Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleOriginal Research

Impact of Gas Masks on Work of Breathing, Breathing Patterns, and Gas Exchange in Healthy Subjects

Stephane Bourassa, Pierre-Alexandre Bouchard and François Lellouche
Respiratory Care November 2018, 63 (11) 1350-1359; DOI: https://doi.org/10.4187/respcare.06027
Stephane Bourassa
Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre-Alexandre Bouchard
Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
François Lellouche
Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    Central Intelligence Agency Library, The World Factbook, https://www.cia.gov/library/publications/the-world-factbook/geos/us.html. Accessed December 15, 2017.
  2. 2.↵
    1. Hiss JA,
    2. Arensburg B
    . Suffocation from misuse of gas masks during the Gulf war. BMJ 1992;304(6819):92.
    OpenUrlFREE Full Text
  3. 3.
    1. Jetté M,
    2. Thoden J,
    3. Livingstone S
    . Physiological effects of inspiratory resistance on progressive aerobic work. Eur J Applied Physiol Occup Physiol 1990;60(1):65–70.
    OpenUrlPubMed
  4. 4.
    1. Johnson AT,
    2. Cummings EG
    . Mask design considerations. Am Ind Hyg Assoc J 1975;36(3):220–228.
    OpenUrlPubMed
  5. 5.↵
    1. Silverman L,
    2. Lee RC,
    3. Lee G,
    4. Drinker KR,
    5. Carpenter TM
    . Fundamental factors in the design of protective respiratory equipment— Inspiratory air flow measurements on human subjects with and without resistance. Department of Physiology and of Industrial Hygiene, Harvard School of Public Health, and the Nutrition Laboratory of the Carnegie Institution of Washington. Boston, MA: Harvard Press; 1951.
  6. 6.↵
    1. Caretti DM,
    2. Coyne K,
    3. Johnson A,
    4. Scott W,
    5. Koh F
    . Performance when breathing through different respirator inhalation and exhalation resistances during hard work. J Occup Environ Hyg 2006;3(4):214–224; quiz D245.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Caretti DM,
    2. Scott WH,
    3. Johnson AT,
    4. Coyne KM,
    5. Koh F
    . Work performance when breathing through different respirator exhalation resistances. AIHAJ 2001;62(4):411–415.
    OpenUrlPubMed
  8. 8.
    1. Johnson AT,
    2. Scott WH,
    3. Lausted CG,
    4. Coyne KM,
    5. Sahota MS,
    6. Johnson MM
    . Effect of external dead volume on performance while wearing a respirator. AIHAJ 2000;61(5):678–684.
    OpenUrlPubMed
  9. 9.↵
    1. Smith G,
    2. Bishop P,
    3. Beaird J,
    4. Ray P,
    5. Smith J
    . Physiological factors limiting work tolerance in chemical protective clothing. Int J Industrial Ergonomics 1994;13:147–155.
    OpenUrl
  10. 10.↵
    1. Arieli R,
    2. Arieli Y,
    3. Eynan M,
    4. Abramovich A
    . Use of a fast transcutaneous CO2 detector to evaluate escape hoods: the “CAPS 2000” with the inlet valves removed from the nose-cup as a test case. Mil Med 2012;177(11):1426–1430.
    OpenUrlPubMed
  11. 11.↵
    1. Johnson AT,
    2. Scott WH,
    3. Lausted CG,
    4. Benjamin MB,
    5. Coyne KM,
    6. Sahota MS,
    7. Johnson MM
    . Effect of respirator inspiratory resistance level on constant load treadmill work performance. Am Ind Hyg Assoc J 1999;60(4):474–479.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. Baydur A,
    2. Behrakis PK,
    3. Zin WA,
    4. Jaeger M,
    5. Milic-Emili J
    . A simple method for assessing the validity of the eosophageal balloon technique. Am Rev Respir Dis 1982;126(5):788–791.
    OpenUrlPubMedWeb of Science
  13. 13.
    1. Bellani G,
    2. Pesenti A
    . Assessing effort and work of breathing. Curr Opin Crit Care 2014;20(3):352–358.
    OpenUrlPubMed
  14. 14.↵
    1. Milic-Emili J,
    2. Mead J,
    3. Turner J
    . Topography of esophageal pressure as a function of posture in man. J Appl Physiol 1964;19:212–216.
    OpenUrlPubMedWeb of Science
  15. 15.↵
    1. Tobin JM
    . Principles and Practice of Intensive Care Monitoring. McGraw-Hill: 1998;1525.
  16. 16.↵
    1. Jetté M,
    2. Sidney K,
    3. Blümchen G
    . Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 1990;13(8):555–565.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Lellouche F,
    2. L'her E
    . Automated oxygen flow titration to maintain constant oxygenation. Respir Care 2012;57(8):1254–1262.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Zavorsky GS,
    2. Cao J,
    3. Mayo NE,
    4. Gabbay R,
    5. Murias JM
    . Arterial versus capillary blood gases: a meta-analysis. Respir Physiol Neurobiol 2007;155(3):268–279.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Mayaud L,
    2. Lejaille M,
    3. Prigent H,
    4. Louis B,
    5. Fauroux B,
    6. Lofaso F
    . An open-source software for automatic calculation of respiratory parameters based on esophageal pressure. Respir Physiol Neurobiol 2014;192:1–6.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Cabello B,
    2. Mancebo J
    . Work of breathing. Intensive Care Med 2006;32(9):1311–1314.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Butcher SJ,
    2. Jones RL,
    3. Eves ND,
    4. Petersen SR
    . Work of breathing is increased during exercise with the self-contained breathing apparatus regulator. Appl Physiol Nutr Metab 2006;31(6):693–701.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Butcher SJ,
    2. Jones RL,
    3. Mayne JR,
    4. Hartley TC,
    5. Petersen SR
    . Impaired exercise ventilatory mechanics with the self-contained breathing apparatus are improved with heliox. Eur J Appl Physiol 2007;101(6):659–669.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Bourassa S,
    2. Lellouche F
    . Measurement of pressure-flow relationship for the gas mask technology on a bench test. Partitioning of the different components of the mask and comparison of 8 canisters [Abstract]. CIMVHR Forum; 2017;8(suppl):P126.
    OpenUrl
  24. 24.↵
    1. Fraticelli AT,
    2. Lellouche F,
    3. L'her E,
    4. Taillé S,
    5. Mancebo J,
    6. Brochard L
    . Physiological effects of different interfaces during noninvasive ventilation for acute respiratory failure. Crit Care Med 2009;37(3):939–945.
    OpenUrlCrossRefPubMedWeb of Science
  25. 25.↵
    1. Fodil R,
    2. Lellouche F,
    3. Mancebo J,
    4. Sbirlea-Apiou G,
    5. Isabey D,
    6. Brochard L,
    7. et al
    . Comparison of patient–ventilator interfaces; based on their computerized effective dead; space. Intensive Care Med 2010;37(2):193–195.
    OpenUrl
  26. 26.↵
    1. Anchisi S,
    2. Moia C,
    3. Ferretti G
    . Oxygen delivery and oxygen return in humans exercising in acute normobaric hypoxia. Pflugers Arch 2001;442(3):443–450.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.
    1. Dempsey JA,
    2. Wagner PD
    . Exercise-induced arterial hypoxemia. J Appl Physiol 1999;87(6):1997–2006.
    OpenUrlPubMedWeb of Science
  28. 28.
    1. Dominelli PB,
    2. Foster GE,
    3. Dominelli GS,
    4. Henderson WR,
    5. Koehle MS,
    6. McKenzie DC,
    7. Sheel AW
    . Exercise-induced arterial hypoxaemia and the mechanics of breathing in healthy young women. J Physiol 2013;591(12):3017–3034.
    OpenUrlCrossRefPubMed
  29. 29.
    1. Romer LM,
    2. Haverkamp HC,
    3. Lovering AT,
    4. Pegelow DF,
    5. Dempsey JA
    . Effect of exercise-induced arterial hypoxemia on quadriceps muscle fatigue in healthy humans. Am J Physiol Regul Integr Comp Physiol 2006;290(2):R365–375.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    1. Walls J,
    2. Maskrey M,
    3. Wood-Baker R,
    4. Stedman W
    . Exercise-induced oxyhaemoglobin desaturation, ventilatory limitation and lung diffusing capacity in women during and after exercise. Eur J Appl Physiol 2002;87(2):145–152.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Lessard MR,
    2. Lofaso F,
    3. Brochard L
    . Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med 1995;151(2 Pt 1):562–569.
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

Respiratory Care: 63 (11)
Respiratory Care
Vol. 63, Issue 11
1 Nov 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Impact of Gas Masks on Work of Breathing, Breathing Patterns, and Gas Exchange in Healthy Subjects
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Impact of Gas Masks on Work of Breathing, Breathing Patterns, and Gas Exchange in Healthy Subjects
Stephane Bourassa, Pierre-Alexandre Bouchard, François Lellouche
Respiratory Care Nov 2018, 63 (11) 1350-1359; DOI: 10.4187/respcare.06027

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Impact of Gas Masks on Work of Breathing, Breathing Patterns, and Gas Exchange in Healthy Subjects
Stephane Bourassa, Pierre-Alexandre Bouchard, François Lellouche
Respiratory Care Nov 2018, 63 (11) 1350-1359; DOI: 10.4187/respcare.06027
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • Work of Breathing
  • breathing pattern
  • respiratory effort index
  • chemical
  • biological
  • radiological
  • nuclear and explosive
  • gas mask
  • respiratory protective devices
  • gas exchange

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire