Skip to main content
Log in

Dyspnoea in Health and Obstructive Pulmonary Disease

The Role of Respiratory Muscle Function and Training

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

A consistent finding of recent research on respiratory muscle training (RMT) in healthy humans has been an attenuation of respiratory discomfort (dyspnoea) during exercise. We argue that the neurophysiology of dyspnoea can be explained in terms of Cambell’s paradigm of length-tension inappropriateness. In the context of this paradigm, changes in the contractile properties of the respiratory muscles modify the intensity of dyspnoea predominantly by changing the required level of motor outflow to these respiratory muscles. Thus, factors that impair the contractile properties of the respiratory muscles (e.g. the pattern of tension development, functional weakening and fatigue) have the potential to increase the intensity of dyspnoea, while factors that improve the contractile properties of these respiratory muscles (e.g. RMT) have the potential to reduce the intensity of dyspnoea. In patients with obstructive pulmonary disease, functional weakening of the inspiratory muscles in response to dynamic lung hyperinflation appears to be a central component of dyspnoea. A decrease in the intensity of respiratory effort sensation (during exercise and loaded breathing) has been observed in both healthy individuals and patients with obstructive pulmonary disease after RMT. We conclude that RMT has the potential to reduce the severity of dyspnoea in healthy individuals and in patients with obstructive pulmonary disease, and that this probably occurs via a reduction in the level of motor outflow. Further work is required to clarify the role of RMT in the management of other disease conditions in which the function of the respiratory muscles is impaired, or the loads that they must overcome are elevated (e.g. cardiorespiratory and neuromuscular disorders).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Romer LM, McConnell AK, Jones DA. Effects of inspiratory muscle training upon recovery time during high intensity, repetitive sprint activity. Int J Sports Med 2002; 23(5): 353–60

    Article  PubMed  CAS  Google Scholar 

  2. Romer LM, McConnell AK, Jones DA. Effects of inspiratory muscle training upon time trial performance in trained cyclists. J Sports Sci 2002; 20: 547–62

    Article  PubMed  Google Scholar 

  3. Suzuki S, Sato M, Okubo T. Expiratory muscle training and sensation of respiratory effort during exercise in normal subjects. Thorax 1995; 50(4): 366–70

    Article  PubMed  CAS  Google Scholar 

  4. Volianitis S, McConnell AK, Koutedakis Y, et al. Inspiratory muscle training improves rowing performance. Med Sci Sports Exerc 2001; 33(5): 803–9

    PubMed  CAS  Google Scholar 

  5. Williams JS, Wongsathikun J, Boon SM, et al. Inspiratory muscle training fails to improve endurance capacity in athletes. Med Sci Sports Exerc 2002; 34(7): 1194–8

    Article  PubMed  Google Scholar 

  6. Meakins J. The cause and treatment of dyspnea in cardiovascular disease. BMJ 1923; 1: 1043–5

    Article  PubMed  CAS  Google Scholar 

  7. Campbell EJM. The relationship of the sensation of breathlessness to the act of breathing. In: Howell JBL, editor. Breathlessness. London: Blackwell Scientific Publications, 1966: 55–64

    Google Scholar 

  8. American Thoracic Society. Dyspnea: mechanisms, assessment, and management: a consensus statement. Am J Respir Crit Care Med 1999; 159: 321–40

    Google Scholar 

  9. McCloskey DI. Kinesthetic sensibility. Physiol Rev 1978; 58(4): 763–820

    PubMed  CAS  Google Scholar 

  10. Campbell EJ, Gandevia SC, Killian KJ, et al. Changes in the perception of inspiratory resistive loads during partial curarization. J Physiol 1980; 309: 93–100

    PubMed  CAS  Google Scholar 

  11. Gandevia SC, Killian KJ, Campbell EJ. The effect of respiratory muscle fatigue on respiratory sensations. Clin Sci (Colch) 1981; 60(4): 463–6

    CAS  Google Scholar 

  12. Killian KJ, Gandevia SC, Summers E, et al. Effect of increased lung volume on perception of breathlessness, effort, and tension. J Appl Physiol 1984; 57(3): 686–91

    PubMed  CAS  Google Scholar 

  13. Cafarelli E. Peripheral contributions to the perception of effort. Med Sci Sports Exerc 1982; 14(5): 382–9

    PubMed  CAS  Google Scholar 

  14. Banzett RB, Lansing RW. Respiratory sensations arising from pulmonary and chemoreceptor afferents: air hunger and lung volume. In: Adams L, Guz A, editors. Respiratory sensation. London: Marcel Dekker Inc, 1996: 155–80

    Google Scholar 

  15. McCloskey DI. The effects of pre-existing loads upon detection of externally applied resistances to breathing in man. Clin Sci Mol Med 1973; 45(4): 561–4

    PubMed  CAS  Google Scholar 

  16. Revelette WR, Wiley RL. Plasticity of the mechanism subserving inspiratory load perception. J Appl Physiol 1987; 62(5): 1901–6

    PubMed  CAS  Google Scholar 

  17. El-Manshawi A, Killian KJ, Summers E, et al. Breathlessness during exercise with and without resistive loading. J Appl Physiol 1986; 61(3): 896–905

    PubMed  CAS  Google Scholar 

  18. Gandevia SC. The perception of motor commands or effort during muscular paralysis. Brain 1982; 105 (Pt 1): 151–9

    Article  PubMed  CAS  Google Scholar 

  19. Bakers JH, Tenney SM. The perception of some sensations associated with breathing. Respir Physiol 1970; 10(1): 85–92

    Article  PubMed  CAS  Google Scholar 

  20. Jones NL. Dyspnea in exercise. Med Sci Sports Exerc 1984; 16(1): 14–9

    PubMed  CAS  Google Scholar 

  21. Leblanc P, Summers E, Inman MD, et al. Inspiratory muscles during exercise: a problem of supply and demand. J Appl Physiol 1988; 64(6): 2482–9

    PubMed  CAS  Google Scholar 

  22. Johnson BD, Saupe KW, Dempsey JA. Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol 1992; 73(3): 874–86

    PubMed  CAS  Google Scholar 

  23. Tzelepis GE, Vega DL, Cohen ME, et al. Pressure-flow specificity of inspiratory muscle training. J Appl Physiol 1994; 77(2): 795–801

    PubMed  CAS  Google Scholar 

  24. Romer LM, McConnell AK. Specificity and reversibility of inspiratory muscle training. Med Sci Sports Exerc 2003; 35(2): 237–44

    Article  PubMed  Google Scholar 

  25. Kellerman BA, Martin AD, Davenport PW. Inspiratory strengthening effect on resistive load detection and magnitude estimation. Med Sci Sports Exerc 2000; 32(11): 1859–67

    Article  PubMed  CAS  Google Scholar 

  26. Redline S, Gottfried SB, Altose MD. Effects of changes in inspiratory muscle strength on the sensation of respiratory force. J Appl Physiol 1991; 70(1): 240–5

    PubMed  CAS  Google Scholar 

  27. Huang CH, Martin AD, Davenport PW. Effect of inspiratory muscle strength training on inspiratory motor drive and RREP early peak components. J Appl Physiol 2003; 94(2): 462–8

    PubMed  Google Scholar 

  28. Supinski GS, Clary SJ, Bark H, et al. Effect of inspiratory muscle fatigue on perception of effort during loaded breathing. J Appl Physiol 1987; 62(1): 300–7

    PubMed  CAS  Google Scholar 

  29. Jammes Y, Balzamo E. Changes in afferent and efferent phrenic activities with electrically induced diaphragmatic fatigue. J Appl Physiol 1992; 73(3): 894–902

    PubMed  CAS  Google Scholar 

  30. Balzamo E, Lagier-Tessonnier F, Jammes Y. Fatigue-induced changes in diaphragmatic afferents and cortical activity in the cat. Respir Physiol 1992; 90(2): 213–26

    Article  PubMed  CAS  Google Scholar 

  31. Bradley TD, Chartrand DA, Fitting JW, et al. The relation of inspiratory effort sensation to fatiguing patterns of the diaphragm. Am Rev Respir Dis 1986; 134(6): 1119–24

    PubMed  CAS  Google Scholar 

  32. Corda M, von Euler C, Lennerstrand G. Proprioceptive innervation of the diaphragm. J Physiol 1965; 178: 161–78

    PubMed  CAS  Google Scholar 

  33. Ward ME, Eidelman D, Stubbing DG, et al. Respiratory sensation and pattern of respiratory muscle activation during diaphragm fatigue. J Appl Physiol 1988; 65(5): 2181–9

    PubMed  CAS  Google Scholar 

  34. Hershenson MB, Kikuchi Y, Tzelepis GE, et al. Preferential fatigue of the rib cage muscles during inspiratory resistive loaded ventilation. J Appl Physiol 1989; 66(2): 750–4

    PubMed  CAS  Google Scholar 

  35. Hershenson MB, Kikuchi Y, Loring SH. Relative strengths of the chest wall muscles. J Appl Physiol 1988; 65(2): 852–62

    PubMed  CAS  Google Scholar 

  36. Goldman MD, Grassino A, Mead J, et al. Mechanics of the human diaphragm during voluntary contraction: dynamics. J Appl Physiol 1978; 44(6): 840–8

    PubMed  CAS  Google Scholar 

  37. Suzuki S, Suzuki J, Ishii T, et al. Relationship of respiratory effort sensation to expiratory muscle fatigue during expiratory threshold loading. Am Rev Respir Dis 1992; 145 (2 Pt 1): 461–6

    PubMed  CAS  Google Scholar 

  38. Mador MJ, Acevedo FA. Effect of respiratory muscle fatigue on subsequent exercise performance. J Appl Physiol 1991; 70: 2059–65

    PubMed  CAS  Google Scholar 

  39. Mador MJ, Acevedo FA. Effect of respiratory muscle fatigue on breathing pattern during incremental exercise. Am Rev Respir Dis 1991; 143(3): 462–8

    PubMed  CAS  Google Scholar 

  40. Sliwinski P, Yan S, Gauthier AP, et al. Influence of global inspiratory muscle fatigue on breathing during exercise. J Appl Physiol 1996; 80(4): 1270–8

    PubMed  CAS  Google Scholar 

  41. Johnson BD, Babcock MA, Suman OE, et al. Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol 1993; 460: 385–405

    PubMed  CAS  Google Scholar 

  42. Mador MJ, Magalang UJ, Rodis A, et al. Diaphragmatic fatigue after exercise in healthy human subjects. Am Rev Respir Dis 1993; 148 (6 Pt 1): 1571–5

    Article  PubMed  CAS  Google Scholar 

  43. Babcock MA, Pegelow DF, Taha BH, et al. High frequency diaphragmatic fatigue detected with paired stimuli in humans. Med Sci Sports Exerc 1998; 30(4): 506–11

    Article  PubMed  CAS  Google Scholar 

  44. McConnell AK, Caine MP, Sharpe GR. Inspiratory muscle fatigue following running to volitional fatigue: the influence of baseline strength. Int J Sports Med 1997; 18(3): 169–73

    Article  PubMed  CAS  Google Scholar 

  45. Romer LM, McConnell AK, Jones DA. Inspiratory muscle fatigue in trained cyclists: effects of inspiratory muscle training. Med Sci Sports Exerc 2002; 34(5): 785–92

    Article  PubMed  Google Scholar 

  46. Inbar O, Weiner P, Azgad Y, et al. Specific inspiratory muscle training in well-trained endurance athletes. Med Sci Sports Exerc 2000; 32(7): 1233–7

    Article  PubMed  CAS  Google Scholar 

  47. Suzuki S, Yoshiike Y, Suzuki M, et al. Inspiratory muscle training and respiratory sensation during treadmill exercise. Chest 1993; 104(1): 197–202

    Article  PubMed  CAS  Google Scholar 

  48. Volianitis S, McConnell AK, Koutedakis Y, et al. Specific respiratory warm-up improves rowing performance and exertional dyspnea. Med Sci Sports Exerc 2001; 33(7): 1189–93

    PubMed  CAS  Google Scholar 

  49. Wilson RC, Jones PW. Influence of prior ventilatory experience on the estimation of breathlessness during exercise. Clin Sci (Colch) 1990; 78(2): 149–53

    CAS  Google Scholar 

  50. Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev 2002; 30(3): 138–43

    Article  PubMed  Google Scholar 

  51. Abbate F, Sargeant AJ, Verdijk PW, et al. Effects of highfrequency initial pulses and posttetanic potentiation on power output of skeletal muscle. J Appl Physiol 2000; 88(1): 35–40

    PubMed  CAS  Google Scholar 

  52. Lacasse Y, Wong E, Guyatt GH, et al. Meta-analysis of respiratory rehabilitation in chronic obstructive pulmonary disease. Lancet 1996; 348(9035): 1115–9

    Article  PubMed  CAS  Google Scholar 

  53. Potter WA, Olafsson S, Hyatt RE. Ventilatory mechanics and expiratory flow limitation during exercise in patients with obstructive lung disease. J Clin Invest 1971; 50(4): 910–9

    Article  PubMed  CAS  Google Scholar 

  54. Rochester DF. The diaphragm in COPD: better than expected, but not good enough. N Engl J Med 1991; 325(13): 961–2

    Article  PubMed  CAS  Google Scholar 

  55. Similowski T, Yan S, Gauthier AP, et al. Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med 1991; 325(13): 917–23

    Article  PubMed  CAS  Google Scholar 

  56. O’Donnell DE, Webb KA. Exertional breathlessness in patients with chronic airflow limitation: the role of lung hyperinflation. Am Rev Respir Dis 1993; 148(5): 1351–7

    PubMed  Google Scholar 

  57. O’Donnell DE, Bertley JC, Chau LK, et al. Qualitative aspects of exertional breathlessness in chronic airflow limitation: pathophysiologic mechanisms. Am J Respir Crit Care Med 1997; 155(1): 109–15

    PubMed  Google Scholar 

  58. Belman MJ, Botnick WC, Shin JW. Inhaled bronchodilators reduce dynamic hyperinflation during exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1996; 153(3): 967–75

    PubMed  CAS  Google Scholar 

  59. Martinez FJ, de Oca MM, Whyte RI, et al. Lung-volume reduction improves dyspnea, dynamic hyperinflation, and respiratory muscle function. Am J Respir Crit Care Med 1997; 155(6): 1984–90

    PubMed  CAS  Google Scholar 

  60. O’Donnell DE, Sanii R, Giesbrecht G, et al. Effect of continuous positive airway pressure on respiratory sensation in patients with chronic obstructive pulmonary disease during sub-maximal exercise. Am Rev Respir Dis 1988; 138(5): 1185–91

    PubMed  Google Scholar 

  61. O’Donnell DE. Assessment of bronchodilator efficacy in symptomatic COPD: is spirometry useful? Chest 2000; 117 (2 Suppl.): 42S–7S

    Article  PubMed  Google Scholar 

  62. Lougheed DM, Webb KA, O’Donnell DE. Breathlessness during induced lung hyperinflation in asthma: the role of the inspiratory threshold load. Am J Respir Crit Care Med 1995; 152(3): 911–20

    PubMed  CAS  Google Scholar 

  63. O’Donnell DE. Ventilatory limitations in chronic obstructive pulmonary disease. Med Sci Sports Exerc 2001; 33 (7 Suppl.): S647–55

    PubMed  Google Scholar 

  64. O’Donnell DE, Webb KA. Breathlessness in patients with severe chronic airflow limitation: physiologic correlations. Chest 1992; 102(3): 824–31

    Article  PubMed  Google Scholar 

  65. Leblanc P, Bowie DM, Summers E, et al. Breathlessness and exercise in patients with cardiorespiratory disease. Am Rev Respir Dis 1986; 133(1): 21–5

    PubMed  CAS  Google Scholar 

  66. Hamilton AL, Killian KJ, Summers E, et al. Muscle strength, symptom intensity, and exercise capacity in patients with cardiorespiratory disorders. Am J Respir Crit Care Med 1995; 152 (6 Pt 1): 2021–31

    PubMed  CAS  Google Scholar 

  67. Begin P, Grassino A. Inspiratory muscle dysfunction and chronic hypercapnia in chronic obstructive pulmonary disease. Am Rev Respir Dis 1991; 143 (5 Pt 1): 905–12

    PubMed  CAS  Google Scholar 

  68. Wijkstra PJ, van der Mark TW, Boezen M, et al. Peak inspiratory mouth pressure in healthy subjects and in patients with COPD. Chest 1995; 107(3): 652–6

    Article  PubMed  CAS  Google Scholar 

  69. Decramer M. Effects of hyperinflation on the respiratory muscles. Eur Respir J 1989; 2(4): 299–302

    PubMed  CAS  Google Scholar 

  70. Polkey MI, Kyroussis D, Hamnegard CH, et al. Diaphragm strength in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1996; 154(5): 1310–7

    PubMed  CAS  Google Scholar 

  71. Lotters F, van Tol B, Kwakkel G, et al. Effects of controlled inspiratory muscle training in patients with COPD: a meta-analysis. Eur Respir J 2002; 20(3): 570–7

    Article  PubMed  CAS  Google Scholar 

  72. Mahler DA, Weinberg DH, Wells CK, et al. The measurement of dyspnea: contents, interobserver agreement, and physiologic correlates of two new clinical indexes. Chest 1984; 85(6): 751–8

    Article  PubMed  CAS  Google Scholar 

  73. American College of Chest Physicians/American Association of Cardiovascular and Pulmonary Rehabilitation. Pulmonary rehabilitation. Chest 1997; 112: 1363–96

    Article  Google Scholar 

  74. Harver A, Mahler DA, Daubenspeck JA. Targeted inspiratory muscle training improves respiratory muscle function and reduces dyspnea in patients with chronic obstructive pulmonary disease. Ann Intern Med 1989; 111(2): 117–24

    PubMed  CAS  Google Scholar 

  75. Lisboa C, Munoz V, Beroiza T, et al. Inspiratory muscle training in chronic airflow limitation: comparison of two different training loads with a threshold device. Eur Respir J 1994; 7(7): 1266–74

    Article  PubMed  CAS  Google Scholar 

  76. Larson JL, Kim MJ, Sharp JT, et al. Inspiratory muscle training with a pressure threshold breathing device in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1988; 138(3): 689–96

    PubMed  CAS  Google Scholar 

  77. Lisboa C, Villafranca C, Leiva A, et al. Inspiratory muscle training in chronic airflow limitation: effect on exercise performance. Eur Respir J 1997; 10(3): 537–42

    PubMed  CAS  Google Scholar 

  78. de Lucas Ramos P, Rodriguez Gonzalez-Moro JM, Garcia de Pedro J, et al. Training of inspiratory muscles in chronic obstructive lung disease: its impact on functional changes and exercise tolerance. Arch Bronconeumol 1998; 34(2): 64–70

    PubMed  Google Scholar 

  79. Nield MA. Inspiratory muscle training protocol using a pressure threshold device: effect on dyspnea in chronic obstructive pulmonary disease. Arch Phys Med Rehabil 1999; 80(1): 100–2

    Article  PubMed  CAS  Google Scholar 

  80. Weiner P, Magadle R, Berar-Yanay N, et al. The cumulative effect of long-acting bronchodilators, exercise, and inspiratory muscle training on the perception of dyspnea in patients with advanced COPD. Chest 2000; 118(3): 672–8

    Article  PubMed  CAS  Google Scholar 

  81. Covey MK, Larson JL, Wirtz SE, et al. High-intensity inspiratory muscle training in patients with chronic obstructive pulmonary disease and severely reduced function. J Cardiopulm Rehabil 2001; 21(4): 231–40

    Article  PubMed  CAS  Google Scholar 

  82. Sanchez Riera H, Montemayor Rubio T, Ortega Ruiz F, et al. Inspiratory muscle training in patients with COPD: effect on dyspnea, exercise performance, and quality of life. Chest 2001; 120(3): 748–56

    Article  PubMed  CAS  Google Scholar 

  83. Scherer TA, Spengler CM, Owassapian D, et al. Respiratory muscle endurance training in chronic obstructive pulmonary disease: impact on exercise capacity, dyspnea, and quality of life. Am J Respir Crit Care Med 2000; 162(5): 1709–14

    PubMed  CAS  Google Scholar 

  84. Pride NB, Macklem PT. Lung mechanics in disease. In: Fish-man AP, editor. Handbook of physiology. Bethesda (MD): American Physiological Society, 1986: 659–92

    Google Scholar 

  85. Martin J, Powell E, Shore S, et al. The role of respiratory muscles in the hyperinflation of bronchial asthma. Am Rev Respir Dis 1980; 121(3): 441–7

    PubMed  CAS  Google Scholar 

  86. Lougheed MD, Lam M, Forkert L, et al. Breathlessness during acute bronchoconstriction in asthma: pathophysiologic mechanisms. Am Rev Respir Dis 1993; 148 (6 Pt 1): 1452–9

    Article  PubMed  CAS  Google Scholar 

  87. Muller N, Bryan AC, Zamel N. Tonic inspiratory muscle activity as a cause of hyperinflation in histamine-induced asthma. J Appl Physiol 1980; 49(5): 869–74

    PubMed  CAS  Google Scholar 

  88. Gorini M, Iandelli I, Misuri G, et al. Chest wall hyperinflation during acute bronchoconstriction in asthma. Am J Respir Crit Care Med 1999; 160(3): 808–16

    PubMed  CAS  Google Scholar 

  89. Nava S, Bruschi C. Respiratory muscle in asthma. Eur Respir Rev 1993; 4(14): 448–51

    Google Scholar 

  90. Roussos C, Moxham J, Bellemare F. Respiratory muscle fatigue. In: Roussos C, editor. The thorax. New York: Marcel Dekker Inc, 1995: 1405–62

    Google Scholar 

  91. Killian KJ, Jones NL. Respiratory muscles and dyspnea. Clin Chest Med 1988; 9(2): 237–48

    PubMed  CAS  Google Scholar 

  92. Martin JG, Shore SA, Engel LA. Mechanical load and inspiratory muscle action during induced asthma. Am Rev Respir Dis 1983; 128(3): 455–60

    PubMed  CAS  Google Scholar 

  93. de Bruin PF, Ueki J, Watson A, et al. Size and strength of the respiratory and quadriceps muscles in patients with chronic asthma. Eur Respir J 1997; 10(1): 59–64

    Article  PubMed  Google Scholar 

  94. Allen GM, McKenzie DK, Gandevia SC, et al. Reduced voluntary drive to breathe in asthmatic subjects. Respir Physiol 1993; 93(1): 29–40

    Article  PubMed  CAS  Google Scholar 

  95. Weiner P, Suo J, Fernandez E, et al. The effect of hyperinflation on respiratory muscle strength and efficiency in healthy subjects and patients with asthma. Am Rev Respir Dis 1990; 141(6): 1501–5

    PubMed  CAS  Google Scholar 

  96. Lavietes MH, Grocela JA, Maniatis T, et al. Inspiratory muscle strength in asthma. Chest 1988; 93(5): 1043–8

    Article  PubMed  CAS  Google Scholar 

  97. McKenzie DK, Gandevia SC. Strength and endurance of inspiratory, expiratory, and limb muscles in asthma. Am Rev Respir Dis 1986; 134(5): 999–1004

    PubMed  CAS  Google Scholar 

  98. Stell IM, Polkey MI, Rees PJ, et al. Inspiratory muscle strength in acute asthma. Chest 2001; 120(3): 757–64

    Article  PubMed  CAS  Google Scholar 

  99. Akkoca O, Mungan D, Karabiyikoglu G, et al. Inhaled and systemic corticosteroid therapies: do they contribute to inspiratory muscle weakness in asthma? Respiration 1999; 66(4): 332–7

    Article  PubMed  CAS  Google Scholar 

  100. Perez T, Becquart LA, Stach B, et al. Inspiratory muscle strength and endurance in steroid-dependent asthma. Am J Respir Crit Care Med 1996; 153(2): 610–5

    PubMed  CAS  Google Scholar 

  101. Butler JE, McKenzie DK, Gandevia SC. Impaired reflex responses to airway occlusion in the inspiratory muscles of asthmatic subjects. Thorax 1996; 51(5): 490–5

    Article  PubMed  CAS  Google Scholar 

  102. Killian KJ, Summers E, Watson RM, et al. Factors contributing to dyspnoea during bronchoconstriction and exercise in asthmatic subjects. Eur Respir J 1993; 6(7): 1004–10

    PubMed  CAS  Google Scholar 

  103. Bellofiore S, Ricciardolo FL, Ciancio N, et al. Changes in respiratory drive account for the magnitude of dyspnoea during bronchoconstriction in asthmatics. Eur Respir J 1996; 9(6): 1155–9

    Article  PubMed  CAS  Google Scholar 

  104. Binks AP, Moosavi SH, Banzett RB, et al. ‘Tightness’ sensation of asthma does not arise from the work of breathing. Am J Respir Crit Care Med 2002; 165(1): 78–82

    PubMed  Google Scholar 

  105. Weiner P, Berar-Yanay N, Davidovich A, et al. Specific inspiratory muscle training in patients with mild asthma with high consumption of inhaled beta (2)-agonists. Chest 2000; 117(3): 722–7

    Article  PubMed  CAS  Google Scholar 

  106. Weiner P, Magadle R, Massarwa F, et al. Influence of gender and inspiratory muscle training on the perception of dyspnea in patients with asthma. Chest 2002; 122(1): 197–201

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors did not receive any funding to support the preparation of this manuscript. Lee Romer has no conflicts of interest directly relevant to the content of this review. Alison McConnell has a financial interest in the POWERbreathe® inspiratory muscle trainer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison K. McConnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McConnell, A.K., Romer, L.M. Dyspnoea in Health and Obstructive Pulmonary Disease. Sports Med 34, 117–132 (2004). https://doi.org/10.2165/00007256-200434020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200434020-00005

Keywords

Navigation