Semin Respir Crit Care Med 2001; 22(2): 137-152
DOI: 10.1055/s-2001-13828
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Optimizing Patient-Ventilator Synchrony

Scott K. Epstein
  • Pulmonary and Critical Care Division, New England Medical Center, Boston, Massachusetts
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

Mechanical ventilation assumes the work of breathing, improves gas exchange, and unloads the respiratory muscles, all of which require good synchronization between the patient and the ventilator. Causes for patient-ventilator dyssynchrony include both patient factors (abnormalities of respiratory drive and abnormal respiratory mechanics) and ventilator factors (triggering, flow delivery, breath termination criteria, the level and mode of ventilator support, and imposed work of breathing). Although patient-ventilator dyssynchrony can often be detected on physical exam, careful analysis of ventilator waveforms (pressure-time, flow-time) allows for more precise definition of the underlying cause. Patient-ventilator interaction can be improved by reversing patient factors that alter respiratory drive or elevate patient ventilatory requirements and by correcting factors that contribute to dynamic hyperinflation. Proper setting of the ventilator using sensitive triggering mechanisms, satisfactory flow rates, adequate delivered minute ventilation, matching machine TI to neural TI, and applying modes that overcome the imposed work of breathing, further optimize patient-ventilator synchrony.

REFERENCES

  • 1 Brochard L, Rauss A, Benito S, Conti G, Mancebo J, Rekik N. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation.  Am J Respir Crit Care Med . 1994;  150 896-903
  • 2 Ely E W, Baker A M, Dunagan D P, Burke H L, Smith A C, Kelly P T. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously.  N Engl J Med . 1996;  335 1864-1869
  • 3 Epstein S K. Weaning Parameters.  Respir Care Clin N Am . 2000;  6 253-301
  • 4 Esteban A, Frutos F, Tobin M J, Alia I, Solsona J F, Valverdu I. A comparison of four methods of weaning patients from mechanical ventilation.  N Engl J Med . 1995;  332 345-350
  • 5 Dick C, Sassoon C. Patient-ventilator interactions.  Clin Chest Med . 1996;  17 423-438
  • 6 Burton S, Hubmayr R. Determination of patient-ventilator interactions: bedside waveform analysis. In: Tobin M, ed. Principles and Practice of Mechanical Ventilation New York: McGraw-Hill, 1994: 655-666
  • 7 Tobin M, Fahey P. Management of the patient who is ``fighting the ventilator''. In: Tobin M, ed. Principles and Practice of Mechanical Ventilation New York: McGraw-Hill, 1994: 1149-1162
  • 8 MacIntyre N R, McConnell R, Cheng K C, Sane A. Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths.  Crit Care Med . 1997;  25 1671-1677
  • 9 Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies.  Eur Respir J . 1997;  10 177-183
  • 10 Fabry B, Haberthur C, Zappe D, Guttmann J, Kuhlen R, Stocker R. Breathing pattern and additional work of breathing in spontaneously breathing patients with different ventilatory demands during inspiratory pressure support and automatic tube compensation.  Intensive Care Med . 1997;  23 545-552
  • 11 Chao D C, Scheinhorn D J, Stearn-Hassenpflug M. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation.  Chest . 1997;  112 1592-1599
  • 12 Kollef M H, Levy N T, Ahrens T S, Schaiff R, Prentice D, Sherman G. The use of continuous iv sedation is associated with prolongation of mechanical ventilation.  Chest . 1998;  114 541-548
  • 13 Kress J P, Pohlman A S, O'Connor M F, Hall J B. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation.  N Engl J Med . 2000;  342 471-1477
  • 14 Murciano D, Boczkowski J, Lecocguic Y, Milic-Emili J, Patiente R, Aubier M. Tracheal occlusion pressure: a simple index to monitor respiratory muscle fatigue during acute respiratory failure in patients with chronic obstructive pulmonary disease.  Ann Intern Med . 1988;  108 800-805
  • 15 Sassoon C SH, Te T T, Mahutte C K, Light R W. Airway occlusion pressure: an important indicator for successful weaning in patients with chronic obstructive pulmonary disease.  Am Rev Respir Dis . 1987;  135 107-113
  • 16 Sassoon C S, Mahutte C K. Airway occlusion pressure and breathing pattern as predictors of weaning outcome.  Am Rev Respir Dis . 1993;  148 860-866
  • 17 Pesenti A, Rossi N, Calori A, Foti G, Rossi G P. Effects of short-term oxygenation changes on acute lung injury patients undergoing pressure support ventilation.  Chest . 1993;  103 1185-1189
  • 18 Epstein S, Singh N. Respiratory acidosis.  Respir Care . 2001;  46 366-383
  • 19 Hubmayr R D. The importance of patient/ventilator interactions during noninvasive mechanical ventilation.  Acta Anaesthesiol Scand Suppl . 1996;  109 46-47
  • 20 Del Rosario N, Sassoon C S, Chetty K G, Gruer S E, Mahutte C K. Breathing pattern during acute respiratory failure and recovery.  Eur Respir J . 1997;  10 2560-2565
  • 21 Marini J J, Rodriguez R M, Lamb V. The inspiratory workload of patient-initiated mechanical ventilation.  Am Rev Respir Dis . 1986;  134 902-909
  • 22 Sassoon C SH, Del Rosario N, Fei R, Rheeman C H, Gruer S E, Mahutte C K. Influence of pressure- and flow-triggered synchronous intermittent mandatory ventilation on inspiratory muscle work.  Crit Care Med . 1994;  22 1933-1941
  • 23 Pepe P E, Marini J J. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect.  Am Rev Respir Dis . 1982;  126 166-170
  • 24 Ranieri V M, Grasso S, Fiore T, Giuliani R. Auto-positive end-expiratory pressure and dynamic hyperinflation.  Clin Chest Med . 1996;  17 379-394
  • 25 Rossi A, Gottfried S B, Higgs B D, Zocchi L, Grassino A, Milic-Emili J. Respiratory mechanics in mechanically ventilated patients with respiratory failure.  J Appl Physiol . 1985;  58 1849-1858
  • 26 Rossi A, Gottfried S B, Zocchi L, Higgs B D, Lennox S, Calverley P M. Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation: the effect of intrinsic positive end-expiratory pressure.  Am Rev Respir Dis . 1985;  131 672-677
  • 27 Brandolese R, Broseghini C, Polese G, Bernasconi M, Brandi G, Milic-Emili J. Effects of intrinsic PEEP on pulmonary gas exchange in mechanically-ventilated patients.  Eur Respir J . 1993;  6 358-363
  • 28 Jubran A, Tobin M J. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation.  Am J Respir Crit Care Med . 1997;  155 906-915
  • 29 Coussa M L, Guerin C, Eissa N T, Corbeil C, Chasse M, Braidy J. Partitioning of work of breathing in mechanically ventilated COPD patients.  J Appl Physiol . 1993;  75 1711-1719
  • 30 Fleury B, Murciano D, Talamo C, Aubier M, Pariente R, Milic-Emili J. Work of breathing in patients with chronic obstructive pulmonary disease in acute respiratory failure.  Am Rev Respir Dis . 1985;  131 822-827
  • 31 Epstein S K. An overview of respiratory muscle function.  Clin Chest Med . 1994;  15 619-639
  • 32 Ninane V, Rypens F, Yernault J-C, DeTroyer A. Abdominal muscle use during breathing in patients wigh chronic airflow obstruction.  Am Rev Respir Dis . 1992;  146 16-21
  • 33 Ninane V, Yernault J C, de Troyer A. Intrinsic PEEP in patients with chronic obstructive pulmonary disease: role of expiratory muscles.  Am Rev Respir Dis . 1993;  148 1037-1042
  • 34 Tobert D G, Simon P M, Stroetz R W, Hubmayr R D. The determinants of respiratory rate during mechanical ventilation.  Am J Respir Crit Care Med . 1997;  155 485-492
  • 35 Iber C, Simon P, Skatrud J B, Mahowald M W, Dempsey J A. The Breuer-Hering reflex in humans: effects of pulmonary denervation and hypocapnia.  Am J Respir Crit Care Med . 1995;  152 217-224
  • 36 Dempsey J A, Skatrud J B. A sleep-induced apneic threshold and its consequences.  Am Rev Respir Dis . 1986;  133 1163-1170
  • 37 Leung P, Jubran A, Tobin M J. Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea.  Am J Respir Crit Care Med . 1997;  155 1940-1948
  • 38 Imanaka H, Nishimura M, Takeuchi M, Kimball W R, Yahagi N, Kumon K. Autotriggering caused by cardiogenic oscillation during flow-triggered mechanical ventilation.  Crit Care Med . 2000;  28 402-407
  • 39 Aslanian P, El Atrous S, Isabey D, Valente E, Corsi D, Harf A. Effects of flow triggering on breathing effort during partial ventilatory support.  Am J Respir Crit Care Med . 1998;  157 135-143
  • 40 Goulet R, Hess D, Kacmarek R M. Pressure vs flow triggering during pressure support ventilation.  Chest . 1997;  111 1649-1653
  • 41 Sassoon C. Mechanical ventilator design and function: the trigger variable.  Respir Care . 1992;  37 1056-1069
  • 42 Sassoon S CH, Mahutte C K, Te T T, Simmons C H, Light R W. Work of breathing and airway occlusion pressure during assist-mode mechanical ventilation.  Chest . 1988;  93 571-576
  • 43 Ward M E, Corbeil C, Gibbons W, Newman S, Macklem P T. Optimization of respiratory muscle relaxation during mechanical ventilation.  Anesthesiology . 1988;  69 29-35
  • 44 Manning H L, Molinary E J, Leiter J C. Effect of inspiratory flow rate on respiratory sensation and pattern of breathing.  Am J Respir Crit Care Med . 1995;  151 751-757
  • 45 MacIntyre N R, Ho L I. Effects of initial flow rate and breath termination criteria on pressure support ventilation.  Chest . 1991;  99 134-138
  • 46 Jubran A, Van de Graaff B W, Tobin M J. Variability of patient-ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med . 1995;  152 129-136
  • 47 Puddy A, Younes M. Effect of inspiratory flow rate on respiratory output in normal subjects.  Am Rev Respir Dis . 1992;  146 787-789
  • 48 Hubmayr R D, Abel M D, Rehder K. Physiologic approach to mechanical ventilation.  Crit Care Med . 1990;  18 103-113
  • 49 Fabry B, Guttmann J, Eberhard L, Bauer T, Haberthur C, Wolff G. An analysis of desynchronization between the spontaneously breathing patient and ventilator during inspiratory pressure support.  Chest . 1995;  107 1387-1394
  • 50 Parthasarathy S, Jubran A, Tobin M J. Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation.  Am J Respir Crit Care Med . 1998;  158 1471-1478
  • 51 Manning H L, Shea S A, Schwartzstein R M, Lansing R W, Brown R, Banzett R B. Reduced tidal volume increases ``air hunger'' at fixed PCO2 in ventilated quadriplegics.  Respir Physiol . 1992;  90 19-30
  • 52 Ayres S, Kozam R, Lukes D. The effect of intermittent positive pressure breathing on the intrathoracic pressure, pulmonary mechanics and work of breathing.  Am Rev Respir Dis . 1963;  87 370-379
  • 53 Marini J J, Smith T C, Lamb V J. External work output and force generation during synchronized intermittent mechanical ventilation: effect of machine assistance on breathing effort.  Am Rev Respir Dis . 1988;  138 1169-1179
  • 54 Flick G R, Bellamy P E, Simmons D H. Diaphragmatic contraction during assisted mechanical ventilation.  Chest . 1989;  96 130-135
  • 55 Imsand C, Feihl F, Perret C, Fitting J W. Regulation of inspiratory neuromuscular output during synchronized intermittent mechanical ventilation.  Anesthesiology . 1994;  80 13-22
  • 56 Bersten A D, Rutten A J, Vedig A E, Skowronski G A. Additional work of breathing imposed by endotracheal tubes, breathing circuits, and intensive care ventilators.  Crit Care Med . 1989;  17 671-677
  • 57 Bolder P M, Healy T E, Bolder A R, Beatty P C, Kay B. The extra work of breathing through adult endotracheal tubes.  Anesth Analg . 1986;  65 853-859
  • 58 Brochard L, Rua F, Lorino H. Inspiratory pressure support compensates for the additional work of breathing caused by the endotracheal tube.  Anesthesiology . 1991;  75 739-745
  • 59 Marini J J, Capps J S, Culver B H. The inspiratory work of breathing during assisted mechanical ventilation.  Chest . 1985;  87 612-618
  • 60 Shapiro M, Wilson R K, Casar G, Bloom K, Teague R B. Work of breathing through different sized endotracheal tubes.  Crit Care Med . 1986;  14 1028-1031
  • 61 Conti G, Rocco M, De Blasi A R, Lappa A, Antonelli M, Bufi M. A new device to remove obstruction from endotracheal tubes during mechanical ventilation in critically ill patients.  Intensive Care Med . 1994;  20 573-576
  • 62 Wright P E, Marini J J, Bernard G R. In vitro versus in vivo comparison of endotracheal tube airflow resistance.  Am Rev Respir Dis . 1989;  140 10-16
  • 63 DeHaven C B, Kirton O C, Morgan J P, Hart A ML, Shatz D V, Civetta J M. Breathing measurement reduces fals-negative classification of tachypneic preextubation trial failures.  Crit Care Med . 1996;  24 976-980
  • 64 Kirton O C, DeHaven C B, Morgan J P, Windsor J, Civetta J M. Elevated imposed work of breathing masquerading as ventilator weaning intolerance.  Chest . 1995;  108 1021-1025
  • 65 Banner M J, Downs J B, Kirby R R, Smith R A, Boysen P G, Lampotang S. Effects of expiratory flow resistance on inspiratory work of breathing.  Chest . 1988;  93 795-799
  • 66 Marini J J, Culver B H, Kirk W. Flow resistance of exhalation valves and positive end-expiratory pressure devices used in mechanical ventilation.  Am Rev Respir Dis . 1985;  131 850-854
  • 67 Pinsky M R, Hrehocik D, Culpepper J A, Snyder J V. Flow resistance of expiratory positive-pressure systems.  Chest . 1988;  94 788-791
  • 68 Rossi A, Appendini L. Wasted efforts and dyssynchrony: is the patient-ventilator battle back?.  Intensive Care Med . 1995;  21 867-870
  • 69 Kress J P, O'Connor M F, Schmidt G A. Clinical examination reliably detects intrinsic positive end-expiratory pressure in critically ill, mechanically ventilated patients.  Am J Respir Crit Care Med . 1999;  159 290-294
  • 70 Sassoon C SH, Giron A E, Ely E A, Light R W. Inspiratory work of breathing on flow-by and demand-flow continuous positive airway pressure.  Crit Care Med . 1989;  17 1108-1114
  • 71 Sydow M, Golisch W, Buscher H, Zinserling J, Crozier T A, Burchardi H. Effect of low-level PEEP on inspiratory work of breathing in intubated patients, both with healthy lungs and with COPD.  Intensive Care Med . 1995;  21 887-895
  • 72 Ranieri V M, Mascia L, Petruzzelli V, Bruno F, Brienza A, Giuliani R. Inspiratory effort and measurement of dynamic intrinsic PEEP in COPD patients: effects of ventilator triggering systems.  Intensive Care Med . 1995;  21 896-903
  • 73 Polese G, Massara A, Poggi R, Brandolese R, Brandi G, Rossi A. Flow-triggering reduces inspiratory effort during weaning from mechanical ventilation.  Intensive Care Med . 1995;  21 682-686
  • 74 Moran J L, Homan S, O'Fathartaigh M, Jackson M, Leppard P. Inspiratory work imposed by continuous positive airway pressure (CPAP) machines: the effect of CPAP level and endotracheal tube size.  Intensive Care Med . 1992;  18 148-154
  • 75 Branson R D, Campbell R S, Davis Jr K, Johnson 2nd J D. Comparison of pressure and flow triggering systems during continuous positive airway pressure.  Chest . 1994;  106 540-544
  • 76 Giuliani R, Mascia L, Recchia F, Caracciolo A, Fiore T, Ranieri V M. Patient-ventilator interaction during synchronized intermittent mandatory ventilation: effects of flow triggering.  Am J Respir Crit Care Med . 1995;  151 1-9
  • 77 Nishimura M, Imanaka H, Yoshiya I, Kacmarek R M. Comparison of inspiratory work of breathing between flow-triggered and pressure-triggered demand flow systems in rabbits.  Crit Care Med . 1994;  22 1002-1009
  • 78 Tutuncu A S, Cakar N, Camci E, Esen F, Telci L, Akpir K. Comparison of pressure- and flow-triggered pressure support ventilation on weaning parameters in patients recovering from acute respiratory failure.  Crit Care Med . 1997;  25 756-760
  • 79 Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients.  Intensive Care Med . 1995;  21 871-879
  • 80 Purro A, Appendini L, De Gaetano A, Gudjonsdottir M, Donner C F, Rossi A. Physiologic determinants of ventilator dependence in long-term mechanically ventilated patients.  Am J Respir Crit Care Med . 2000;  161 1115-1123
  • 81 Alvisi R, Volta C, Righini E, Capuzzo M, Ragazzi R, Verri M. Predictors of weaning outcome in chronic obstructive pulmonary disease patients.  Eur Respir J . 2000;  15 656-662
  • 82 Nevins M, Epstein S. Predictors of outcome for patients with COPD requiring invasive mechanical ventilation.  Chest 2001 (in press).
  • 83 Messinger G, Banner M J, Blanch P B, Layon A J. Using tracheal pressure to trigger the ventilator and control airway pressure during continuous positive airway pressure decreases work of breathing.  Chest . 1995;  108 509-514
  • 84 Banner M J, Blanch P B, Kirby R R. Imposed work of breathing and methods of triggering a demand-flow, continuous positive airway pressure system.  Crit Care Med . 1993;  21 183-190
  • 85 MacIntyre N, Nishimura M, Usada Y, Tokioka H, Takezawa J, Shimada Y. The Nagoya Conference on system design and patient-ventilator interactions during pressure support ventilation.  Chest . 1990;  97 1463-1466
  • 86 Barnard M, Shukla A, Lovell T, Goldstone J. Esophageal-directed pressure support ventilation in normal volunteers.  Chest . 1999;  115 482-489
  • 87 Takahashi T, Takezawa J, Kimura T, Nishiwaki K, Shimada Y. Comparison of inspiratory work of breathing in T-piece breathing, PSV, and pleural pressure support ventilation (PPSV).  Chest . 1991;  100 1030-1034
  • 88 Messinger G, Banner M J. Tracheal pressure triggering a demand-flow continuous positive airway pressure system decreases patient work of breathing.  Crit Care Med . 1996;  24 1829-1834
  • 89 Guttmann J, Eberhard L, Fabry B, Bertschmann W, Wolff G. Continuous calculation of intratracheal pressure in tracheally intubated patients.  Anesthesiology . 1993;  79 503-513
  • 90 Bhatt S, Patel C, Tran I. Imposed work of breathing during tracheal pressure-triggering using a demand-valve CPAP system.  Respir Care . 1996;  41 512-518
  • 91 Sassoon C S, Lodia R, Rheeman C H, Kuei J H, Light R W, Mahutte C K. Inspiratory muscle work of breathing during flow-by, demand-flow, and continuous-flow systems in patients with chronic obstructive pulmonary disease.  Am Rev Respir Dis . 1992;  145 1219-1222
  • 92 Coggeshall J W, Marini J J, Newman J H. Improved oxygenation after muscle relaxation in adult respiratory distress syndrome.  Arch Intern Med . 1985;  145 1718-1720
  • 93 Viale J P, Annat G J, Bouffard Y M, Delafosse B X, Bertrand O M, Motin J P. Oxygen cost of breathing in postoperative patients: pressure support ventilation vs continuous positive airway pressure.  Chest . 1988;  93 506-509
  • 94 Annat G J, Viale J P, Dereymez C P, Bouffard Y M, Delafosse B X, Motin J P. Oxygen cost of breathing and diaphragmatic pressure time index: measurement in patients with COPD during weaning with pressure support ventilation.  Chest . 1990;  98 411-414
  • 95 Brochard L, Harf A, Lorino H, Lemaire F. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation.  Am Rev Respir Dis . 1989;  139 513-521
  • 96 MacIntyre N R. Respiratory function during pressure support ventilation.  Chest . 1986;  89 677-683
  • 97 Elliott M W, Aquilina R, Green M, Moxham J, Simonds A K. A comparison of different modes of noninvasive ventilatory support: effects on ventilation and inspiratory muscle effort.  Anaesthesia . 1994;  49 279-283
  • 98 Knebel A R, Janson-Bjerklie S L, Malley J D, Wilson A G, Marini J J. Comparison of breathing comfort during weaning with two ventilatory modes.  Am J Respir Crit Care Med . 1994;  149 14-18
  • 99 Kreit J W, Capper M W, Eschenbacher W L. Patient work of breathing during pressure support and volume-cycled mechanical ventilation.  Am J Respir Crit Care Med . 1994;  149 1085-1091
  • 100 Parthasarathy S, Jubran A, Tobin M J. Assessment of neural inspiratory time in ventilator-supported patients.  Am J Respir Crit Care Med . 2000;  162 546-552
  • 101 Leatherman J W, Ravenscraft S A. Low measured auto-positive end-expiratory pressure during mechanical ventilation of patients with severe asthma: hidden auto-positive end-expiratory pressure.  Crit Care Med . 1996;  24 541-546
  • 102 Zakynthinos S G, Vassilakopoulos T, Zakynthinos E, Roussos C. Accurate measurement of intrinsic positive end-expiratory pressure: how to detect and correct for expiratory muscle activity.  Eur Respir J . 1997;  10 522-529
  • 103 Conti G, Vilardi V, Rocco M, DeBlasi R A, Lappa A, Bufi M. Paralysis has no effect on chest wall and respiratory system mechanics of mechanically ventilated, sedated patients.  Intensive Care Med . 1995;  21 808-812
  • 104 Gottfried S B, Reissman H, Ranieri V M. A simple method for the measurement of intrinsic positive end-expiratory pressure during controlled and assisted modes of mechanical ventilation.  Crit Care Med . 1992;  20 621-629
  • 105 Maltais F, Reissmann H, Navalesi P, Hernandez P, Gursahaney A, Ranieri V M. Comparison of static and dynamic measurements of intrinsic PEEP in mechanically ventilated patients.  Am J Respir Crit Care Med . 1994;  150 1318-1324
  • 106 Appendini L, Patessio A, Zanaboni S, Carone M, Gukov B, Donner C F. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease.  Am J Respir Crit Care Med . 1994;  149 1069-1076
  • 107 Lessard M R, Lofaso F, Brochard L. Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients.  Am J Respir Crit Care Med . 1995;  151 562-569
  • 108 Corne S, Gillespie D, Roberts D, Younes M. Effect of inspiratory flow rate on respiratory rate in intubated ventilated patients.  Am J Respir Crit Care Med . 1997;  156 304-308
  • 109 Appendini L, Purro A, Patessio A, Zanaboni S, Carone M, Spada E. Partitioning of inspiratory muscle workload and pressure assistance in ventilator-dependent COPD patients.  Am J Respir Crit Care Med . 1996;  154 1301-1309
  • 110 Gay P C, Rodarte J R, Hubmayr R D. The effects of positive expiratory pressure on isovolume flow and dynamic hyperinflation in patients receiving mechanical ventilation.  Am Rev Respir Dis . 1989;  139 621-626
  • 111 Fessler H E, Brower R G, Permutt S. CPAP reduces inspiratory work more than dyspnea during hyperinflation with intrinsic PEEP.  Chest . 1995;  108 432-440
  • 112 Petrof B J, Legare M, Goldberg P, Milic-Emili J, Gottfried S B. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease.  Am Rev Respir Dis . 1990;  141 281-289
  • 113 Smith T C, Marini J J. Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction.  J Appl Physiol . 1988;  65 1488-1499
  • 114 Ranieri V, Giuliani R, Cinnella G, Pesce C, Brienza N, Ippolito E. Physiological effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation.  Am Rev Respir Dis . 1993;  147 5-13
  • 115 Van de Graaff B W, Gordey K, Dornseif S E, Dries D J, Kleinman B S, Kumar P. Pressure support: changes in ventilatory pattern and components of the work of breathing.  Chest . 1991;  100 1082-1089
  • 116 Fiastro J F, Habib M P, Quan S F. Pressure support compensation for inspiratory work due to endotracheal tubes and demand continuous positive airway pressure.  Chest . 1988;  93 499-505
  • 117 Berger K I, Sorkin I B, Norman R G, Rapoport D M, Goldringg R M. Mechanism of relief of tachypnea during pressure support ventilation.  Chest . 1996;  109 1320-1327
  • 118 Nathan S D, Ishaaya A M, Koerner S K, Belman M J. Prediction of minimal pressure support during weaning from mechanical ventilation.  Chest . 1993;  103 1215-1219
  • 119 Kimura T, Takezawa J, Nishiwaki K, Shimada Y. Determination of the optimal pressure support level evaluated by measuring transdiaphragmatic pressure.  Chest . 1991;  100 112-117
  • 120 Banner M J, Kirby R R, Kirton O C, DeHaven C B, Blanch P B. Breathing frequency and pattern are poor predictors of work of breathing in patients receiving pressure support ventilation.  Chest . 1995;  108 1338-1344
  • 121 Alberti A, Gallo F, Fongaro A, Valenti S, Rossi A. P0.1 is a useful parameter in setting the level of pressure support ventilation.  Intensive Care Med . 1995;  21 547-553
  • 122 Perrigault P F, Pouzeratte Y H, Jaber S, Capdevila X J, Hayot M, Boccara G. Changes in occlusion pressure (P0.1) and breathing pattern during pressure support ventilation.  Thorax . 1999;  54 119-123
  • 123 Calderini E, Confalonieri M, Puccio P G, Francavilla N, Stella L, Gregoretti C. Patient-ventilator asynchrony during noninvasive ventilation: the role of expiratory trigger.  Intensive Care Med . 1999;  25 662-667
  • 124 Kacmarek R M. NIPPV: patient-ventilator synchrony, the difference between success and failure?.  Intensive Care Med . 1999;  25 645-647
  • 125 Banner M J, Kirby R R, Blanch P B. Site of pressure measurement during spontaneous breathing with continuous positive airway pressure: effect on calculating imposed work of breathing.  Crit Care Med . 1992;  20 528-533
  • 126 Banner M J, Jaeger M J, Kirby R R. Components of the work of breathing and implications for monitoring ventilator-dependent patients.  Crit Care Med . 1994;  22 515-523
  • 127 Kirton O C, Banner M J, Axelrad A, Drugas G. Detection of unsuspected imposed work of breathing:case reports.  Crit Care Med . 1993;  21 790-795
  • 128 Guttmann J, Bernhard H, Mols G, Benzing A, Hofmann P, Haberthur C. Respiratory comfort of automatic tube compensation and inspiratory pressure support in conscious humans.  Intensive Care Med . 1997;  23 1119-1124
  • 129 Hess D, Branson R D. Ventilators and weaning modes.  Respir Care Clin N Am. 2000;  6 407-435 v-vi
  • 130 Younes M. Proportional assist ventilation, a new approach to ventilatory support.  Theory Am Rev Respir Dis . 1992;  145 114-120
  • 131 Ranieri V M, Giuliani R, Mascia L, Grasso S, Petruzzelli V, Puntillo N. Patient-ventilator interaction during acute hypercapnia: pressure support versus proportional-assist ventilation.  J Appl Physiol . 1996;  81 426-436
  • 132 Amato M B, Barbas C S, Bonassa J, Saldiva P H, Zin W A, de Carvalho R C. Volume-assured pressure support ventilation (VAPSV): a new approach for reducing muscle workload during acute respiratory failure.  Chest . 1992;  102 1225-1234
  • 133 MacIntyre N R, Gropper C, Westfall T. Combining pressure-limiting and volume-cycling features in a patient-interactive mechanical breath.  Crit Care Med . 1994;  22 353-357
  • 134 Keenan H, Martin L. Volume support ventilation in infants and children: analysis of a case series.  Respir Care . 1997;  42 281-287
  • 135 Weiler N, Eberle B, Latorre F, von Paczynski S, Heinrichs W. [Adaptive lung ventilation (AVL): evaluation of new closed loop regulated respiration algorithm for operation in the hyperextended lateral position].  Anaesthesist . 1996;  45 950-956
    >