoxide radical. J. Biol .Chem. 253: 4697–4699.

    CAS  PubMed  Google Scholar 

  45. Cross, C. E., C. A. O'Neill, A. Z. Reznick, M. L. Hu, L. Marcocci, L. Packer, and B. Frei. 1993. Cigarette smoke oxidation of human plasma constituents. Ann. N.Y. Acad. Sci. USA 686:72–90.

    CAS  Google Scholar 

  46. Reznick, A. Z., C. E. Cross, M. L. Hu, Y. J. Suzuki, S. Khwaja, A. Safadi, P. A. Motchnik, L. Packer, and B. Halliwell. 1982. Modification of plasma proteins by cigarette smoke as measured by protein carbonyls formation. Biochem. J. 286:607–611.

    Google Scholar 

  47. Frei, B., T. M. Forte, B. N. Ames, and C. E. Cross. 1991. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Biochem. J. 277:133–138.

    CAS  PubMed  Google Scholar 

  48. Linden, M., J. B. Rasmussen, L. Pitulainen, A. Tunek, M. Larson, H. Tegner, P. Venge, L. A. Laitinen, and R. Brattsand. 1993. Airway inflammation in smokers and non–obstructive and obstructive chronic bronchitis. Am Rev Respir Dis. 48:1226–1232.

    Google Scholar 

  49. Rahman, I., E. Swarska, M. Henry, J. Stolk, and W. MacNee. 2000. Is there any relationship between plasma antioxidant capacity and lung function in smokers and patients with chronic obstructive pulmonary disease? Thorax. 55:189–193.

    Article  CAS  PubMed  Google Scholar 

  50. Ghiselli, A., M. Serafini, F. Natella, and C.Scaccini. 2000. Total antioxidant capacity to assess redox status: Critical view and experimental data. Free Radio Biol. Med. 29:1106–1114.

    CAS  Google Scholar 

  51. Schafer, F. Q. and G. R. Buettner. 2001. Redox environment of the cells as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radio Biol Med. 30:1191–1212.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Chhabra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadeem, A., Raj, H.G. & Chhabra, S.K. Increased Oxidative Stress and Altered Levels of Antioxidants in Chronic Obstructive Pulmonary Disease. Inflammation 29, 23–32 (2005). https://doi.org/10.1007/s10753-006-8965-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-006-8965-3

Key Words

Navigation