Compressive forces and computed tomography-derived positive end-expiratory pressure in acute respiratory distress syndrome

Anesthesiology. 2014 Sep;121(3):572-81. doi: 10.1097/ALN.0000000000000373.

Abstract

Background: It has been suggested that higher positive end-expiratory pressure (PEEP) should be used only in patients with higher lung recruitability. In this study, the authors investigated the relationship between the recruitability and the PEEP necessary to counteract the compressive forces leading to lung collapse.

Methods: Fifty-one patients with acute respiratory distress syndrome (7 mild, 33 moderate, and 11 severe) were enrolled. Patients underwent whole-lung computed tomography (CT) scan at 5 and 45 cm H2O. Recruitability was measured as the amount of nonaerated tissue regaining inflation from 5 to 45 cm H2O. The compressive forces (superimposed pressure) were computed as the density times the sternum-vertebral height of the lung. CT-derived PEEP was computed as the sum of the transpulmonary pressure needed to overcome the maximal superimposed pressure and the pleural pressure needed to lift up the chest wall.

Results: Maximal superimposed pressure ranged from 6 to 18 cm H2O, whereas CT-derived PEEP ranged from 7 to 28 cm H2O. Median recruitability was 15% of lung parenchyma (interquartile range, 7 to 21%). Maximal superimposed pressure was weakly related with lung recruitability (r = 0.11, P = 0.02), whereas CT-derived PEEP was unrelated with lung recruitability (r = 0.0003, P = 0.91). The maximal superimposed pressure was 12 ± 3, 12 ± 2, and 13 ± 1 cm H2O in mild, moderate, and severe acute respiratory distress syndrome, respectively, (P = 0.0533) with a corresponding CT-derived PEEP of 16 ± 5, 16 ± 5, and 18 ± 5 cm H2O (P = 0.48).

Conclusions: Lung recruitability and CT scan-derived PEEP are unrelated. To overcome the compressive forces and to lift up the thoracic cage, a similar PEEP level is required in higher and lower recruiters (16.8 ± 4 vs. 16.6 ± 5.6, P = 1).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Positive-Pressure Respiration / methods*
  • Pressure
  • Pulmonary Atelectasis / prevention & control
  • Respiratory Distress Syndrome / physiopathology
  • Respiratory Distress Syndrome / therapy*
  • Tomography, X-Ray Computed*