Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Open Forum
    • 2023 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Open Forum
    • 2023 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleOriginal Research

A New Formula for Predicting the Fraction of Delivered Oxygen During Low-Flow Oxygen Therapy

Frédéric Duprez, Shahram Mashayekhi, Gregory Cuvelier, Alexandre Legrand and Gregory Reychler
Respiratory Care December 2018, 63 (12) 1528-1534; DOI: https://doi.org/10.4187/respcare.06243
Frédéric Duprez
Service des Soins Intensifs, Hôpital Epicura, Hornu, Belgium; Institut de Recherche Experimentale et Clinique (IREC), Pole de Pneumologie, ORL and Dermatologie, Service de Pneumologie, Universite Catholique de Louvain, Brussels, Belgium; and the Laboratoire de l'Effort et du Mouvement, Condorcet, Tournai, Belgium.
MSc PT
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Shahram Mashayekhi
Service des Soins Intensifs, Hôpital Epicura, Hornu, Belgium.
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregory Cuvelier
Laboratoire de l'Effort et du Mouvement, Condorcet, Tournai, Belgium.
MSc PT
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexandre Legrand
Service de Physiologie, Physiopathologie et Réadaptation Respiratoire, University of Mons, Belgium.
PhD MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregory Reychler
Institut de Recherche Experimentale et Clinique (IREC), Pole de Pneumologie, ORL & Dermatologie, Service de Pneumologie, Universite Catholique de Louvain, Brussels, Belgium.
PhD PT
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Bazuaye EA,
    2. Stone TN,
    3. Corris PA,
    4. Gibson GJ
    . Variability of inspired oxygen concentration with nasal cannulas. Thorax 1992;47(8):609–611.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Claure N,
    2. Bancalari E
    . Automated closed loop control of inspired oxygen concentration. Respir Care 2013;58(1):151–161.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Zimmerman ME,
    2. Hodgson DS,
    3. Bello NM
    . Effects of oxygen insufflation rate, respiratory rate, and tidal volume on fraction of inspired oxygen in cadaveric canine heads attached to a lung model. Am J Vet Res 2013;74(9):1247–1251.
    OpenUrl
  4. 4.↵
    1. Shapiro BA,
    2. Harrison RA,
    3. Walton JR
    . Clinical application of blood gases. 3rd ed. Chicago, IL: Year Book Medical; 1982.
  5. 5.↵
    1. Vincent JL
    . Le manuel de réanimation, soins intensifs et médecine d'urgence. France. Quatrième édition. Paris, France: Springer; 2013:67.
  6. 6.↵
    1. Coudroy R,
    2. Thille AW,
    3. Drouot X,
    4. Diaz V,
    5. Meurice JC,
    6. Robert R,
    7. Frat JP
    ; the FLORALI study group. How to assess FiO2 delivered under oxygen mask in clinical practice? Ann Intensive Care 2017;7(Suppl 1):P196.
    OpenUrl
  7. 7.↵
    1. Markovitz GH,
    2. Colthurst J,
    3. Storer TW,
    4. Cooper CB
    . Effective inspired oxygen concentration measured via transtracheal and oral gas analysis. Respir Care 2010;55(4):453–459.
    OpenUrlAbstract/FREE Full Text
  8. 8.
    1. Parke RL,
    2. McGuiness SP,
    3. Eccleston ML
    . A preliminary randomized controlled trial to assess effectiveness of nasal high-flow oxygen in intensive care patients. Respir Care 2011;56(3):265–270.
    OpenUrlAbstract/FREE Full Text
  9. 9.
    1. Wettstein RB,
    2. Shelledy DC,
    3. Peters JI
    . Delivered oxygen concentrations using low-flow and high-flow nasal cannulas. Respir Care 2005;50(5):604–609.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Ward JJ
    . High-flow oxygen administration by nasal cannula for adult and perinatal patients. Respir Care 2013;58(1):98–122.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Palmisano JM,
    2. Moler FW,
    3. Galura C
    . Influence of tidal volume, respiratory rate, and supplemental oxygen flow on delivered oxygen fraction using a mouth to mask ventilation device. J Emerg Med 1993;11(6):685–689.
    OpenUrlPubMed
  12. 12.↵
    1. Couser JI Jr.,
    2. Make BJ
    . Transtracheal oxygen decreases inspired minute ventilation. Am Rev Respir Dis 1989;139(3):627–631.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.
    1. Barach AL
    . Administration of oxygen by the nasal catheter. JAMA 1929;93(16):1550–1551.
    OpenUrlCrossRef
  14. 14.↵
    1. Leigh JM
    . Variation in performance of oxygen therapy devices. Anaesthesia 1970;25(2):210–222.
    OpenUrlPubMedWeb of Science
  15. 15.↵
    1. Gibson RL,
    2. Comer PB,
    3. Paul B,
    4. Beckham RW
    . Actual tracheal oxygen concentrations with commonly used oxygen equipment. Anesthesiology 1976;44(1):71–73.
    OpenUrlPubMed
  16. 16.
    1. Schacter EN,
    2. Littner MR,
    3. Luddy P
    . Monitoring of oxygen delivery systems in clinical practice. Crit Care Med 1980;8(7):405–409.
    OpenUrlPubMedWeb of Science
  17. 17.
    1. O'Reilly Nugent A,
    2. Kelly PT,
    3. Stanton J,
    4. Swanney MP,
    5. Graham B,
    6. Beckert L
    . Measurement of oxygen concentration delivered via nasal cannulae by tracheal sampling. Respirology 2014;19(4):538–543.
    OpenUrlPubMed
  18. 18.
    1. McCoy R
    . Oxygen-conserving techniques and devices. Respir Care 2000;45(1):95–103; discussion 104.
    OpenUrlPubMed
  19. 19.↵
    1. Chatburn RL,
    2. Williams TJ
    . Performance comparison of 4 portable oxygen concentrators. Respir care 2010;55(4):433–442.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Bland JM,
    2. Altman DG
    . Measuring agreement in method comparison studies. Stat Methods Med Res 1999;8(2):135–160.
    OpenUrlCrossRefPubMedWeb of Science
  21. 21.↵
    1. Barkley D,
    2. Tuckerman LS
    . Computational study of turbulent laminar patterns in couette flow. Phys Rev Lett 2005;94(1):014502.
  22. 22.↵
    1. Wagstaff TA,
    2. Soni N
    . Performance of six types of oxygen delivery devices at varying respiratory rates. Anaesthesia 2007;62(5):492–503.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Jafari H,
    2. Courtois I,
    3. Van den Bergh O,
    4. Vlaeyen JWS,
    5. Van Diest I
    . Pain and respiration: a systematic review. Pain 2017;158(6):995–1006.
    OpenUrl
  24. 24.↵
    1. Douglas NJ,
    2. White DP,
    3. Pickett CK,
    4. Weil JV,
    5. Zwillich CW
    . Respiration during sleep in normal man. Thorax 1982;37(11):840–844.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Chikata Y,
    2. Oto J,
    3. Onodera M
    . Humidification performance of humidifying devices for tracheostomized patients with spontaneous breathing: a bench study. Respir Care 2013;58(9):1442–1448.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Braine M,
    2. Sweby C
    . A systematic approach to weaning and decannulation of tracheostomy tubes. Br J Neurosci Nurs 2006;2(3):124–132.
    OpenUrl
  27. 27.↵
    1. Davidson J,
    2. Gazzeta C,
    3. Torres LC
    . Precision and accuracy of oxygen flow meters used at hospital settings. Respir care 2012;57(7):1071–1075.
    OpenUrlAbstract/FREE Full Text
  28. 28.
    1. Duprez F,
    2. Barile M,
    3. Bonus Th,
    4. Cuvelier G,
    5. Ollieuz S,
    6. Mashayekhi S a,
    7. d Legrand A
    . Accuracy of medical oxygen flowmeters: a multicentric field study. Health 2014;6(15):1978–1983.
    OpenUrl
  29. 29.↵
    1. Duprez F,
    2. Michotte JB,
    3. Cuvelier G,
    4. Legrand A,
    5. Mashayekhi S,
    6. Reychler G
    . Accuracy of oxygen flow delivered by compressed-gas cylinders in hospital and prehospital emergency care. Respir Care 2018;63(3):332–338.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Respiratory Care: 63 (12)
Respiratory Care
Vol. 63, Issue 12
1 Dec 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A New Formula for Predicting the Fraction of Delivered Oxygen During Low-Flow Oxygen Therapy
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A New Formula for Predicting the Fraction of Delivered Oxygen During Low-Flow Oxygen Therapy
Frédéric Duprez, Shahram Mashayekhi, Gregory Cuvelier, Alexandre Legrand, Gregory Reychler
Respiratory Care Dec 2018, 63 (12) 1528-1534; DOI: 10.4187/respcare.06243

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
A New Formula for Predicting the Fraction of Delivered Oxygen During Low-Flow Oxygen Therapy
Frédéric Duprez, Shahram Mashayekhi, Gregory Cuvelier, Alexandre Legrand, Gregory Reychler
Respiratory Care Dec 2018, 63 (12) 1528-1534; DOI: 10.4187/respcare.06243
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • oxygen
  • FDO2
  • low flow
  • oxygen therapy
  • prediction formula

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire