Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleOriginal Research

Flow Decay: A Novel Spirometric Index to Quantify Dynamic Airway Resistance

Anita Oh, Tessa A Morris, Isaac T Yoshii and Timothy A Morris
Respiratory Care July 2017, 62 (7) 928-935; DOI: https://doi.org/10.4187/respcare.04850
Anita Oh
Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Diego, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tessa A Morris
Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Diego, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Isaac T Yoshii
Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Diego, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy A Morris
Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Diego, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Reference

  1. 1.↵
    1. Pellegrino R,
    2. Viegi G,
    3. Brusasco V,
    4. Crapo RO,
    5. Burgos F,
    6. Casaburi R,
    7. et al
    . Interpretative strategies for lung function tests. Eur Respir J 2005;26(5):948–968.
    OpenUrlFREE Full Text
  2. 2.↵
    1. Licskai CJ,
    2. Sands TW,
    3. Paolatto L,
    4. Nicoletti I,
    5. Ferrone M
    . Spirometry in primary care: an analysis of spirometery test quality in a regional primary care asthma program. Can Respir J 2012;19(4):249–254.
    OpenUrlPubMed
  3. 3.↵
    1. Arne M,
    2. Lisspers K,
    3. Ställberg B,
    4. Boman G,
    5. Hedenström H,
    6. Janson C,
    7. Emtner M
    . How often is diagnosis of COPD confirmed with spirometry? Respir Med 2010;104(4):550–556.
    OpenUrlCrossRefPubMed
  4. 4.
    1. Turkeshi E,
    2. Zelenukha D,
    3. Vaes B,
    4. Andreeva E,
    5. Frolova E,
    6. Degryse JM
    . Predictors of poor-quality spirometry in two cohorts of older adults in Russia and Belgium: a cross-sectional study. NPJ Prim Care Respir Med 2015;25:15048.
    OpenUrl
  5. 5.↵
    1. Eaton T,
    2. Withy S,
    3. Garrett JE,
    4. Mercer J,
    5. Whitlock RM,
    6. Rea HH
    . Spirometry in primary care practice: the importance of quality assurance and the impact of spirometry workshops. Chest 1999;116(2):416–423.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Hyatt RE,
    2. Scanlon PD,
    3. Nakamura M
    . Spirometry: dynamic lung volumes. In: Interpretation of pulmonary function tests: a practical guide. Philadelphia: Wolters Kluwer Health; 2014:4–21.
  7. 7.↵
    1. Flenley DC
    . Chronic obstructive pulmonary disease. Dis Mon 1988;34(9):537–599.
    OpenUrlPubMed
  8. 8.↵
    1. Fry DL,
    2. Ebert RV,
    3. Stead WW,
    4. Brown CC
    . The mechanics of pulmonary ventilation in normal subjects and in patients with emphysema. Am J Med 1954;16(1):80–97.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Fry DL,
    2. Hyatt RE
    . Pulmonary mechanics: a unified analysis of the relationship between pressure, volume and gasflow in the lungs of normal and diseased human subjects. Am J Med 1960;29:672–689.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Gardner RM,
    2. Clausen JL,
    3. Crapo RO,
    4. Epler GR,
    5. Hankinson JL,
    6. Johnson JL Jr.,
    7. Plummer AL
    . Quality assurance in pulmonary function laboratories. The American review of respiratory disease 1986;134(3):625–627.
    OpenUrlPubMedWeb of Science
  11. 11.↵
    1. Miller MR,
    2. Hankinson J,
    3. Brusasco V,
    4. Burgos F,
    5. Casaburi R,
    6. Coates A,
    7. et al
    . Standardisation of spirometry. Eur Respir J 2005;26(2):319–338.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Celli BR,
    2. MacNee W
    , ATS/ERS Task Force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 2004;23(6):932–946.
    OpenUrlFREE Full Text
  13. 13.↵
    1. Crapo RO,
    2. Morris AH,
    3. Gardner RM
    . Reference spirometric values using techniques and equipment that meet ATS recommendations. Am Rev Respir Dis 1981;123(6):659–664.
    OpenUrlPubMedWeb of Science
  14. 14.↵
    1. Crapo RO,
    2. Morris AH,
    3. Clayton PD,
    4. Nixon CR
    . Lung volumes in healthy nonsmoking adults. Bull Eur Physiopathol Respir 1982;18(3):419–425.
    OpenUrlPubMedWeb of Science
  15. 15.↵
    1. Mead J,
    2. Turner JM,
    3. Macklem PT,
    4. Little JB
    . Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol 1967;22(1):95–108.
    OpenUrlFREE Full Text
  16. 16.↵
    1. DeGraff AC Jr.,
    2. Bouhuys A
    . Mechanics of air flow in airway obstruction. Annu Rev Med 1973;24:111–134.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Hosmer DW,
    2. Lemeshow S
    . Assessing the fit of the model. In Applied Logistic Regression, 2nd edition. New York: John Wiley & Sons; 2000:143–202.
  18. 18.↵
    1. Enright P,
    2. Vollmer WM,
    3. Lamprecht B,
    4. Jensen R,
    5. Jithoo A,
    6. Tan W,
    7. et al
    . Quality of spirometry tests performed by 9893 adults in 14 countries: the BOLD Study. Respir Med 2011;105(10):1507–1515.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Tan WC,
    2. Bourbeau J,
    3. O'Donnell D,
    4. Aaron S,
    5. Maltais F,
    6. Marciniuk D,
    7. et al
    . Quality assurance of spirometry in a population-based study: predictors of good outcome in spirometry testing. COPD 2014;11(2):143–151.
    OpenUrl
  20. 20.↵
    1. Jayamanne DS,
    2. Epstein H,
    3. Goldring RM
    . Flow-volume curve contour in COPD: correlation with pulmonary mechanics. Chest 1980;77(6):749–757.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Healy F,
    2. Wilson AF,
    3. Fairshter RD
    . Physiologic correlates of airway collapse in chronic airflow obstruction. Chest 1984;85(4):476–481.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Quanjer PH,
    2. Weiner DJ,
    3. Pretto JJ,
    4. Brazzale DJ,
    5. Boros PW
    . Measurement of FEF25-75% and FEF75% does not contribute to clinical decision making. Eur Respir J 2014;43(4):1051–1058.
    OpenUrlAbstract/FREE Full Text
  23. 23.↵
    1. Vilozni D,
    2. Hakim F,
    3. Livnat G,
    4. Bentur L
    . Forced expiratory decay in asthmatic preschool children–is it adult type? Respir Med 2013;107(7):975–980.
    OpenUrl
  24. 24.↵
    1. Boggs PB,
    2. Bhat KD,
    3. Vekovius WA,
    4. Debo MS
    . The clinical significance of volume-adjusted maximal mid-expiratory flow (Iso-volume FEF25-75%) in assessing airway responsiveness to inhaled bronchodilator in asthmatics. Ann Allergy 1982;48(3):139–142.
    OpenUrlPubMedWeb of Science
  25. 25.↵
    1. Mead J
    . Analysis of the configuration of maximum expiratory flow-volume curves. J Appl Physiol 1978;44(2):156–165.
    OpenUrlAbstract/FREE Full Text
  26. 26.
    1. Lambert RK,
    2. Wilson TA,
    3. Hyatt RE,
    4. Rodarte JR
    . A computational model for expiratory flow. J Appl Physiol 1982;52(1):44–56.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Dawson SV,
    2. Elliott EA
    . Wave-speed limitation on expiratory flow: a unifying concept. J Appl Physiol 1977;43(3):498–515.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. Topalovic M,
    2. Exadaktylos V,
    3. Decramer M,
    4. Troosters T,
    5. Berckmans D,
    6. Janssens W
    . Modelling the dynamics of expiratory airflow to describe chronic obstructive pulmonary disease. Med Biol Eng Comput 2014;52(12):997–1006.
    OpenUrl
  29. 29.↵
    1. Topalovic M,
    2. Exadaktylos V,
    3. Decramer M,
    4. Berckmans D,
    5. Troosters T,
    6. Janssens W
    . Using dynamics of forced expiration to identify COPD where conventional criteria for the FEV1 /FVC ratio do not match. Respirology 2015;20(6):925–931.
    OpenUrl
  30. 30.↵
    1. Barnea O,
    2. Abboud S,
    3. Guber A,
    4. Bruderman I
    . New model-based indices for maximum expiratory flow-volume curve in patients with chronic obstructive pulmonary disease. Comput Biol Med 1996;26(2):123–131.
    OpenUrlPubMed
  31. 31.↵
    1. Zheng CJ,
    2. Adams AB,
    3. McGrail MP,
    4. Marini JJ,
    5. Greaves IA
    . A proposed curvilinearity index for quantifying airflow obstruction. Respir Care 2006;51(1):40–45.
    OpenUrlAbstract/FREE Full Text
  32. 32.↵
    1. Jones JG,
    2. Fraser RB,
    3. Nadel JA
    . Effect of changing airway mechanics on maximum expiratory flow. J Appl Physiol 1975;38(6):1012–1021.
    OpenUrlFREE Full Text
PreviousNext
Back to top

In this issue

Respiratory Care: 62 (7)
Respiratory Care
Vol. 62, Issue 7
1 Jul 2017
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Flow Decay: A Novel Spirometric Index to Quantify Dynamic Airway Resistance
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Flow Decay: A Novel Spirometric Index to Quantify Dynamic Airway Resistance
Anita Oh, Tessa A Morris, Isaac T Yoshii, Timothy A Morris
Respiratory Care Jul 2017, 62 (7) 928-935; DOI: 10.4187/respcare.04850

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Flow Decay: A Novel Spirometric Index to Quantify Dynamic Airway Resistance
Anita Oh, Tessa A Morris, Isaac T Yoshii, Timothy A Morris
Respiratory Care Jul 2017, 62 (7) 928-935; DOI: 10.4187/respcare.04850
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • Reference
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • spirometry
  • flow-volume loop
  • reactive airway disease
  • asthma
  • COPD

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire