Systemic endothelial dysfunction in children with idiopathic pulmonary arterial hypertension correlates with disease severity

J Heart Lung Transplant. 2012 Jun;31(6):642-7. doi: 10.1016/j.healun.2012.02.020. Epub 2012 Mar 21.

Abstract

Background: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disease manifested by progressive pulmonary vascular remodeling, compromised pulmonary blood flow and right heart failure. Most studies have explored how pulmonary endothelial function modulates disease pathogenesis. We hypothesize that IPAH is a progressive panvasculopathy, affecting both pulmonary and systemic vascular beds, and that systemic endothelial dysfunction correlates with disease severity. Recent studies have demonstrated systemic endothelial dysfunction in adults with pulmonary hypertension; however, adults often have additional comorbidities affecting endothelial function. Systemic endothelial function has not been explored in children with IPAH.

Methods: In this single-center, prospective, cross-sectional study we examined brachial artery flow-mediated dilation (FMD), a nitric oxide-mediated, endothelial-dependent response, in children with IPAH and matched controls. FMD measurements were compared with clinical and echocardiographic measures of IPAH severity.

Results: Thirteen patients and 13 controls were studied, ranging in age from 6 to 20 years. FMD was decreased in IPAH subjects compared with controls (5.1 ± 2.1% vs 9.7 ± 2.0%; p < 0.0001). In IPAH subjects, FMD correlated directly with cardiac index (R(2) = 0.34, p = 0.035), and inversely with tricuspid regurgitation velocity (R(2) = 0.57, p = 0.019) and right ventricular myocardial performance index (R(2) = 0.44, p = 0.028).

Conclusions: The presence of systemic endothelial dysfunction in children with IPAH and its strong association with IPAH severity demonstrate that IPAH is a global vasculopathy. Although morbidity in IPAH is typically associated with pulmonary vascular disease, systemic vascular changes may also relate to disease pathogenesis and progression. Further study into shared mechanisms of systemic and pulmonary endothelial dysfunction may contribute to future therapies for IPAH.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Blood Pressure / physiology
  • Brachial Artery / physiology
  • Case-Control Studies
  • Child
  • Cross-Sectional Studies
  • Disease Progression*
  • Endothelium, Vascular / physiopathology*
  • Familial Primary Pulmonary Hypertension
  • Female
  • Humans
  • Hypertension, Pulmonary / physiopathology*
  • Lung / blood supply
  • Male
  • Prospective Studies
  • Regional Blood Flow / physiology
  • Severity of Illness Index*
  • Young Adult