Skip to main content

Advertisement

Log in

Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Background. This study assessed the performance of a Functional Approximation based on a Levenberg-Marquardt Algorithm (FA-LMA) to calculate airway dead space (VDaw) and the slope of phase III (S III) from capnograms. Methods. We performed mathematical simulations to test the effect of noises on the calculation of VDaw and S III. Data from ten mechanically ventilated patients at 0, 5 and 10 cmH2O of PEEP were also studied. FA-LMA was compared with the traditional Fowler’s method (FM). Results. Simulations showed that: (1) The FM determined VDaw with accuracy only if the capnogram approximated a symmetrical curve (S III = 0). When capnograms became asymmetrical (S III > 0), the FM underestimated VDaw (−3.1% to −0.9%). (2) When adding noises on 800 capnograms, VDaw was underestimated whenever the FM was used thereby creating a bias between −5.54 and −1.28 ml at standard deviations (SD) of 0.1–1.8 ml (P < 0.0001). FA-LMA calculations of VDaw were close to the simulated values with the bias ranging from −0.21 to 0.16 ml at SD from 0.1 to 0.4 ml. The FM overestimated S III and showed more bias (0.0041–0.0078 mmHg/ml, P < 0.0001) than the FA-LMA (0.0002–0.0030 mmHg/ml). When calculating VDaw from patients, variability was less with the FA-LMA leading to mean variation coefficients of 0.0102, 0.0111 and 0.0123 compared to the FM (0.0243, 0.0247 and 0.0262, P < 0.001) for 0, 5 and 10 cmH2O of PEEP, respectively. The FA-LMA also showed less variability in S III with mean variation coefficients of 0.0739, 0.0662 and 0.0730 compared to the FM (0.1379, 0.1208 and 0.1246, P < 0.001) for 0, 5 and 10 cmH2O of PEEP, respectively. Conclusions. The Functional Approxi- mation based on a Levenberg-Marquardt Algorithm showed less bias and dispersion compared to the traditional Fowler’s method when calculating VDaw and S III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fowler WS. Lung function studies. II. The respiratory dead space. Am J Physiol. 1948;154:405–16.

    PubMed  CAS  Google Scholar 

  2. Enghoff H. Volumen inefficax. Bemerkungen zur Frage des schädlichen Raumes. Uppsala Läkareforen Forhandl.. 1938;44:191–218.

    Google Scholar 

  3. Schwardt JD, Neufeld GR, Baumgardner JE, Scherer PW. Noninvasive recovery of acinar anatomic information from CO2 expirograms. Ann Biomed Eng. 1994;22:293–306.

    Article  PubMed  CAS  Google Scholar 

  4. Verschuren F, Heinonen E, Clause D, Roeseler J, Thys F, Meert P, et al. Volumetric capnography as a bedside monitoring of thrombolysis in major pulmonary embolism. Intensive Care Med. 2004;30:2129–30.

    Article  PubMed  Google Scholar 

  5. Tusman G, Böhm SH, Suárez Sipmann F, Turchetto E. Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anesth. 2004;51:723–7.

    Article  PubMed  Google Scholar 

  6. You B, Peslin R, Duvivier C, et al. Expiratory capnography in asthma: evaluation of various shape indices. Eur Respir J. 1994;7:318–23.

    Article  PubMed  CAS  Google Scholar 

  7. Blanch LL, Fernandez R, Saura P, Baigorri F, Artigas A. Relationship between expired capnogram and respiratory system resistance in critically ill patients during total ventilatory support. Eur Respir J. 1999;13:1048–54.

    Article  PubMed  CAS  Google Scholar 

  8. Hatch T, Cook KM, Palm PE. Respiratory dead space. J Appl Physiol. 1953;5:341–7.

    PubMed  CAS  Google Scholar 

  9. Langley F, Even P, Duroux P, Nicolas RL, Cumming G. Ventilatory consequences of unilateral pulmonary artery occlusion. Les colloques de L’Institut National de la Santé et de la Recherche Medicale. 1975;51:209–14.

    Google Scholar 

  10. Olsson SG, Fletcher R, Jonson B, Nordstroem L, Prakash O. Clinical studies of gas exchange during ventilatory support—a method using the Siemens-Elema CO2 analyzer. Br J Anaesth. 1980;52:491–8.

    Article  PubMed  CAS  Google Scholar 

  11. Fletcher R, Jonson B. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth. 1981;53:77–88.

    Article  PubMed  CAS  Google Scholar 

  12. Cumming G, Guyatt AR. Alveolar gas mixing efficiency in the human lung. Clin Sci (Lond). 1982;62:541–7.

    CAS  Google Scholar 

  13. Wolff G, Brunner JX, Weibel W, Bowes CL, Muchenberger R, Bertschmann W. Anatomical and series dead space volume: concept and measurement in clinical praxis. Appl Cardiopulm Pathophysiol. 1989;2:299–307.

    Google Scholar 

  14. Bowes CL, Richrdson JD, Cumming G, Horsfield K. Effect of breathing pattern on gas mixing in a model of asymmetrical alveolar ducts. J Appl Physiol. 1985;58:18–26.

    PubMed  CAS  Google Scholar 

  15. Gerald CF, Wheatley PO. Applied numerical analysis. 6th ed. Reading: Addison-Wesley; 1999.

    Google Scholar 

  16. Levenberg K. A method for the solution of certain problems in least squares. Quart Appl Math. 1944;2:164–8.

    Google Scholar 

  17. Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math. 1963;11:431–41.

    Article  Google Scholar 

  18. Moré JJ. The Levenberg-Marquardt algorithm: implementation and theory. In: Watson GA, editor. Numerical analysis. New York: Springer-Verlag; 1977. p. 105–16.

    Google Scholar 

  19. Crawford ABH, Makowska M, Paiva M, Engel LA. Convection-dependent and diffusion-dependent ventilation maldistribution in normal subjects. J Appl Physiol. 1985;59:838–46.

    PubMed  CAS  Google Scholar 

  20. Dutrieue B, Vanholsbeeck F, Verbank S, Paiva M. A human acinar structure for simulation of realistic alveolar plateau slopes. J Appl Physiol. 2000;89:1859–67.

    PubMed  CAS  Google Scholar 

  21. Gomez DM. A physico-mathematical study of lung function in normal subjects and in patients with obstructive pulmonary diseases. Med Thorac. 1965;22:275–94.

    PubMed  CAS  Google Scholar 

  22. Engel LA. Gas mixing within acinus of the lung. J Appl Physiol. 1983;54:609–18.

    Article  PubMed  CAS  Google Scholar 

  23. Paiva M. Gas transport in human lung. J Appl Physiol. 1973;35:401–10.

    PubMed  CAS  Google Scholar 

  24. Breen PH, Mazumdar B. How does positive end-expiratory pressure decreases CO2 elimination from the lungs? Respir Physiol. 1996;103:233–42.

    Article  PubMed  CAS  Google Scholar 

  25. Hedenstierna G, Lundberg S. Airway compliance during artificial ventilation. Br J Anaesth. 1975;47:1227–32.

    Google Scholar 

  26. Tang Y, Turner MJ, Baker AB. Systematic errors and susceptibility to noise of four methods for calculating anatomical dead space from the CO2 expirogram. Br J Anaesth. 2007;98:828–34.

    Article  PubMed  CAS  Google Scholar 

  27. Schulz H, Schulz A, Eder G, Heyder J. Labeled carbon dioxide (C18O2): an indicator gas for phase II expirograms. J Appl Physiol. 2004;97:1755–62.

    Article  PubMed  Google Scholar 

  28. Nichol GM, Michels DB, Guy HJB. Phase V of the single-breath washout test. J Appl Physiol. 1982;52:34–43.

    PubMed  CAS  Google Scholar 

  29. Wong EG, Prisk GK, Hastings RH, Dueck R. Capnographic identification of expiratory flow limitation. Anesthesiology. 2008;109:A1230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Tusman MD.

Additional information

Tusman G, Scandurra A, Böhm SH, Sipmann FS, Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tusman, G., Scandurra, A., Böhm, S.H. et al. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput 23, 197–206 (2009). https://doi.org/10.1007/s10877-009-9182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-009-9182-z

Key words

Navigation