Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Most-Read Papers of 2021
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2022 Call for Abstracts
    • 2021 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Most-Read Papers of 2021
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2022 Call for Abstracts
    • 2021 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleOriginal Research

Assessment of Bohr and Enghoff Dead Space Equations in Mechanically Ventilated Children

Pierre Bourgoin, Florent Baudin, David Brossier, Guillaume Emeriaud, Marc Wysocki and Philippe Jouvet
Respiratory Care April 2017, 62 (4) 468-474; DOI: https://doi.org/10.4187/respcare.05108
Pierre Bourgoin
Pediatric Intensive Care Unit, Hopital Femme-Enfant-Adolescent, Centre Hospitalier Universitaire de Nantes, Nantes, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Florent Baudin
Centre Hospitalier Universitaire de Lyon, Lyon, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Brossier
Pediatric Intensive Care Unit, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guillaume Emeriaud
Centre Hospitalier Universitaire Sainte-Justine and Pediatrics, Université de Montréal, Montréal, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marc Wysocki
Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montreal, Quebec, Canada, and GE Healthcare, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philippe Jouvet
Centre Hospitalier Universitaire Sainte-Justine and the Division of Pediatric Critical Care Medicine, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Bohr C
    . Ueber die Lungenathmung1. Skand Arch Für Physiol. 1891;2(1):236–268.
    OpenUrl
  2. 2.↵
    1. McSwain SD,
    2. Hamel DS,
    3. Smith PB,
    4. Gentile MA,
    5. Srinivasan S,
    6. Meliones JN,
    7. Cheifetz IM
    . end-tidal and arterial carbon dioxide measurements correlate across levels of physiologic dead space. Respir Care 2010;55(3):288–293.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Charron C,
    2. Repesse X,
    3. Bouferrache K,
    4. Bodson L,
    5. Castro S,
    6. Page B,
    7. et al
    . PaCO2 and alveolar dead space are more relevant than PaO2/FiO2 ratio in monitoring the respiratory response to prone position in ARDS Subjects: a physiological study. Crit Care 2011;15(4):R175.
    OpenUrlPubMed
  4. 4.↵
    1. Wenzel U,
    2. Rüdiger M,
    3. Wagner MH,
    4. Waeur RR
    . Utility of deadspace and capnometry measurements in determination of surfactant efficacy in surfactant-depleted lungs. Crit Care Med 1999;27(5):946–952.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Maisch S,
    2. Reissmann H,
    3. Fuellekrug B,
    4. Weismann D,
    5. Rutkowski T,
    6. Tusman G,
    7. Bohm SH
    . Compliance and dead space fraction indicate an optimal level of end-expiratory pressure after recruitement in anesthetized pateints. Anesth Analg 2008;106(1):175–181, table of contents.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Tusman G,
    2. Suarez-Sipmann F,
    3. Böhm SH,
    4. Pech T,
    5. Reissmann H,
    6. Meschino G,
    7. et al
    . Monitoring dead space during recruitment and PEEP titration in an experimental model. Intensive Care Med 2006;32(11):1863–1871.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Nuckton TJ,
    2. Alonso JA,
    3. Kallet RH,
    4. Daniel BM,
    5. Pittet JF,
    6. Eisner MD,
    7. Matthay MA
    . Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002;346(17):1281–1286.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Almeida-Junior AA,
    2. da Silva MT,
    3. Almeida CC,
    4. Ribeiro JD
    . Relationship between physiologic deadspace/tidal volume ratio and gas exchange in infants with acute bronchiolitis on invasive mechanical ventilation. Pediatr Crit Care Med 2007;8(4):372–377.
    OpenUrlPubMed
  9. 9.↵
    1. Tusman G,
    2. Sipmann FS,
    3. Borges JB,
    4. Hedenstierna G,
    5. Bohm SH
    . Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med 2011;37(5):870–874.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Tusman G,
    2. Sipmann FS,
    3. Bohm SH
    . Rationale of dead space measurement by volumetric capnography. Anesth Analg 2012;114(4):866–874.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Ranieri VM,
    2. Rubenfeld GD,
    3. Thompson BT,
    4. Ferguson ND,
    5. Caldwell E,
    6. et al
    ARDS Definition Task Force Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. The Berlin definition of acute respiratory distress syndrome. JAMA 2012;307(23):2526–2533.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. Wagner PD
    . Causes of a high physiological dead space in critically ill subjects. Crit Care 2008;12(3):148.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Hedenstierna G,
    2. Sandhagen B
    . Assessing deadspace, a meaningful variable? Minerva Anestesiol 2006;72(6):521–528.
    OpenUrlPubMedWeb of Science
  14. 14.↵
    1. Suarez-Sipmann F,
    2. Santos A,
    3. Böhm SH,
    4. Borges JB,
    5. Hedenstierna G,
    6. Tusman G
    . Corrections of Enghoff's dead space formula for shunt effects still overestimate Bohr's dead space. Respir Physiol Neurobiol 2013;189(1):99–105.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Hardman JG,
    2. Aitkenhead AR
    . Estimating alveolar dead space from the arterial to end-tidal CO2 gradient: a modeling analysis. Anesth Analg 2003;97(6):1846–1851.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Mecikalski MB,
    2. Cutillo AG,
    3. Renzetti AD
    . Effect of right-to-left shunting on alveolar dead space. Bull Eur Physiopathol Respir 1984;20(6):513–519.
    OpenUrlPubMedWeb of Science
  17. 17.↵
    1. Tusman G,
    2. Suarez-Sipmann F,
    3. Bohm SH,
    4. Borges JB,
    5. Hedenstierna G
    . Capnography reflects ventilation/perfusion distribution in a model of acute lung injury: Phase III slope of capnograms is related to the V/Q ratio. Acta Anaesthesiol Scand 2011;55(5):597–606.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Fuchs SI,
    2. Junge S,
    3. Ellemunter H,
    4. Ballmann M,
    5. Gappa M
    . Calculation of the capnographic index based on expiratory molar mass-volume-curves: a suitable tool to screen for cystic fibrosis lung disease. J Cyst Fibros 2013;12(3):277–283.
    OpenUrl
  19. 19.
    1. Fouzas S,
    2. Häcki C,
    3. Latzin P,
    4. Proietti E,
    5. Schulzke S,
    6. Frey U,
    7. Delgado-Eckert E
    . Volumetric capnography in infants with bronchopulmonary dysplasia. J Pediatr 2014;164(2):283–288.e1-3.
    OpenUrl
  20. 20.↵
    1. Strömberg NO,
    2. Gustafsson PM
    . Ventilation inhomogeneity assessed by nitrogen washout and ventilation-perfusion mismatch by capnography in stable and induced airway obstruction. Pediatr Pulmonol 2000;29(2):94–102.
    OpenUrlCrossRefPubMedWeb of Science
  21. 21.↵
    1. Tusman G,
    2. Suarez-Sipmann F,
    3. Paez G,
    4. Alvarez J,
    5. Bohm SH
    . States of low pulmonary blood flow can be detected non-invasively at the bedside measuring alveolar dead space. J Clin Monit Comput 2012;26(3):183–190.
    OpenUrlPubMed
  22. 22.↵
    1. Niklason L,
    2. Eckerström J,
    3. Jonson B
    . The influence of venous admixture on alveolar dead space and carbon dioxide exchange in acute respiratory distress syndrome: computer modelling. Crit Care 2008;12(2):R53.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Suominen PK,
    2. Stayer S,
    3. Wang W,
    4. Chang AC
    . The effect of temperature correction of blood gas values on the accuracy of end-tidal carbon dioxide monitoring in children after cardiac surgery. ASAIO J 2007;53(6):670–674.
    OpenUrlPubMed
  24. 24.↵
    1. Sitzwohl C,
    2. Kettner SC,
    3. Reinprecht A,
    4. Dietrich W,
    5. Klimscha W,
    6. Fridrich P,
    7. et al
    . The arterial to end-tidal carbon dioxide gradient increases with uncorrected but not with temperature-corrected PaCO2 determination during mild to moderate hypothermia. Anesth Analg 1998;86(5):1131–1136.
    OpenUrlPubMedWeb of Science
PreviousNext
Back to top

In this issue

Respiratory Care: 62 (4)
Respiratory Care
Vol. 62, Issue 4
1 Apr 2017
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Assessment of Bohr and Enghoff Dead Space Equations in Mechanically Ventilated Children
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Assessment of Bohr and Enghoff Dead Space Equations in Mechanically Ventilated Children
Pierre Bourgoin, Florent Baudin, David Brossier, Guillaume Emeriaud, Marc Wysocki, Philippe Jouvet
Respiratory Care Apr 2017, 62 (4) 468-474; DOI: 10.4187/respcare.05108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Assessment of Bohr and Enghoff Dead Space Equations in Mechanically Ventilated Children
Pierre Bourgoin, Florent Baudin, David Brossier, Guillaume Emeriaud, Marc Wysocki, Philippe Jouvet
Respiratory Care Apr 2017, 62 (4) 468-474; DOI: 10.4187/respcare.05108
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • respiratory physiological concepts
  • mechanical ventilation
  • pediatric ICU
  • ventilation-perfusion ratio
  • capnography
  • ARDS

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board
  • Reprints/Permissions

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire