Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Open Forum
    • 2023 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Open Forum
    • 2023 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Meeting ReportConference Proceedings

Management of Acute Lung Injury: Sharing Data Between Adults and Children

Ira M Cheifetz
Respiratory Care September 2011, 56 (9) 1258-1272; DOI: https://doi.org/10.4187/respcare.01413
Ira M Cheifetz
Division of Pediatric Critical Care Medicine, the Pediatric Intensive Care Unit, Pediatric Respiratory Care, and the Extracorporeal Membrane Oxygenation Program, Duke Children's Hospital, Durham, North Carolina.
MD FAARC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Randolph AG,
    2. Meert KL,
    3. O'Neil ME,
    4. Hanson JH,
    5. Luckett PM,
    6. Arnold JH,
    7. et al
    ; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. The feasibility of conducting clinical trials in infants and children with acute respiratory failure. Am J Respir Crit Care Med 2003;167(10):1334–1340.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    1. Randolph AG,
    2. Wypij D,
    3. Venkataraman ST,
    4. Hanson JH,
    5. Gedeit RG,
    6. Meert KL,
    7. et al
    ; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial. JAMA 2002;288(20):2561–2568.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Willson DF,
    2. Thomas NJ,
    3. Markovitz BP,
    4. Bauman LA,
    5. DiCarlo JV,
    6. Pon S,
    7. et al
    ; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA 2005;293(4):470–476.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Santschi M,
    2. Jouvet P,
    3. Leclerc F,
    4. Gauvin F,
    5. Newth CJ,
    6. Carroll CL,
    7. et al
    ; PALIVE Investigators; Pediatric Acute Lung Injury and Sepsis Investigators Network (PALISI) and the European Society of Pediatric and Neonatal Intensive Care (ESPNIC). Acute lung injury in children: therapeutic practice and feasibility of international clinical trials. Pediatr Crit Care Med 2010;11(6):681–689.
    OpenUrlPubMed
  5. 5.↵
    1. Bernard GR,
    2. Artigas A,
    3. Brigham KL,
    4. Carlet J,
    5. Falke K,
    6. Hudson L,
    7. et al
    . The North American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994;149(3):818–824.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Erickson S,
    2. Schibler A,
    3. Numa A,
    4. Nuthall G,
    5. Yung M,
    6. Pascoe E,
    7. et al
    . Acute lung injury in pediatric intensive care in Australia and New Zealand: a prospective, multicenter, observational study. Pediatr Crit Care Med 2007;8(4):317–323.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Zimmerman JJ,
    2. Akhtar SR,
    3. Caldwell E,
    4. Rubenfeld GD
    . Incidence and outcomes of pediatric acute lung injury. Pediatrics 2009;124(1):87–95.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. Khemani RG,
    2. Markovitz BP,
    3. Curley MAQ
    . Characteristics of children Intubated and mechanically ventilated in 16 PICUs. Chest 2009;136(3):765–771.
    OpenUrlCrossRefPubMed
  9. 9.↵
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342(18):1301–1308.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Villar J
    . Ventilator or physician-induced lung injury? Minerva Anestesiol 2005;71(6):255–258.
    OpenUrlPubMed
  11. 11.↵
    1. Dreyfuss D,
    2. Saumon G
    . Ventilator-induced lung injury: Lessons from experimental studies. Am J Respir Crit Care Med 1998;157(1):294–323.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. Kawano T,
    2. Mori S,
    3. Cybulsky M,
    4. Burger R,
    5. Ballin A,
    6. Cutz E,
    7. Bryan AC
    . Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol 1987;62(1):27–33.
    OpenUrlAbstract/FREE Full Text
  13. 13.
    1. Sugiura M,
    2. McCulloch PR,
    3. Wren S,
    4. Dawson RH,
    5. Froese AB
    . Ventilator pattern influences neutrophil influx and activation in atelectasis-prone rabbit lung. J Appl Physiol 1994;77(3):1355–1365.
    OpenUrlAbstract/FREE Full Text
  14. 14.
    1. Ricard JD,
    2. Dreyfuss D,
    3. Saumon G
    . Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 2001;163(5):1176–1180.
    OpenUrlPubMedWeb of Science
  15. 15.
    1. Tremblay L,
    2. Valenza F,
    3. Ribeiro SP,
    4. Li J,
    5. Slutsky AS
    . Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997;99(5):944–952.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.
    1. Haitsma JJ,
    2. Uhlig S,
    3. Goggel R,
    4. Verbrugge SJ,
    5. Lachmann U,
    6. Lachmann B
    . Ventilator-induced lung injury leads to loss of alveolar and systemic compartmentalization of tumor necrosis factor-alpha. Intensive Care Med 2000;26(10):1515–1522.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Haitsma JJ,
    2. Uhlig S,
    3. Lachmann U,
    4. Verbrugge SJ,
    5. Poelma DL,
    6. Lachmann B
    . Exogenous surfactant reduces ventilator-induced decompartmentalization of tumor necrosis factor alpha in absence of positive end-expiratory pressure. Intensive Care Med 2002;28(8):1131–1137.
    OpenUrlPubMedWeb of Science
  18. 18.↵
    1. Gajic O,
    2. Dara SI,
    3. Mendez JL,
    4. Adesanya AO,
    5. Festic E,
    6. Caples SM,
    7. et al
    . Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 2004;32(9):1817–1824.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.
    1. Michelet P,
    2. D'Journo XB,
    3. Roch A,
    4. Doddoli C,
    5. Marin V,
    6. Papazian L,
    7. et al
    . Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology 2006;105(5):911–919.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.
    1. Lee PC,
    2. Helsmoortel CM,
    3. Cohn SM,
    4. Fink MP
    . Are low tidal volumes safe? Chest 1990;97(2):430–434.
    OpenUrlCrossRefPubMedWeb of Science
  21. 21.
    1. Wrigge H,
    2. Zinserling J,
    3. Stuber F,
    4. von Spiegel T,
    5. Hering R,
    6. Wetegrove S,
    7. et al
    . Effects of mechanical ventilation on release of cytokines into systemic circulation in patients with normal pulmonary function. Anesthesiology 2000;93(6):1413–1417.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.
    1. Koner O,
    2. Celebi S,
    3. Balci H,
    4. Cetin G,
    5. Karaoglu K,
    6. Cakar N
    . Effects of protective and conventional mechanical ventilation on pulmonary function and systemic cytokine release after cardiopulmonary bypass. Intensive Care Med 2004;30(4):620–626.
    OpenUrlCrossRefPubMed
  23. 23.
    1. Wrigge H,
    2. Uhlig U,
    3. Zinserling J,
    4. Behrends-Callsen E,
    5. Ottersbach G,
    6. et al
    . The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg 2004;98(3):775–781.
    OpenUrlPubMedWeb of Science
  24. 24.
    1. Wrigge H,
    2. Uhlig U,
    3. Baumgarten G,
    4. Menzenbach J,
    5. Zinserling J,
    6. Ernst M,
    7. et al
    . Mechanical ventilation strategies and inflammatory responses to cardiac surgery: a prospective randomized clinical trial. Intensive Care Med 2005;31(10):1379–1387.
    OpenUrlCrossRefPubMed
  25. 25.
    1. Zupancich E,
    2. Paparella D,
    3. Turani F,
    4. Munch C,
    5. Rossi A,
    6. Massaccesi S,
    7. Ranieri VM
    . Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized clinical trial. J Thorac Cardiovasc Surg 2005;130(2):378–383.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.
    1. Reis Miranda D,
    2. Gommers D,
    3. Struijs A,
    4. Dekker R,
    5. Mekel J,
    6. Feelders R,
    7. et al
    . Ventilation according to the open lung concept attenuates pulmonary inflammatory response in cardiac surgery. Eur J Cardiothorac Surg 2005;28(6):889–895.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Choi G,
    2. Wolthuis EK,
    3. Bresser P,
    4. Levi M,
    5. van der Poll T,
    6. Dzoljic M,
    7. et al
    . Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology 2006;105(4):689–695.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Albuali WH,
    2. Singh RN,
    3. Fraser DD,
    4. Seabrook JA,
    5. Kavanagh BP,
    6. Parshuram CS,
    7. Kornecki A
    . Have changes in ventilation practice improved outcome in children with acute lung injury? Pediatr Crit Care Med 2007;8(4):324–330.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Cannon ML,
    2. Cornell J,
    3. Tripp DS,
    4. Gentile MA,
    5. Hubble CL,
    6. Meliones JN,
    7. Cheifetz IM
    . Tidal volumes for ventilated infants should be determined with a pneumotachometer placed at the endotracheal tube. Am J Respir Crit Care Med 2000;162(6):2109–2112.
    OpenUrlPubMedWeb of Science
  30. 30.↵
    1. Castle RA,
    2. Dunne CJ,
    3. Mok Q,
    4. Wade AM,
    5. Stocks J
    . Accuracy of displayed tidal volume in the pediatric intensive care unit. Crit Care Med 2002;39(11):2566–2574.
    OpenUrl
  31. 31.↵
    1. Chow LC,
    2. Vanderhal A,
    3. Raber J,
    4. Sola A
    . Are tidal volume measurements in neonatal pressure-controlled ventilation accurate? Pediatr Pulmonol 2002;34(3):196–202.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Heulitt MJ,
    2. Thurman TL,
    3. Holt SJ,
    4. Jo CH,
    5. Simpson P
    . Reliability of displayed tidal volume in infants and children during dual-controlled ventilation. Pediatr Crit Care Med 2009;10(6):661–667.
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. Brower RG,
    2. Lanken PN,
    3. MacIntyre N,
    4. Matthay MA,
    5. Morris A,
    6. Ancukiewicz M,
    7. Schoenfeld D,
    8. Thompson BUT
    ; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004;351(4):327–336.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Meade MO,
    2. Cook DJ,
    3. Guyatt GH,
    4. Slutsky AS,
    5. Arabi YM,
    6. Cooper DJ,
    7. et al
    . Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome. JAMA 2008;299(6):637–645.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Mercat A Richard JC,
    2. Vielle B,
    3. Jaber S,
    4. Osman D,
    5. Diehl JL,
    6. et al
    . on behalf of the Expiratory Pressure (Express) Study Group. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008;299(6):646–655.
    OpenUrlCrossRefPubMedWeb of Science
  36. 36.↵
    1. Briel M,
    2. Meade M,
    3. Mercat A,
    4. Brower RG,
    5. Talmor D,
    6. Walter SD,
    7. et al
    . Higher vs. lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010;303(9):865–873.
    OpenUrlCrossRefPubMedWeb of Science
  37. 37.↵
    1. Wiedemann HP,
    2. Wheeler AP,
    3. Bernard GR,
    4. Thompson BT,
    5. Hayden D,
    6. deBoisblanc B,
    7. et al
    ; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network Comparison of two fluid management strategies in acute lung injury N Engl J Med 2006;354(24):2564–2575.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Randolph AG,
    2. Forbes PW,
    3. Gedeit RG,
    4. Arnold JH,
    5. Wetzel RC,
    6. Luckett PM,
    7. et al
    ; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Cumulative fluid intake minus output is not associated with ventilator weaning duration or extubation outcomes in children. Pediatr Crit Care Med 2005;6(6):642–647.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Sessler CN,
    2. Gay PC
    . Are corticosteroids useful in late-stage acute respiratory distress syndrome? Respir Care 2010;55(1):43–52.
    OpenUrlAbstract/FREE Full Text
  40. 40.↵
    1. Steinberg KP,
    2. Hudson LD,
    3. Goodman RB,
    4. Hough CL,
    5. Lanken PN,
    6. Hyzy R,
    7. et al
    ; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006;354(16):1671–1684.
    OpenUrlCrossRefPubMedWeb of Science
  41. 41.↵
    1. Tang BMP,
    2. Craig JC,
    3. Eslick GD,
    4. Seppelt I,
    5. McLean AS
    . Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis. Crit Care Med 2009;37(5):1594–1603.
    OpenUrlCrossRefPubMedWeb of Science
  42. 42.↵
    1. Jobe AH
    . Pulmonary surfactant therapy. N Engl J Med 1993;328(12):861–868.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.
    1. Soll RF
    . Surfactant therapy in the USA: Trials and current routines. Biol Neonate 1997;71(Suppl 1):1–7.
    OpenUrlPubMedWeb of Science
  44. 44.
    1. Findlay RD,
    2. Taeusch HW,
    3. Walther FJ
    . Surfactant replacement therapy for meconium aspiration syndrome. Pediatrics 1996;97(1):48–52.
    OpenUrlAbstract/FREE Full Text
  45. 45.
    1. Lotze A,
    2. Knight GR,
    3. Martin GR,
    4. Bulas DI,
    5. Hull WM,
    6. O'Donnell RM,
    7. et al
    . Improved pulmonary outcome after exogenous surfactant therapy for respiratory failure in term infants requiring extracorporeal membrane oxygenation. J Pediatr 1993;122(2):261–268.
    OpenUrlCrossRefPubMedWeb of Science
  46. 46.↵
    1. Lotze A,
    2. Mitchell BR,
    3. Bulas DI,
    4. Zola EM,
    5. Shalwitz RA,
    6. Gunkel JH
    . Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. J Pediatr 1998;132(1):40–47.
    OpenUrlCrossRefPubMedWeb of Science
  47. 47.↵
    1. Willson DF,
    2. Chess PR,
    3. Notter RH
    . Surfactant for pediatric acute lung injury. Pediatr Clin North Am 2008;55(3):545–575.
    OpenUrlCrossRefPubMed
  48. 48.
    1. Willson DF,
    2. Zaritsky A,
    3. Bauman LA,
    4. Dockery K,
    5. James RL,
    6. Conrad D,
    7. et al
    . Instillation of calf lung surfactant extract (calfactant) is beneficial in pediatric acute hypoxemic respiratory failure. Members of the Mid-Atlantic Pediatric Critical Care Network. Crit Care Med 1999;27(1):188–195.
    OpenUrlCrossRefPubMedWeb of Science
  49. 49.↵
    1. Willson DF,
    2. Jiao JH,
    3. Bauman LA,
    4. Zaritsky A,
    5. Craft H,
    6. Dockery K,
    7. et al
    . Calf's lung surfactant extract in acute hypoxemic respiratory failure in children. Crit Care Med 1996;24(8):1316–1322.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Czaja AS
    . A critical appraisal of a randomized controlled trial: Willson et al: Effect of exogenous surfactant (calfactant) in pediatric acute lung injury (JAMA 2005, 293: 470-476). Pediatr Crit Care Med 2007;8(1):50–53.
    OpenUrlCrossRefPubMed
  51. 51.↵
    1. Kesecioglu J,
    2. Beale R,
    3. Stewart TE,
    4. Findlay GP,
    5. Rouby JJ,
    6. Holzapfel L,
    7. et al
    . Exogenous natural surfactant for treatment of acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 2009;180(10):989–994.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Willson DF,
    2. Notter RH
    . The future of exogenous surfactant therapy. Respir Care 2011;56(9):1369–1386; discussion 1386-1388.
    OpenUrlPubMed
  53. 53.
    1. Wheeler DA WH,
    2. Shanley TA
    1. Willson DF,
    2. Chess PR,
    3. Wang Z,
    4. Notter RH
    . Pulmonary surfactant: biology and therapy. In: Wheeler DA WH, Shanley TA ed. Pediatric Critical Care Medicine: Basic Science and Clinical Evidence. London: Springer-Verlag; 2007:453–466.
  54. 54.
    1. Raghavendran K,
    2. Pryhuber GS,
    3. Chess PR,
    4. B.A. D,
    5. Knight PR,
    6. Notter RH
    . Pharmacotherapy of acute lung injury and acute respiratory distress syndrome. Curr Med Chem 2008;15(19):1911–1924.
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.
    1. Notter RH,
    2. Schwan AL,
    3. Wang Z,
    4. Waring AJ
    . Novel phospholipase-resistant lipid/peptide synthetic lung surfactants. Mini-Rev Med Chem 2007;7(9):932–944.
    OpenUrl
  56. 56.
    1. Walther FJ,
    2. Waring AJ,
    3. Sherman MA,
    4. Zasadzinski J,
    5. Gordon LM
    . Hydrophobic surfactant proteins and their analogues. Neonatology 2007;91(4):303–310.
    OpenUrlCrossRefPubMedWeb of Science
  57. 57.
    1. Wang Z,
    2. Chang Y,
    3. Schwan AL,
    4. Notter RH
    . Activity and inhibition resistance of a phospholipaseresistant synthetic exogenous surfactant in excised rat lungs. Am J Respir Cell Mol Biol 2007;37(4):387–394.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Mingarro I,
    2. Lukovic D,
    3. Vilar M,
    4. Pérez-Gil J
    . Synthetic pulmonary surfactant preparations: New developments and future trends. Current Med Chem 2008;15(4):303–403.
    OpenUrl
  59. 59.↵
    1. Gerlach H,
    2. Keh D,
    3. Semmerow A,
    4. Busch T,
    5. Lewandowski K,
    6. Pappert DM,
    7. et al
    . Dose response characteristics during long-term inhalation of nitric oxide in patients with severe acute respiratory distress syndrome: a prospective, randomized, controlled study. Am J Respir Crit Care Med 2003;167(7):1008–1015.
    OpenUrlCrossRefPubMedWeb of Science
  60. 60.
    1. Dellinger RP,
    2. Zimmerman JL,
    3. Taylor RW,
    4. Straube RC,
    5. Hauser DL,
    6. Criner GJ,
    7. et al
    ; Inhaled Nitric Oxide in ARDS Study Group. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Crit Care Med 1998;26(1):15–23.
    OpenUrlCrossRefPubMedWeb of Science
  61. 61.↵
    1. Taylor RW,
    2. Zimmerman JL,
    3. Dellinger RP,
    4. Straube RC,
    5. Criner GJ,
    6. Davis K Jr.,
    7. et al
    ; Inhaled Nitric Oxide in ARDS Study Group. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 2004;291(13):1603–1609.
    OpenUrlCrossRefPubMedWeb of Science
  62. 62.↵
    1. Adhikari NK,
    2. Burns KE,
    3. Friedrich JO,
    4. Granton JT,
    5. Cook DJ,
    6. Meade MO
    . Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ 2007;334(7597):779.
    OpenUrlAbstract/FREE Full Text
  63. 63.↵
    1. Afshari A,
    2. Brok J,
    3. Møller AM,
    4. Wetterslev J
    . Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with Meta-analysis and trial sequential analysis. Anesth Analg 2011. [epub ahead of print].
  64. 64.↵
    1. Afshari A,
    2. Brok J,
    3. Moller AM,
    4. Wetterslev J
    . Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) and acute lung injury in children and adults. Cochrane Database Syst Rev 2010;(7):CD002787.
  65. 65.↵
    1. Dalton HJ
    . Extracorporeal life support: moving at the speed of light. Respir Care 2011;56(9):1445–1453; discussion 1454-1456.
    OpenUrlCrossRefPubMed
  66. 66.↵
    1. Hill JD,
    2. De Leval MR,
    3. Fallat RJ,
    4. Bramson ML,
    5. Eberhart RC,
    6. Schulte HD,
    7. et al
    . Acute respiratory insufficiency. Treatment with prolonged extracorporeal oxygenation. J Thorac Cardiovasc Surg 1972;64(4):551–562.
    OpenUrlPubMedWeb of Science
  67. 67.
    1. Hill JD,
    2. O'Brien TG,
    3. Murray JJ,
    4. Dontigny L,
    5. Bramson ML,
    6. Osborn JJ,
    7. Gerbode F
    . Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med 1972;286(12):629–634.
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.
    1. Bartlett RH,
    2. Roloff DW,
    3. Cornell RG,
    4. Andrews AF,
    5. Dillon PW,
    6. Zwischenberger JB
    . Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. Pediatrics 1985;76(4):479–487.
    OpenUrlAbstract/FREE Full Text
  69. 69.
    1. Hocker JR,
    2. Simpson PM,
    3. Rabalais GP,
    4. Stewart DL,
    5. Cook LN
    . Extracorporeal membrane oxygenation and early-onset group B streptococcal sepsis. Pediatrics 1992;89(1):1–4.
    OpenUrlAbstract/FREE Full Text
  70. 70.
    1. Kanto WP Jr.
    . A decade of experience with neonatal extracorporeal membrane oxygenation. J Pediatr 1994;124(3):335–347.
    OpenUrlCrossRefPubMedWeb of Science
  71. 71.
    1. Moler FW,
    2. Custer JR,
    3. Bartlett RH,
    4. Palmisano JM,
    5. Akingbola O,
    6. Taylor RP,
    7. Maxvold NJ
    . Extracorporeal life support for severe pediatric respiratory failure: an updated experience 1991–1993. J Pediatr 1994;124(6):875–880.
    OpenUrlCrossRefPubMedWeb of Science
  72. 72.↵
    The Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators. Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 2009;302(17):1888–1895.
    OpenUrlCrossRefPubMedWeb of Science
  73. 73.↵
    1. Peek GJ,
    2. Mugford M,
    3. Tiruvoipati R,
    4. Wilson A,
    5. Allen E,
    6. Thalanany MM,
    7. et al
    ; CESAR trial collaboration. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009;374(9698):1351–1363.
    OpenUrlCrossRefPubMedWeb of Science
  74. 74.↵
    Extracorporeal Life Support Organization (ELSO) Database. January, 2011. http://www.elso.med.umich.edu/Default.htm. Accessed July 7, 2011.
  75. 75.↵
    1. Turner DA,
    2. Rehder KJ,
    3. Peterson-Carmichael SL,
    4. Ozment CP,
    5. Al-Hegelan MS,
    6. Williford WL,
    7. et al
    . Extracorporeal membrane oxygenation for severe refractory respiratory failure secondary to 2009 H1N1 influenza A. Respir Care 2011;56(7):941–946.
    OpenUrlAbstract/FREE Full Text
  76. 76.↵
    1. Ten IS,
    2. Anderson MR
    . Is high-frequency ventilation more beneficial than low-tidal volume conventional ventilation? Respir Care Clin N Am 2006;12(3):437–451.
    OpenUrlPubMed
  77. 77.
    1. Ventre KM,
    2. Arnold JH
    . High frequency oscillatory ventilation in acute respiratory failure. Paediatr Respir Rev 2004;5(4):323–332.
    OpenUrlPubMed
  78. 78.↵
    1. Arnold JH,
    2. Anas NG,
    3. Luckett P,
    4. Cheifetz IM,
    5. Reyes G,
    6. Newth CJ,
    7. et al
    . High-frequency oscillatory ventilation in pediatric respiratory failure: a multicenter experience. Crit Care Med 2000;28(12):3913–3919.
    OpenUrlCrossRefPubMedWeb of Science
  79. 79.↵
    1. Arnold JH,
    2. Hanson JH,
    3. Toro-Figuero LO,
    4. Gutiérrez J,
    5. Berens RJ,
    6. Anglin DL
    . Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med 1994;22(10):1530–1539.
    OpenUrlPubMedWeb of Science
  80. 80.↵
    1. Chan KP,
    2. Stewart TE,
    3. Mehta S
    . High-frequency oscillatory ventilation for adult patients with ARDS. Chest 2007;131(6):1907–1916.
    OpenUrlCrossRefPubMedWeb of Science
  81. 81.
    1. Derdak S,
    2. Mehta S,
    3. Stewart TE,
    4. Smith T,
    5. Rogers M,
    6. Buchman TG,
    7. et al
    ; Multicenter Oscillatory Ventilation for Acute Respiratory Distress Syndrome Trial (MOAT) Study Investigators. High frequency oscillatory ventilation for acute respiratory distress syndrome: A randomized, controlled trial. Am J Respir Crit Care Med 2002;166(6):801–808.
    OpenUrlCrossRefPubMedWeb of Science
  82. 82.↵
    1. Derdak S
    , High-frequency oscillatory ventilation for acute respiratory distress syndrome in adult patients. Crit Care Med 2003;31(4; Suppl):S317–323.
    OpenUrlCrossRefPubMedWeb of Science
  83. 83.↵
    1. Fessler HE,
    2. Hess DR
    . Respiratory controversies in the critical care setting. Does high-frequency ventilation offer benefits over conventional ventilation in adult patients with acute respiratory distress syndrome? Respir Care 2007;52(5):595–605, discussion 606-608.
    OpenUrlAbstract/FREE Full Text
  84. 84.↵
    1. Sud S,
    2. Sud M,
    3. Friedrich JO,
    4. Meade MO,
    5. Ferguson ND,
    6. Wunsch H,
    7. Adhikari NK
    . High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): Systematic review and meta-analysis. BMJ 2010;340:c2327.
    OpenUrlAbstract/FREE Full Text
  85. 85.↵
    1. Rubin BK,
    2. Steinberg KP
    . When caring for critically ill Patients, do clinicians have a responsibility to be innovative and try unproven approaches when accepted approaches are failing? Respir Care 2007;52(4):408–413; discussion 413-415.
    OpenUrlAbstract/FREE Full Text
  86. 86.↵
    1. Burr JS,
    2. Jenkins TL,
    3. Harrison R,
    4. Meert K,
    5. Anand KJ,
    6. Berger JT,
    7. et al
    ; Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Collaborative Pediatric Critical Care Research Network (CPCCRN). The Collaborative Pediatric Critical Care Research Network (CPCCRN) Critical Pertussis Study: collaborative research in pediatric critical care medicine. Pediatr Crit Care Med 2011;12(4):387–392.
    OpenUrlPubMed
  87. 87.
    1. Meert KL,
    2. Eggly S,
    3. Dean JM,
    4. Pollack M,
    5. Zimmerman J,
    6. Anand KJ,
    7. et al
    . Ethical and logistical considerations of multicenter parental bereavement research. J Palliat Med 2008;11(3):444–450.
    OpenUrlCrossRefPubMed
  88. 88.
    1. Meert KL,
    2. Eggly S,
    3. Pollack M,
    4. Anand KJ,
    5. Zimmerman J,
    6. Carcillo J,
    7. et al
    ; National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Parents' perspectives regarding a physician-parent conference after their child's death in the pediatric intensive care unit. J Pediatr 2007;151(1):50–55.
    OpenUrlCrossRefPubMedWeb of Science
  89. 89.↵
    1. Willson DF,
    2. Dean JM,
    3. Newth C,
    4. Pollack M,
    5. Anand KJ,
    6. Meert K,
    7. et al
    ; Collaborative Pediatric Critical Care Research Network (CPCCRN). Pediatr Crit Care Med 2006;7(4):301–307.
    OpenUrlCrossRefPubMedWeb of Science
  90. 90.↵
    1. Yung M,
    2. Slater A,
    3. Festa M,
    4. Williams G,
    5. Erickson S,
    6. Pettila V,
    7. et al
    ; Australia and New Zealand Intensive Care Influenza Investigators and the Paediatric Study Group and the Clinical Trials Group of the Australia New Zealand Intensive Care Society. Pandemic H1N1 in children requiring intensive care in Australia and New Zealand during winter 2009. Pediatrics 2011;127(1):e156–163.
    OpenUrlAbstract/FREE Full Text
  91. 91.↵
    The ANZIC Influenza Investigators. Critical care services and 2009 H1N1 influenza in Australia and New Zealand. N Engl J Med 2009;361(20):1925–1934.
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

Respiratory Care: 56 (9)
Respiratory Care
Vol. 56, Issue 9
1 Sep 2011
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Management of Acute Lung Injury: Sharing Data Between Adults and Children
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Management of Acute Lung Injury: Sharing Data Between Adults and Children
Ira M Cheifetz
Respiratory Care Sep 2011, 56 (9) 1258-1272; DOI: 10.4187/respcare.01413

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Management of Acute Lung Injury: Sharing Data Between Adults and Children
Ira M Cheifetz
Respiratory Care Sep 2011, 56 (9) 1258-1272; DOI: 10.4187/respcare.01413
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Why Are Pediatric Mechanical Ventilation Data Lacking?
    • Pediatric ALI: Learning From Adult Patients
    • Pediatric and Adult Acute Lung Injury: Synergistic Data
    • Adult ARDS: Learning From Pediatric Patients
    • Summary and Thoughts for the Future
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • mechanical ventilation
  • pediatric
  • acute lung injury
  • gas exchange
  • acute respiratory distress syndrome
  • lung protection
  • oxygenation
  • ventilation

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire