Does the tube-compensation function of two modern mechanical ventilators provide effective work of breathing relief?

Crit Care. 2003 Oct;7(5):R92-7. doi: 10.1186/cc2343. Epub 2003 Aug 14.

Abstract

Objective: An endotracheal tube (ETT) imposes work of breathing on mechanically ventilated patients. Using a bellows-in-a-box model lung, we compared the tube compensation (TC) performances of the Nellcor Puritan-Bennett 840 ventilator and of the Dräger Evita 4 ventilator.

Measurements and results: Each ventilator was connected to the model lung. The respiratory rate of the model lung was set at 10 breaths/min with 1 s inspiratory time. Inspiratory flows were 30 or 60 l/min. A full-length 8 mm bore ETT was inserted between the ventilator circuit and the model lung. The TC was set at 0%, 10%, 50%, and 100% for both ventilators. Pressure was monitored at the airway, the trachea, and the pleura, and the data were recorded on a computer for later analysis of the delay time, of the inspiratory trigger pressure, and of the pressure-time product (PTP). The delay time was calculated as the time between the start of inspiration and minimum airway pressure, and the inspiratory trigger pressure was defined as the most negative pressure level. The same measurements were performed under pressure support ventilation of 4 and 8 cmH2O. The PTP increased according to the magnitude of inspiratory flow. Even with 100% TC, neither ventilator could completely compensate for the PTP imposed by the ETT. At 0% TC the PTP tended to be less with the Nellcor Puritan-Bennett 840 ventilator, while at 100% TC the PTP tended to be less with the Dräger Evita 4 ventilator. A small amount of pressure support can be equally effective to reduce the inspiratory effort compared with the TC.

Conclusion: Although both ventilators provided effective TC, even when set to 100% TC they could not entirely compensate for a ventilator and ETT-imposed work of breathing. The effect of TC is less than that of pressure support ventilation. Physicians should be aware of this when using TC in weaning trials.

Publication types

  • Comparative Study

MeSH terms

  • Humans
  • Intubation, Intratracheal / instrumentation
  • Japan
  • Lung / physiology
  • Models, Anatomic
  • Respiration, Artificial / instrumentation*
  • Work of Breathing*