Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Most-Read Papers of 2021
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2022 Call for Abstracts
    • 2021 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Most-Read Papers of 2021
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2022 Call for Abstracts
    • 2021 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleOriginal Research

Computerized Respiratory Sounds: Novel Outcomes for Pulmonary Rehabilitation in COPD

Cristina Jácome and Alda Marques
Respiratory Care February 2017, 62 (2) 199-208; DOI: https://doi.org/10.4187/respcare.04987
Cristina Jácome
Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Faculty of Sports, University of Porto, Porto, Portugal and Lab 3R, Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro (ESSUA), Aveiro, Portugal.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alda Marques
Lab 3R, Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro (ESSUA), Aveiro, Portugal and the Institute for Research in Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    World Health Organization. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. Geneva: World Health Organization; 2007:1–146.
  2. 2.↵
    1. Miravitlles M,
    2. Murio C,
    3. Guerrero T,
    4. Gisbert R
    . Costs of chronic bronchitis and COPD. Chest 2003;123(3):784–791.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease 2016. Available from: http://goldcopd.org/.
  4. 4.↵
    1. Jones PW,
    2. Agusti AG
    . Outcomes and markers in the assessment of chronic obstructive pulmonary disease. Eur Respir J 2006;27(4):822–832.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Celli BR,
    2. Decramer M,
    3. Wedzicha JA,
    4. Wilson KC,
    5. Agustí A,
    6. Criner GJ,
    7. et al
    . An official American Thoracic Society/European Respiratory Society statement: research questions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015;191(7):e4–e27.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Spruit MA,
    2. Singh SJ,
    3. Garvey C,
    4. ZuWallack R,
    5. Nici L,
    6. Rochester C,
    7. et al
    . An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med 2013;188(8):e13–e64.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Spruit MA,
    2. Pitta F,
    3. Garvey C,
    4. ZuWallack RL,
    5. Roberts CM,
    6. Collins EG,
    7. et al
    . Differences in content and organisational aspects of pulmonary rehabilitation programmes. Eur Respir J 2014;43(5):1326–1337.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. Camp PG,
    2. Appleton J,
    3. Reid WD
    . Quality of life after pulmonary rehabilitation: assessing change using quantitative and qualitative methods. Phys Ther 2000;80(10):986–995.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Annesi I,
    2. Oryszczyn MP,
    3. Neukirch F,
    4. Orvoen-Frija E,
    5. Korobaeff M,
    6. Kauffmann F
    . Relationship of upper airways disorders to FEV1 and bronchial hyperresponsiveness in an epidemiological study. Eur Respir J 1992;5(9):1104–1110.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Bohadana A,
    2. Izbicki G,
    3. Kraman SS
    . Fundamentals of lung auscultation. N Engl J Med 2014;370(8):744–751.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Sovijärvi ARA,
    2. Dalmasso F,
    3. Vanderschoot J,
    4. Malmberg LP,
    5. Righini G,
    6. Stoneman SAT
    . Definition of terms for applications of respiratory sounds. Eur Respir Rev 2000;10(77):597–610.
    OpenUrl
  12. 12.↵
    1. Kiyokawa H,
    2. Pasterkamp H
    . Volume-dependent variations of regional lung sound, amplitude, and phase. J Appl Physiol 2002;93(3):1030–1038.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. Fiz JA,
    2. Jané R,
    3. Homs A,
    4. Izquierdo J,
    5. García MA,
    6. Morera J
    . Detection of wheezing during maximal forced exhalation in patients with obstructed airways. Chest 2002;122(1):186–191.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Sánchez Morillo D,
    2. Astorga Moreno S,
    3. Fernández Granero MÁ,
    4. León Jiménez A
    . Computerized analysis of respiratory sounds during COPD exacerbations. Comput Biol Med 2013;43(7):914–921.
    OpenUrl
  15. 15.↵
    1. Nici L,
    2. ZuWallack R
    . Pulmonary rehabilitation: today and tomorrow. Breathe 2010;6(4):305–311.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Jácome C,
    2. Marques A
    . Short- and long-term effects of pulmonary rehabilitation in patients with mild COPD: a comparison with patients with moderate-to-severe COPD. J Cardiopulm Rehabil Prev 2016;36(6):445–453.
    OpenUrl
  17. 17.↵
    1. Thooft A,
    2. Favory R,
    3. Salgado DR,
    4. Taccone FS,
    5. Donadello K,
    6. De Backer D,
    7. et al
    . Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care 2011;15(5):R222.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Jafari-Khouzani K,
    2. Emblem KE,
    3. Kalpathy-Cramer J,
    4. Bjørnerud A,
    5. Vangel MG,
    6. Gerstner ER,
    7. et al
    . Repeatability of cerebral perfusion using dynamic susceptibility contrast MRI in glioblastoma patients. Transl Oncol 2015;8(3):137–146.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Borg G
    . Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 1970;2(2):92–98.
    OpenUrlPubMed
  20. 20.↵
    1. Hjermstad MJ,
    2. Fayers PM,
    3. Haugen DF,
    4. Caraceni A,
    5. Hanks GW,
    6. Loge JH,
    7. et al
    . Studies comparing numerical rating scales, verbal rating scales, and visual analogue scales for assessment of pain intensity in adults: a systematic literature review. J Pain Symptom Manage 2011;41(6):1073–1093.
    OpenUrlCrossRefPubMedWeb of Science
  21. 21.↵
    1. Miller MR,
    2. Hankinson J,
    3. Brusasco V,
    4. Burgos F,
    5. Casaburi R,
    6. Coates A,
    7. et al
    . Standardisation of spirometry. Eur Respir J 2005;26(2):319–338.
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166(1):111–117.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    American College of Sports Medicine. ACSM's resource manual for guidelines for exercise testing and prescription. Philadelphia: Lippincott Williams & Wilkins; 2009:324–447.
  24. 24.↵
    1. Marshall AL,
    2. Smith BJ,
    3. Bauman AE,
    4. Kaur S
    . Reliability and validity of a brief physical activity assessment for use by family doctors. Br J Sports Med 2005;39(5):294–297; discussion 294-297.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Jones PW
    . St. George's Respiratory Questionnaire: MCID. COPD 2005;2(1):75–79.
    OpenUrlCrossRefWeb of Science
  26. 26.↵
    1. Vyshedskiy A,
    2. Murphy R
    . Crackle pitch rises progressively during inspiration in pneumonia, CHF, and IPF patients. Pulm Med 2012;2012:240160.
    OpenUrlPubMed
  27. 27.↵
    1. Jácome C,
    2. Marques A
    . Computerized respiratory sounds are a reliable marker in subjects with COPD. Respir Care 2015;60(9):1264–1275.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. Sovijarvi ARA,
    2. Vanderschoot J,
    3. Earis JE
    . Standardization of computerized respiratory sound analysis. Eur Respir Rev 2000;10(77):585.
    OpenUrl
  29. 29.↵
    1. Pinho C,
    2. Oliveira A,
    3. Oliveira D,
    4. Dinis J,
    5. Marques A
    . [email protected] Interface and Multimedia Database. IJEHMC 2014;5(1):81–95.
    OpenUrl
  30. 30.↵
    1. Quintas J,
    2. Campos G,
    3. Marques A
    . Multi-algorithm respiratory crackle detection. Barcelona, Spain: 6th International Conference on Health Informatics (BIOSTEC 2013). Setúbal, Portugal: Institute for Systems and Technologies of Information, Control, and Communication.
  31. 31.↵
    1. Taplidou SA,
    2. Hadjileontiadis LJ
    . Wheeze detection based on time-frequency analysis of breath sounds. Comput Biol Med 2007;37(8):1073–1083.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Pasterkamp H,
    2. Powell RE,
    3. Sanchez I
    . Lung sound spectra at standardized air flow in normal infants, children, and adults. Am J Respir Crit Care Med 1996;154(2 Pt 1):424–430.
    OpenUrlPubMedWeb of Science
  33. 33.↵
    1. Sánchez I,
    2. Vizcaya C
    . Tracheal and lung sounds repeatability in normal adults. Respir Med 2003;97(12):1257–1260.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Rovai AP,
    2. Baker JD,
    3. Ponton MK
    . Social science research design and statistics: a practitioner's guide to research methods and IBM SPSS analysis. Chesapeake, Virginia: Watertree Press LLC; 2014:260–460.
  35. 35.↵
    1. Cohen J
    . Statistical power analysis for the behavioral sciences. New York: Academic Press; 1969.
  36. 36.↵
    1. Gavriely N,
    2. Cugell DW
    . Airflow effects on amplitude and spectral content of normal breath sounds. J Appl Physiol 1996;80(1):5–13.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Vyshedskiy A,
    2. Alhashem RM,
    3. Paciej R,
    4. Ebril M,
    5. Rudman I,
    6. Fredberg JJ,
    7. Murphy R
    . Mechanism of inspiratory and expiratory crackles. Chest 2009;135(1):156–164.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Meslier N,
    2. Charbonneau G,
    3. Racineux JL
    . Wheezes. Eur Respir J 1995;8(11):1942–1948.
    OpenUrlAbstract/FREE Full Text
  39. 39.↵
    1. Laveneziana P,
    2. Parker CM,
    3. O'Donnell DE
    . Ventilatory constraints and dyspnea during exercise in chronic obstructive pulmonary disease. Appl Physiol Nutr Metab 2007;32(6):1225–1238.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.↵
    1. Malmberg LP,
    2. Sovijärvi AR,
    3. Paajanen E,
    4. Piirilä P,
    5. Haahtela T,
    6. Katila T
    . Changes in frequency spectra of breath sounds during histamine challenge test in adult asthmatics and healthy control subjects. Chest 1994;105(1):122–131.
    OpenUrlCrossRefPubMedWeb of Science
  41. 41.↵
    1. Pasterkamp H,
    2. Kraman SS,
    3. Wodicka GR
    . Respiratory sounds. Advances beyond the stethoscope. Am J Respir Crit Care Med 1997;156(3 Pt 1):974–987.
    OpenUrlCrossRefPubMedWeb of Science
  42. 42.↵
    1. Pasterkamp H,
    2. Sanchez I
    . Effect of gas density on respiratory sounds. Am J Respir Crit Care Med 1996;153(3):1087–1092.
    OpenUrlPubMedWeb of Science
  43. 43.↵
    1. Jácome C,
    2. Marques A
    . Computerized respiratory sounds in patients with COPD: a systematic review. COPD 2015;12(1):104–112.
    OpenUrl
  44. 44.↵
    1. Piirilä P,
    2. Sovijärvi A
    . Crackles: recording, analysis and clinical significance. Eur Respir J 1995;8(12):2139–2148.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Jácome C,
    2. Oliveira A,
    3. Marques A
    . Computerized respiratory sounds: a comparison between patients with stable and exacerbated COPD. Clin Respir J 2015. doi: 10.1111/crj.12392.
  46. 46.↵
    1. Murphy RL
    . Special articles: in defense of the stethoscope. Respir Care 2008;53(3):355–369.
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. Piirilä P
    . Changes in crackle characteristics during the clinical course of pneumonia. Chest 1992;102(1):176–183.
    OpenUrlCrossRefPubMedWeb of Science
  48. 48.↵
    1. Mikelsons C
    . The role of physiotherapy in the management of COPD. Respir Med COPD Update 2008;4(1):2–7. doi: 10.1016/j.rmedu.2007.11.021.
    OpenUrlCrossRef
  49. 49.↵
    1. Ides K,
    2. Vissers D,
    3. Vissers D,
    4. De Backer L,
    5. Leemans G,
    6. De Backer W
    . Airway clearance in COPD: need for a breath of fresh air? A systematic review. COPD 2011;8(3):196–205.
    OpenUrlCrossRef
  50. 50.↵
    1. O'Donnell DE,
    2. Flüge T,
    3. Gerken F,
    4. Hamilton A,
    5. Webb K,
    6. Aguilaniu B,
    7. et al
    . Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J 2004;23(6):832–840.
    OpenUrlAbstract/FREE Full Text
  51. 51.↵
    1. Ramirez-Venegas A,
    2. Ward J,
    3. Lentine T,
    4. Mahler DA
    . Salmeterol reduces dyspnea and improves lung function in patients with COPD. Chest 1997;112(2):336–340.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Dinis J,
    2. Oliveira A,
    3. Pinho C,
    4. Campos G,
    5. Rodrigues J,
    6. Marques A
    . Automatic wheeze and respiratory phase detectors to evaluate respiratory physiotherapy in LRTI: a preliminary study. Barcelona, Spain: 6th International Conference on Health Informatics (BIOSTEC 2013). Setúbal, Portugal: Institute for Systems and Technologies of Information, Control, and Communication.
  53. 53.↵
    1. Shim CS,
    2. Williams MH Jr.
    . Relationship of wheezing to the severity of obstruction in asthma. Arch Intern Med 1983;143(5):890–892.
    OpenUrlCrossRefPubMedWeb of Science
  54. 54.↵
    1. Foglio K,
    2. Bianchi L,
    3. Bruletti G,
    4. Porta R,
    5. Vitacca M,
    6. Balbi B,
    7. Ambrosino N
    . Seven-year time course of lung function, symptoms, health-related quality of life, and exercise tolerance in COPD patients undergoing pulmonary rehabilitation programs. Respir Med 2007;101(9):1961–1970.
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.↵
    1. Ries AL,
    2. Kaplan RM,
    3. Myers R,
    4. Prewitt LM
    . Maintenance after pulmonary rehabilitation in chronic lung disease: a randomized trial. Am J Respir Crit Care Med 2003;167(6):880–888.
    OpenUrlCrossRefPubMedWeb of Science
  56. 56.↵
    1. Gavriely N,
    2. Nissan M,
    3. Cugell DW,
    4. Rubin AHE
    . Respiratory health screening using pulmonary-function tests and lung sound analysis. Eur Respir J 1994;7(1):35–42.
    OpenUrlAbstract/FREE Full Text
  57. 57.↵
    1. Griffiths TL,
    2. Burr ML,
    3. Campbell IA,
    4. Lewis-Jenkins V,
    5. Mullins J,
    6. Shiels K,
    7. et al
    . Results at 1 year of outpatient multidisciplinary pulmonary rehabilitation: a randomised controlled trial. Lancet 2000;355(9201):362–368.
    OpenUrlCrossRefPubMedWeb of Science
  58. 58.↵
    1. Rossi M,
    2. Sovijärvi ARA,
    3. Piirilä P,
    4. Vannuccini L,
    5. Dalmasso F,
    6. Vanderschoot J
    . Environmental and subject conditions and breathing manoeuvres for respiratory sound recordings. Eur Respir Rev 2000;10(77):611–615.
    OpenUrl
  59. 59.↵
    1. Jones B,
    2. Kenward MG
    . Design and analysis of cross-over trials. Boca Raton: CRC Press; 2015:1–10.
  60. 60.↵
    1. Kessler R,
    2. Partridge MR,
    3. Miravitlles M,
    4. Cazzola M,
    5. Vogelmeier C,
    6. Leynaud D,
    7. Ostinelli J
    . Symptom variability in patients with severe COPD: a pan-European cross-sectional study. Eur Respir J 2011;37(2):264–272.
    OpenUrlAbstract/FREE Full Text
  61. 61.
    1. Quanjer PH,
    2. Stanojevic S,
    3. Cole TJ,
    4. Baur X,
    5. Hall GL,
    6. Culver BH,
    7. et al
    . Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J 2012;40(6):1324–1243.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Respiratory Care: 62 (2)
Respiratory Care
Vol. 62, Issue 2
1 Feb 2017
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Computerized Respiratory Sounds: Novel Outcomes for Pulmonary Rehabilitation in COPD
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Computerized Respiratory Sounds: Novel Outcomes for Pulmonary Rehabilitation in COPD
Cristina Jácome, Alda Marques
Respiratory Care Feb 2017, 62 (2) 199-208; DOI: 10.4187/respcare.04987

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Computerized Respiratory Sounds: Novel Outcomes for Pulmonary Rehabilitation in COPD
Cristina Jácome, Alda Marques
Respiratory Care Feb 2017, 62 (2) 199-208; DOI: 10.4187/respcare.04987
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • chronic lung disease
  • rehabilitation
  • computerized respiratory sounds

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board
  • Reprints/Permissions

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire