Skip to main content

Advertisement

Log in

Could Vitamin D Have a Potential Anti-Inflammatory and Anti-Infective Role in Bronchiectasis?

  • RESPIRATORY INFECTIONS (F ARNOLD, SECTION EDITOR)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Bronchiectasis is a chronic infective and inflammatory respiratory disease that causes significant morbidity and mortality. Patients with non-cystic-fibrosis bronchiectasis are frequently vitamin D deficient, and vitamin D levels correlate with disease severity. Infection-specific actions of vitamin D include the enhancement of innate immunity and the moderation of inflammation caused by the adaptive immune response. Potentially, vitamin D could influence the processes that lead to bronchiectasis and the frequency and severity of acute exacerbations. Randomized trials of vitamin D supplementation have shown effects that are likely to be protective against the development of bronchiectasis. Several issues need to be clarified before the development of clinical trials to investigate the role of vitamin D in bronchiectasis. These include an optimal vitamin D supplementation dose and appropriate and sensitive outcome measures that include assessment of exacerbation frequency and severity, lung function, and health-related quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Hewison M. An update on vitamin D and human immunity. Clin Endocrinol (Oxf). 2012;76:315–25. An excellent recent review of the role of vitamin D in human immunity.

    Article  CAS  Google Scholar 

  2. Chishimba L, Thickett DR, Stockley RA, et al. The vitamin D axis in the lung: a key role for vitamin D-binding protein. Thorax. 2010;65:456–62.

    Article  PubMed  CAS  Google Scholar 

  3. •• Chalmers J, McHugh B, Docherty C, et al. Vitamin-D deficiency is associated with chronic bacterial colonisation and disease severity in bronchiectasis. Thorax 2013;68:39–47. Recent case series documenting the association of low 25(OH)D levels with bronchiectasis and bronchiectasis severity.

  4. • Camargo Jr CA, Ganmaa D, Frazier A, et al. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics. 2012;130:e561–7. A well-designed RCT showing a halving in incidence of upper respiratory tract infection in vitamin D deficient children given daily vitamin D supplementation.

    Article  PubMed  Google Scholar 

  5. Urashima M, Segawa T, Okazaki M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010;91:1255–60.

    Article  PubMed  CAS  Google Scholar 

  6. Manaseki-Holland S, Qader G, Isaq Masher M, et al. Effects of vitamin D supplementation to children diagnosed with pneumonia in Kabul: a randomised controlled trial. Trop Med Int Health. 2010;15:1148–55.

    Article  PubMed  CAS  Google Scholar 

  7. •• Coussens A, Wilkinson R, Hanifa Y, et al. Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc Natl Acad Sci USA. 2012;109:15449–54. An important clinical study documenting the anti-inflammatory actions of vitamin D in a clinical situation.

    Article  PubMed  CAS  Google Scholar 

  8. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2010.

    Google Scholar 

  9. Bradley JM, Moran F, Greenstone M. Physical training for bronchiectasis. Cochrane Database Syst Rev. 2002;3:CD002166.

    PubMed  Google Scholar 

  10. Kapur N, Bell S, Kolbe J, et al. Inhaled steroids for bronchiectasis. Cochrane Database Syst Rev. 2009;1:CD000996.

    PubMed  Google Scholar 

  11. Lasserson T, Holt K, Greenstone M. Oral steroids for bronchiectasis (stable and acute exacerbations). Cochrane Database Syst Rev. 2001;4:CD002162.

    PubMed  Google Scholar 

  12. Pizzutto SJ, Upham JW, Yerkovich ST, et al. Inhaled non-steroid anti-inflammatories for children and adults with bronchiectasis. Cochrane Database Syst Rev. 2010;4:CD007525.

    PubMed  Google Scholar 

  13. • Wong C, Jayaram L, Karalus N, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet. 2012;380:660–7. Azithromycin appears an important antibiotic in bronchiectasis management.

    Article  PubMed  CAS  Google Scholar 

  14. Pincikova T, Nilsson K, Moen IE, et al. Inverse relation between vitamin D and serum total immunoglobulin G in the Scandinavian Cystic Fibrosis Nutritional Study. Eur J Clin Nutr. 2011;65:102–9.

    Article  PubMed  CAS  Google Scholar 

  15. King P. The pathophysiology of bronchiectasis. Int J Chron Obstruct Pulmon Dis. 2009;4:411–9.

    Article  PubMed  Google Scholar 

  16. Holick MF. Vitamin D, deficiency. N Eng J Med. 2007;357:266–81.

    Article  CAS  Google Scholar 

  17. Carlberg C, Molnar F. Current status of vitamin D signaling and its therapeutic applications. Curr Top Med Chem. 2012;12:528–47.

    Article  PubMed  CAS  Google Scholar 

  18. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.

    Article  PubMed  CAS  Google Scholar 

  19. Kim ST, Cha HE, Kim DY, et al. Antimicrobial peptide LL-37 is upregulated in chronic nasal inflammatory disease. Acta Otolaryngol. 2003;123:81–5.

    Article  PubMed  Google Scholar 

  20. Bals R, Wang X, Zasloff M, et al. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A. 1998;95:9541–6.

    Article  PubMed  CAS  Google Scholar 

  21. Gudmundsson GH, Agerberth B. Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods. 1999;232:45–54.

    Article  PubMed  CAS  Google Scholar 

  22. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3:238–50.

    Article  PubMed  CAS  Google Scholar 

  23. Rockett KA, Brookes R, Udalova I, et al. 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun. 1998;66:5314–21.

    PubMed  CAS  Google Scholar 

  24. Desjardins M, Huber LA, Parton RG, et al. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol. 1994;124:677–88.

    Article  PubMed  CAS  Google Scholar 

  25. Russell DG. Mycobacterium and Leishmania: stowaways in the endosomal network. Trends Cell Biol. 1995;5:125–8.

    Article  PubMed  CAS  Google Scholar 

  26. Pieters J. Evasion of host cell defense mechanisms by pathogenic bacteria. Curr Opin Immunol. 2001;13:37–44.

    Article  PubMed  CAS  Google Scholar 

  27. Hmama Z, Sendide K, Talal A, et al. Quantitative analysis of phagolysosome fusion in intact cells: inhibition by mycobacterial lipoarabinomannan and rescue by an 1alpha,25-dihydroxyvitamin D3-phosphoinositide 3-kinase pathway. J Cell Sci. 2004;15:2131–40.

    Article  Google Scholar 

  28. Coussens A, Timms PM, Boucher BJ, et al. 1alpha,25-dihydroxyvitamin D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology. 2009;127:539–48.

    Article  PubMed  CAS  Google Scholar 

  29. Adorini L, Penna G. Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum Immunol. 2009;70:345–52.

    Article  PubMed  CAS  Google Scholar 

  30. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449:419–26.

    Article  PubMed  CAS  Google Scholar 

  31. Mahnke K, Johnson TS, Ring S, et al. Tolerogenic dendritic cells and regulatory T cells: a two-way relationship. J Dermatol Sci. 2007;46:159–67.

    Article  PubMed  CAS  Google Scholar 

  32. Medzhitov R, Janeway Jr C. Innate immunity. N Engl J Med. 2000;343:338–44.

    Article  PubMed  CAS  Google Scholar 

  33. Margulies DH. TCR avidity: it’s not how strong you make it, it’s how you make it strong. Nat Immunol. 2001;2:669–70.

    Article  PubMed  CAS  Google Scholar 

  34. Slifka MK, Whitton JL. Functional avidity maturation of CD8(+) T cells without selection of higher affinity TCR. Nat Immunol. 2001;2:711–7.

    Article  PubMed  CAS  Google Scholar 

  35. Lemire JM, Archer DC, Beck L, et al. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr. 1995;125(6 Suppl):1704S–8.

    PubMed  CAS  Google Scholar 

  36. Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep. 2011;11:29–36.

    Article  PubMed  CAS  Google Scholar 

  37. Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Review Immunol. 2008;8:523–32.

    Article  CAS  Google Scholar 

  38. Jeffery LE, Burke F, Mura M, et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol. 2009;183:5458–67.

    Article  PubMed  CAS  Google Scholar 

  39. Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179:1634–47.

    PubMed  CAS  Google Scholar 

  40. Dimeloe S, Nanzer A, Ryanna K, et al. Regulatory T cells, inflammation and the allergic response - The role of glucocorticoids and Vitamin D. J Steroid Biochem Mol Biol. 2010;120:86–95.

    Article  PubMed  CAS  Google Scholar 

  41. Jirapongsananuruk O, Melamed I, Leung DY. Additive immunosuppressive effects of 1,25(OH)2D3 and corticosteroids on Th1, but not Th2, responses. J Allergy Clin Immunol. 2000;106:981–5.

    Article  PubMed  CAS  Google Scholar 

  42. Pichler J, Gerstmayr M, Szepfalusi Z, et al. 1 alpha,25(OH)2D3 inhibits not only Th1 but also Th2 differentiation in human cord blood T cells. Pediatr Res. 2002;52:12–8.

    PubMed  CAS  Google Scholar 

  43. • Rothers J, Wright A, Halonen M, et al. Cord blood 25-hydroxyvitamin D levels are associated with aeroallergen sensitization in children from Tucson, Arizona. J Allergy Clin Immunol. 2011;128:1093–9. This article has shown that both high and low 25-hydroxyvitamin D levels are associated with aeroallergen sensitization.

    Article  PubMed  CAS  Google Scholar 

  44. Dunne Jr WM. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 2002;15:155–66.

    Article  PubMed  CAS  Google Scholar 

  45. Otto M. Bacterial evasion of antimicrobial peptides by biofilm formation. Curr Top Microbiol Immunol. 2006;306:251–8.

    Article  PubMed  CAS  Google Scholar 

  46. Schmidtchen A, Frick I-M, Andersson E, et al. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol. 2002;46:157–68.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenfeld Y, Shai Y. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta. 2006;1758:1513–22.

    Article  PubMed  CAS  Google Scholar 

  48. Overhage J, Campisano A, Bains M, et al. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Imm. 2008;76:4176–82.

    Article  CAS  Google Scholar 

  49. Chennupati SK, Chiu AG, Tamashiro E, et al. Effects of an LL-37-derived antimicrobial peptide in an animal model of biofilm Pseudomonas sinusitis. Am J Rhinol Allergy. 2009;23:46–51.

    Article  PubMed  Google Scholar 

  50. Matheson EM, Mainous 3rd AG, Hueston WJ, et al. Vitamin D and methicillin-resistant Staphylococcus aureus nasal carriage. Scand J Infect Dis. 2010;42:455–60.

    Article  PubMed  CAS  Google Scholar 

  51. Olsen K, Falch BM, Danielsen K, et al. Staphylococcus aureus nasal carriage is associated with serum 25-hydroxyvitamin D levels. Eur J Clin Microbiol Infect Dis. 2012;31:465–73.

    Article  PubMed  CAS  Google Scholar 

  52. Eastham KM, Freeman R, Kearns AM, et al. Clinical features, aetiology and outcome of empyema in children in the north east of England. Thorax. 2004;59:522–5.

    Article  PubMed  CAS  Google Scholar 

  53. Pasteur MC, Helliwell SM, Houghton SJ, et al. An investigation into causative factors in patients with bronchiectasis. Am J Resp Crit Care Med. 2000;162:1277–84.

    Article  PubMed  CAS  Google Scholar 

  54. Kolbe J, Wells A. Bronchiectasis: a neglected cause of respiratory morbidity and mortality. Respirology. 1996;1:221–5.

    Article  PubMed  CAS  Google Scholar 

  55. Roberts HJ, Hubbard R. Trends in bronchiectasis mortality in England and Wales. Respir Med. 2010;104:981–5.

    Article  PubMed  Google Scholar 

  56. Seitz AE, Olivier KN, Steiner CA, et al. Trends and burden of bronchiectasis-associated hospitalizations in the United States, 1993–2006. Chest. 2010;138:944–9.

    Article  PubMed  Google Scholar 

  57. Field CE. Bronchiectasis. A long-term follow-up of medical and surgical cases from childhood. Arch Dis Child. 1961;36:587–603.

    Article  PubMed  CAS  Google Scholar 

  58. Twiss J, Metcalfe R, Edwards E, et al. New Zealand national incidence of bronchiectasis “too high” for a developed country. Arch Dis Child. 2005;90:737–40.

    Article  PubMed  CAS  Google Scholar 

  59. Haidopoulou K, Calder A, Jones A, et al. Bronchiectasis secondary to primary immunodeficiency in children: longitudinal changes in structure and function. Pediatr Pulmonol. 2009;44:669–75.

    Article  PubMed  Google Scholar 

  60. Eastham KM, Fall AJ, Mitchell L, et al. The need to redefine non-cystic fibrosis bronchiectasis in childhood. Thorax. 2004;59:324–7.

    Article  PubMed  CAS  Google Scholar 

  61. Courtney J, Kelly M, Watt A, et al. Quality of life and inflammation in exacerbations of bronchiectasis. Chron Respir Dis. 2008;5:161–8.

    Article  PubMed  CAS  Google Scholar 

  62. Dupont M, Gacouin A, Lena H, et al. Survival of patients with bronchiectasis after the first ICU stay for respiratory failure. Chest. 2004;125:1815–20.

    Article  PubMed  Google Scholar 

  63. Singleton R, Morris A, Redding G, et al. Bronchiectasis in Alaska Native children: causes and clinical courses. Pediatr Pulmonol. 2000;29:182–7.

    Article  PubMed  CAS  Google Scholar 

  64. Roberts ME, Lowndes L, Milne DG, et al. Socioeconomic deprivation, readmissions, mortality and acute exacerbations of bronchiectasis. Intern Med J. 2012;42:e129–36.

    Article  PubMed  CAS  Google Scholar 

  65. Roberts H, Wells A, Milne D, et al. Airflow obstruction in bronchiectasis: correlation between computed tomography features and pulmonary function tests. Thorax. 2000;55:198–204.

    Article  PubMed  CAS  Google Scholar 

  66. Gaga M, Bentley AM, Humbert M, et al. Increases in CD4+ T lymphocytes, macrophages, neutrophils and interleukin 8 positive cells in the airways of patients with bronchiectasis. Thorax. 1998;53:685–91.

    Article  PubMed  CAS  Google Scholar 

  67. Barker AF. Bronchiectasis. N Engl J Med. 2002;346:1383–93.

    Article  PubMed  Google Scholar 

  68. Zheng L, Tipoe G, Lam W, et al. Endothelin-1 in stable bronchiectasis. Eur Respir J. 2000;16:146–9.

    Article  PubMed  CAS  Google Scholar 

  69. Tsang KW, Chan K, Ho P, et al. Sputum elastase in steady-state bronchiectasis. Chest. 2000;117:420–6.

    Article  PubMed  CAS  Google Scholar 

  70. Richman-Eisenstat JB, Jorens PG, Hebert CA, et al. Interleukin-8: an important chemoattractant in sputum of patients with chronic inflammatory airway diseases. Am J Physiol. 1993;264:L413–8.

    PubMed  CAS  Google Scholar 

  71. Shum DK, Chan SC, Ip MS. Neutrophil-mediated degradation of lung proteoglycans: stimulation by tumor necrosis factor-alpha in sputum of patients with bronchiectasis. Am J Resp Crit Care Med. 2000;162:1925–31.

    Article  PubMed  CAS  Google Scholar 

  72. Wilson R, Cole PJ. The effect of bacterial products on ciliary function. Am Rev Resp Dis. 1988;138:S49–53.

    Article  PubMed  CAS  Google Scholar 

  73. • Beck JM, Young VB, Huffnagle GB. The microbiome of the lung. Transl Res. 2012;160:258–66. An important review article about a rapidly evolving area of microbiology.

    Article  PubMed  CAS  Google Scholar 

  74. Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Resp Crit Care Med. 2011;184:957–63.

    Article  PubMed  Google Scholar 

  75. Hare KM, Grimwood K, Leach AJ, et al. Respiratory bacterial pathogens in the nasopharynx and lower airways of Australian indigenous children with bronchiectasis. J Pediatr. 2010;157:1001–5.

    Article  PubMed  Google Scholar 

  76. Godoy JM, Godoy AN, Ribalta G, et al. Bacterial pattern in chronic sinusitis and cystic fibrosis. Otolaryngol Head Neck Surg. 2011;145:673–6.

    Article  PubMed  Google Scholar 

  77. Guilemany JM, Angrill J, Alobid I, et al. United airways: the impact of chronic rhinosinusitis and nasal polyps in bronchiectasic patient’s quality of life. Allergy. 2009;64:1524–9.

    Article  PubMed  CAS  Google Scholar 

  78. Bardin P, Van Heerden B, Joubert J. Absence of pulmonary aspiration of sinus contents in patients with asthma and sinusitis. J Allergy Clin Immunol. 1990;86:82–3.

    Article  PubMed  CAS  Google Scholar 

  79. Brehm J, Schuemann B, Fuhlbrigge A, et al. Serum vitamin D levels and severe asthma exacerbations in the childhood asthma management program study. J Allergy Clin Immunol. 2010;126:52–8.

    Article  PubMed  CAS  Google Scholar 

  80. Brehm JM, Acosta-Perez E, Klei L, et al. Vitamin D insufficiency and severe asthma exacerbations in Puerto Rican children. Am J Resp Crit Care Med. 2012;186:140–6.

    Article  PubMed  CAS  Google Scholar 

  81. Lehouck A, Mathieu C, Carremans C, et al. High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med. 2012;156:105–14.

    PubMed  Google Scholar 

  82. •• Bartley J, Camargo CA Jr. Vitamin D and infection. In: Vitamin D: oxidation, immunity & aging. Edited by Gombart A. Taylor & Francis Group, CRC Press; 2012:323–48. A recent review of clinical studies investigating the role of vitamin D in infectious disease.

  83. Majak P, Olszowiec-Chlebna M, Smejda K, et al. Vitamin D supplementation in children may prevent asthma exacerbation triggered by acute respiratory infection. J Allergy Clin Immunol. 2011;127:1294–6.

    Article  PubMed  Google Scholar 

  84. Manaseki-Holland S, Maroof Z, Bruce J, et al. Effect on the incidence of pneumonia of vitamin D supplementation by quarterly bolus dose to infants in Kabul: a randomised controlled superiority trial. Lancet. 2012;379:1419–27.

    Article  PubMed  CAS  Google Scholar 

  85. Martineau AR, Timms PM, Bothamley GH, et al. High-dose vitamin D3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet. 2011;377:242–50.

    Article  PubMed  CAS  Google Scholar 

  86. • Murdoch D, Slow S, Chambers S, et al. Effect of vitamin D3 supplementation on upper respiratory infections in healthy adults: A randomised, double blind, placebo-controlled trial. JAMA. 2012;308:1333–9. A recent RCT indicating that vitamin D levels above 75nmol/L may not provide protection against upper respiratory infection.

    Article  PubMed  CAS  Google Scholar 

  87. Nielsen NO, Skifte T, Andersson M, et al. Both high and low serum vitamin D concentrations are associated with tuberculosis: a case–control study in Greenland. Br J Nutr. 2010;104:1487–91.

    Article  PubMed  CAS  Google Scholar 

  88. Martineau AR. Bolus-dose vitamin D and prevention of childhood pneumonia. Lancet. 2012;379:1373–5.

    Article  PubMed  Google Scholar 

  89. Stephenson A, Brotherwood M, Robert R, et al. Cholecalciferol significantly increases 25-hydroxyvitamin D concentrations in adults with cystic fibrosis. Am J Clin Nutr. 2007;85:1307–11.

    PubMed  CAS  Google Scholar 

  90. Grossmann RE, Zughaier SM, Kumari M, et al. Pilot study of vitamin D supplementation in adults with cystic fibrosis pulmonary exacerbation: A randomized, controlled trial. Dermatoendocrinol. 2012;4:191–7.

    Article  PubMed  CAS  Google Scholar 

  91. Grossmann RE, Zughaier SM, Liu S, et al. Impact of vitamin D supplementation on markers of inflammation in adults with cystic fibrosis hospitalized for a pulmonary exacerbation. Eur J Clin Nutr. 2012;66:1072–4.

    Article  PubMed  CAS  Google Scholar 

  92. Reid D, Toole B, Knox S, et al. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am J Clin Nutr. 2011;93:1006–11.

    Article  PubMed  CAS  Google Scholar 

  93. Bischoff-Ferrari HA, Giovannucci E, Willett WC, et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84:18–28.

    PubMed  CAS  Google Scholar 

  94. Calverley P, Pauwels Dagger R, Lofdahl C, et al. Relationship between respiratory symptoms and medical treatment in exacerbations of COPD. Eur Respir J. 2005;26:406–13.

    Article  PubMed  CAS  Google Scholar 

  95. Murray MP, Turnbull K, MacQuarrie S, et al. Validation of the Leicester Cough Questionnaire in non-cystic fibrosis bronchiectasis. Eur Resp J. 2009;34:125–31.

    Article  CAS  Google Scholar 

  96. Eaton T, Young P, Fergusson W, et al. The Dartmouth COOP Charts: a simple, reliable, valid and responsive quality of life tool for chronic obstructive pulmonary disease. Qual Life Res. 2005;14:575–85.

    Article  PubMed  CAS  Google Scholar 

  97. Djukanovic R, Sterk P, Fahy J, et al. Standardised methodology of sputum induction and processing. Eur Resp J. 2002;37:1s–2.

    Article  CAS  Google Scholar 

  98. Aloia JF, Li-Ng M. Re: epidemic influenza and vitamin D. Epidemiol Infect. 2007;135:1095–6. author reply 7–8.

    Article  PubMed  Google Scholar 

  99. Avenell A, Cook JA, Maclennan GS, et al. Vitamin D supplementation to prevent infections: a sub-study of a randomised placebo-controlled trial in older people (RECORD trial, ISRCTN 51647438). Age Ageing. 2007;36:574–7.

    Article  PubMed  Google Scholar 

  100. Li-Ng M, Aloia JF, Pollack S, et al. A randomized controlled trial of vitamin D3 supplementation for the prevention of symptomatic upper respiratory tract infections. Epidemiol Infect. 2009;137:1396–404.

    Article  PubMed  CAS  Google Scholar 

  101. Laaksi I, Ruohola JP, Mattila V, et al. Vitamin D supplementation for the prevention of acute respiratory tract infection: a randomized, double-blinded trial among young Finnish men. J Inf Dis. 2010;202:809–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Bartley, Dr. Garrett, and Professor Camargo Jr. have received a Health Research Council of New Zealand grant with which they are investigating the role of Vitamin D supplementation in adult bronchiectasis.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Bartley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartley, J., Garrett, J., Grant, C.C. et al. Could Vitamin D Have a Potential Anti-Inflammatory and Anti-Infective Role in Bronchiectasis?. Curr Infect Dis Rep 15, 148–157 (2013). https://doi.org/10.1007/s11908-013-0321-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-013-0321-9

Keywords

Navigation