Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleConference Proceedings

Aerosol Delivery Devices for Obstructive Lung Diseases

Roy A Pleasants and Dean R Hess
Respiratory Care June 2018, 63 (6) 708-733; DOI: https://doi.org/10.4187/respcare.06290
Roy A Pleasants
Duke Clinical Research Institute and Durham Veterans Administration Pulmonary Division, Durham, North Carolina.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dean R Hess
Massachusetts General Hospital, Harvard Medical School, and Northeastern University in Boston, Massachusetts. He is also Managing Editor of R C.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Stein SW,
    2. Thiel CG
    . The history of therapeutic aerosols: a chronological review. J Aerosol Med Pulm Drug Deliv 2017;30(1):20–41.
    OpenUrl
  2. 2.↵
    1. Sanchis J,
    2. Gich I,
    3. Pedersen S
    . Systematic review of errors in inhaler use. Has patient technique improved over time? Chest 2016;150(2):394–406.
    OpenUrlPubMed
  3. 3.↵
    1. Laube BL,
    2. Janssens HM,
    3. de Jong FHC,
    4. Devadason FG,
    5. Dhand R,
    6. Everhard ML,
    7. et al
    . ERS/ISAM Task Force Report. What the pulmonologist should know about new inhalational therapies. Eur Respir J 2011;37(6):1308–1331.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Nahar K,
    2. Gupta N,
    3. Gauvin R,
    4. Absar S,
    5. Patel B,
    6. Gupta V,
    7. et al
    . In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals. Eur J Pharmaceutical Sci 2013;49(5):805–818.
    OpenUrl
  5. 5.↵
    1. Corcoran TE
    . Imaging in aerosol medicine. Respir Care 2015;60(6):850–857.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Thompson RB,
    2. Finlay WH
    . Using MRI to measure aerosol deposition. J Aerosol Med Pulmon Drug Deliv 2012;25(2):55–62.
    OpenUrl
  7. 7.↵
    1. Newman SP,
    2. Steed KP,
    3. Reader SJ
    . Efficient delivery to the lungs of flunisolide aerosol from a new portable hand-held multidose nebulizer. J Pharm Sci 1996;85(9):960–964.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Kirby M,
    2. Mathew L,
    3. Heydarian M,
    4. McCormack DG,
    5. Etemad-Rezai R,
    6. Parraga G
    . Chronic obstructive pulmonary disease: quantification of bronchodilator effects by using hyperpolarized 3 He MR imaging. Radiology 2011;261(1):283–292.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Lipworth BJ
    . Pharmacokinetics of inhaled drugs. Br J Clin Pharmacol 1996;42(6):697–705.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Mortensen NP,
    2. Hickey AJ
    . Targeting inhaled therapy beyond the lungs. Respiration 2014;88(5):353–364.
    OpenUrl
  11. 11.↵
    1. Lavorini F,
    2. Pedersen S,
    3. Usmani OS
    . Dilemmas, confusion, and misconceptions: related to small airways directed therapy. Chest 2017;151(6):1345–1355.
    OpenUrl
  12. 12.↵
    1. Smyth HDC,
    2. Hickey AJ
    1. Olsson B,
    2. Bondesson E,
    3. Bongstrom L,
    4. Edsbäcker S,
    5. Eirefelt S,
    6. Ekelund K,
    7. Gustavsson L,
    8. Hegelund-Myrbäck T
    . Pulmonary drug metabolism, clearance, and absorption. In: Controlled Pulmonary Drug Delivery, eds Smyth HDC, Hickey AJ. New York: Springer; 2011;21–50.
  13. 13.↵
    1. Kobrich R,
    2. Rudolf G,
    3. Stahlhofen W
    . A mathematical model of mass deposition in man. Ann Occup Hyg 1994;38(Suppl 1):15–23.
    OpenUrlCrossRef
  14. 14.↵
    1. Labiris NR,
    2. Dolovich MB
    . Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 2003;56(6):588–599.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Schamberger AC,
    2. Mise N,
    3. Jia J,
    4. Genoyer E,
    5. Yildirim AÖ,
    6. Meiners S,
    7. Eickelberg O
    . Cigarette smoke-induced disruption of bronchial epithelial tight junctions is prevented by transforming growth factor-β. Am J Respir Cell Mol Biol 2014;50(6):1040–1052.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Roberts JK,
    2. Moore CD,
    3. Ward RM,
    4. Yost GM,
    5. Reilly CA
    . Metabolism of beclomethasone dipropionate by cytochrome P450 3A enzymes. J Pharmacol Exp Ther 2013;345(2):308–316.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. Hess DR
    . Aerosol delivery devices in the treatment of asthma. Respir Care 2008;53(6):699–723.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Dolovich MB,
    2. Ahrens RC,
    3. Hess DR,
    4. Anderson P,
    5. Dhand R,
    6. Ray JL,
    7. et al
    . Device selection and outcomes of aerosol therapy: evidence-based guidelines. Chest 2005;127(1):335–371.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Newman SP
    . Principles of metered-dose inhaler design. Respir Care 2005;50(9):1177–1190.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Hou S,
    2. Wu J,
    3. Li X,
    4. Shu H
    . Practical, regulatory and clinical considerations for development of inhalation drug products. Asian J Pharm Sci 2015;10(8):490–500.
    OpenUrl
  21. 21.↵
    1. Ferguson G,
    2. Hickey AJ,
    3. Dwivedi S
    . Co-suspension delivery technology in pressurized metered-dose inhalers for multi-drug dosing in the treatment of respiratory diseases. Respir Med 2018;134:16–23.
    OpenUrl
  22. 22.↵
    1. Dalby RN,
    2. Eicher J,
    3. Zierneberg B
    . Development of Respimat Soft Mist inhaler and its clinical utility in respiratory disorders. Med Devices (Auckl) 2011;4:145–55.
    OpenUrl
  23. 23.↵
    1. Pitcairn G,
    2. Reader S,
    3. Pavia D,
    4. Newman S
    . Deposition of corticosteroid aerosol in the human lung by Respimat Soft Mist inhaler compared with deposition by metered dose inhaler or by Turbuhaler dry powder inhaler. J Aerosol Med 2005;18(3):264–272.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Anderson P
    . Use of Respimat Soft Mist inhaler in COPD patients. Int J Chron Obstruct Pulmon Dis 2006;1(3):251–259.
    OpenUrlPubMed
  25. 25.↵
    Spiriva Respimat Product Insert. Boehringer Ingelheim: Connnecticut; 2017.
  26. 26.↵
    1. Newman SP,
    2. Newhouse MT
    . Effect of add-on devices for aerosol drug delivery: deposition studies and clinical aspects. J Aerosol Med 1996;9(1):55–70.
    OpenUrlPubMedWeb of Science
  27. 27.↵
    1. Dissanayake S,
    2. Suggett J
    . A review of the in vitro and in vivo valved holding chamber (VHC) literature with a focus on the AeroChamber Plus Flow-Vu Anti-static VHC. Ther Adv Respir Dis 2018;12:1–14.
    OpenUrl
  28. 28.↵
    1. Clark DJ,
    2. Lipworth BJ
    . Effect of multiple actuations, delayed inhalation and antistatic treatment on the lung bioavailability of salbutamol via a spacer device. Thorax 1996;51(10):981–984.
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. Slator L,
    2. von Hollen D,
    3. Sandell D,
    4. Hatley RHM
    . In vitro comparison of the effect of inhalation delay and flow rate on the emitted dose from three valved holding chambers. J Aerosol Med Pulmon Drug Deliv 2014;27(Suppl 1):S37–S43.
    OpenUrl
  30. 30.↵
    1. Leach CL,
    2. Colice GL
    . A pilot study to assess lung deposition of HFA-beclomethasone and CFC-beclomethasone from a pressurized metered dose inhaler with and without add-on spacers and using varying breathhold times. J Aerosol Pulm Drug Deliv 2010;23(6):355–361.
    OpenUrl
  31. 31.↵
    1. Singh D,
    2. Collarini S,
    3. Poli G,
    4. Acerbi D,
    5. Amadasi A,
    6. Rusca A
    . Effect of AeroChamber Plus on the lung and systemic bioavailability of beclomethasone dipropionate/formoterol pMDI. Br J Clin Pharmacol 2011;72(6):932–939.
    OpenUrlPubMed
  32. 32.↵
    1. Anhoj J,
    2. Bisgaard H,
    3. Lipworth BJ
    . Effect of electrostatic charge in plastic spacers on the lung delivery of HFA-salbutamol in children. Br J Clin Pharmacol 1999;47(3):333–336.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.↵
    1. Wildhaber JH,
    2. Waterer GW,
    3. Hall GL,
    4. Summers QA
    . Reducing electrostatic charge on spacer devices and bronchodilator response. Br J Clin Pharmacol 2000;50(3):277–280.
    OpenUrlPubMedWeb of Science
  34. 34.↵
    1. Dal Nagro RW
    . Dry powder inhalers and the right things to remember: a concept review Multidisc Respir Med 2015;10(1):13.
  35. 35.↵
    1. Mahler DA
    , Peak inspiratory flow rate as a criterion for dry powder inhaler use in chronic obstructive pulmonary disease. Ann Amer Thorac Soc 2017;14(7):1103–1107.
    OpenUrl
  36. 36.↵
    1. Ghosh S,
    2. Ohar JA,
    3. Drummond MB
    . Peak inspiratory flow rate in chronic obstructive pulmonary disease: implications for dry powder inhalers. J Aerosol Med Pulm Drug Deliv 2017;30(6):1–7.
    OpenUrl
  37. 37.↵
    1. Kikidis D,
    2. Konstantinos V,
    3. Tzovaras D,
    4. Usmani OS
    . The digital asthma patient: the history and future of inhaler-based health monitoring devices. J Aerosol Med Pulmon Drug Deliv 2016;29(3):219–232.
    OpenUrl
  38. 38.↵
    1. Carpenter DM,
    2. Roberts CA,
    3. Sage AJ,
    4. George J,
    5. Horne R
    . A review of electronic devices to assess inhaler technique. Curr Allergy Asthma Rep 2017;17(3):17.
    OpenUrl
  39. 39.↵
    1. Kim MS,
    2. Henderson KA,
    3. Sickle DV
    . Using connected devices to monitor inhaler use in the real world. Respir Drug Deliv 2016;1:37–44.
    OpenUrl
  40. 40.↵
    1. Fan VS,
    2. Gyly-Colwell I,
    3. Locke E,
    4. Sumino K,
    5. Ngyyen HQ,
    6. Thomas RM,
    7. Magzame S
    . Overuse of short-acting beta-agonist bronchodilators in COPD during periods of clinical stability. Respir Med 2016;116(7):100–106.
    OpenUrl
  41. 41.↵
    1. Merchant RK,
    2. Inamdar R,
    3. Quade RC
    . Effectiveness of population health management using the propeller health asthma platform: a randomized clinical trial. J Allergy Clin Immunol Pract 2016;4(3):455–463.
    OpenUrl
  42. 42.↵
    1. Seheult JN,
    2. Costello S,
    3. Tee KC,
    4. et al
    . Investigating the relationship between peak inspiratory flow rate and volume of inhalation from a Diskus Inhaler and baseline spirometric parameters: a cross-sectional study. Springerplus 2014;2(3):496.
    OpenUrl
  43. 43.↵
    1. Seheult JN,
    2. O'Connell P,
    3. Tee KC,
    4. Bholah T,
    5. Al Bannai H,
    6. Sulaiman I,
    7. et al
    . The acoustic features of inhalation can be used to quantify aerosol delivery from a Diskus dry powder inhaler. Pharm Res 2014;31:2735–2747.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Sulaiman I,
    2. Seheult J,
    3. Sadasivuni N,
    4. Bholah T,
    5. Al Bannai H,
    6. Sulaiman I,
    7. et al
    . The impact of common inhaler errors on drug delivery: investigating critical errors with a dry powder inhaler. J Aerosol Med Pulm Drug Deliv 2017;30(10):247–255.
    OpenUrl
  45. 45.↵
    1. Sulaiman I,
    2. Cushan B,
    3. Greene G,
    4. Seheult J,
    5. Seow D,
    6. Rawat F,
    7. et al
    . Objective assessment of adherence to inhalers by patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2017;195(10):1333–1343.
    OpenUrl
  46. 46.↵
    1. Sulaiman I,
    2. Greene G,
    3. MacHale E,
    4. Seheult J,
    5. Mokoka M,
    6. D'Arcy SD,
    7. et al
    . A randomised clinical trial of feedback on inhaler adherence and technique in patients with severe uncontrolled asthma. Eur Respir J 2018;51(1):1701126.
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. Everhard ML,
    2. Evans M,
    3. Milner AD
    . Is tapping jet nebulizers worthwhile? Arch Dis Child 1994;70(6):538–539.
    OpenUrlAbstract/FREE Full Text
  48. 48.↵
    1. Malone RA,
    2. Hollie MC,
    3. Glynn-Barnhart A,
    4. Nelson HS
    . Optimal duration of nebulized albuterol therapy. Chest 1993;104(4):1114–1118.
    OpenUrlPubMedWeb of Science
  49. 49.↵
    1. Hess D,
    2. Fisher D,
    3. Williams P,
    4. Pooler S,
    5. Kacmarek RM
    . Medication nebulizer performance. Effects of diluent volume, nebulizer flow, and nebulizer brand. Chest 1996;110(2):498–505.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Terzano C,
    2. Petroianni A,
    3. Parola D,
    4. Ricci A
    . Compressor/nebulizers differences in the nebulization of corticosteroids. The CODE study (Corticosteroids and Devices Efficiency). Eur Rev Med Pharmacol Sci 2007;11(4):225–237.
    OpenUrlPubMed
  51. 51.↵
    1. Waldrep JC,
    2. Keyhani K,
    3. Black M,
    4. Knight V
    . Operating characteristics of 18 different continuous-flow jet nebulizers with beclomethasone dipropionate liposome aerosol. Chest 1994;105(1):106–110.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Awad SW,
    2. Berlinski A
    . Crossover evaluation of compressors and nebulizers typically used by cystic fibrosis patients. Respir Care 2018;63 (3) 294–300.
    OpenUrlAbstract/FREE Full Text
  53. 53.↵
    1. Awad S,
    2. Williams DK,
    3. Berlinski A
    . Longitudinal evaluation of compressor/nebulizer performance. Respir Care 2014;59(7):1053–1061.
    OpenUrlAbstract/FREE Full Text
  54. 54.↵
    1. Reisner C,
    2. Katial RK,
    3. Bartelson BB,
    4. Buchmeir A,
    5. Rosenwasser LJ,
    6. Nelson HS
    . Characterization of aerosol output from various nebulizer/compressor combinations. Ann Allergy Asthma Immunol 2001;86(5):566–574.
    OpenUrlPubMedWeb of Science
  55. 55.↵
    1. Standaert TA,
    2. Bohn SE,
    3. Aitken ML,
    4. Ramsey B
    . The equivalence of compressor pressure-flow relationships with respect to jet nebulizer aerosolization characteristics. J Aerosol Med 2001;14(1):31–42.
    OpenUrlPubMed
  56. 56.↵
    1. Everard ML,
    2. Hardy JG,
    3. Milner AD
    . Comparison of nebulized aerosol deposition in the lungs of healthy adults following oral and nasal inhalation. Thorax 1993;48(10):1045–1046.
    OpenUrlAbstract/FREE Full Text
  57. 57.↵
    1. Nikander K,
    2. Agertoft L,
    3. Pedersen S
    . Breath-synchronized nebulization diminishes the impact of patient-device interfaces (face mask or mouthpiece) on the inhaled mass of nebulized budesonide. J Asthma 2000;37(5):451–459.
    OpenUrlPubMed
  58. 58.↵
    1. Kishida M,
    2. Suzuki I,
    3. Kabayama H,
    4. Koshibu T,
    5. Izawa M,
    6. Takeshita Y,
    7. et al
    . Mouthpiece versus facemask for delivery of nebulized salbutamol in exacerbated childhood asthma. J Asthma 2002;39(4):337–339.
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. Kohler E,
    2. Sollich V,
    3. Schuster-Wonka R,
    4. Huhnerbein J,
    5. Jorch G
    . Does wearing a noseclip during inhalation improve lung deposition? J Aerosol Med 2004;17(2):116–122.
    OpenUrlCrossRefPubMedWeb of Science
  60. 60.↵
    1. Meier R,
    2. Hall GL,
    3. Sennhauser FH,
    4. Wildhaber JH
    . Wearing a noseclip improves nebulised aerosol delivery. Swiss Med Wkly 2001;131(33-34):495–497.
    OpenUrlPubMed
  61. 61.↵
    1. Bisquerra RA,
    2. Botz GH,
    3. Nates JL
    . Ipratropium-bromide-induced acute anisocoria in the intensive care setting due to ill-fitting face masks. Respir Care 2005;50(12):1662–1664.
    OpenUrlFREE Full Text
  62. 62.
    1. Brodie T,
    2. Adalat S
    . Unilateral fixed dilated pupil in a well child. Arch Dis Child 2006;91(12):961.
    OpenUrlFREE Full Text
  63. 63.
    1. Erzinger S,
    2. Schueepp KG,
    3. Brooks-Wildhaber J,
    4. Devadason SG,
    5. Wildhaber JH
    . Facemasks and aerosol delivery in vivo. J Aerosol Med 2007;20(Suppl 1):S78–S84.
    OpenUrlCrossRefPubMedWeb of Science
  64. 64.
    1. Hayden JT,
    2. Smith N,
    3. Woolf DA,
    4. Barry PW,
    5. O'Callaghan C
    . A randomised crossover trial of facemask efficacy. Arch Dis Child 2004;89(1):72–73.
    OpenUrlAbstract/FREE Full Text
  65. 65.↵
    1. Sangwan S,
    2. Gurses BK,
    3. Smaldone GC
    . Facemasks and facial deposition of aerosols. Pediatr Pulmonol 2004;37(5):447–452.
    OpenUrlCrossRefPubMedWeb of Science
  66. 66.↵
    1. Smaldone GC,
    2. Sangwan S,
    3. Shah A
    . Facemask design, facial deposition, and delivered dose of nebulized aerosols. J Aerosol Med 2007;20(Suppl 1):S66–S77.
    OpenUrlCrossRefPubMedWeb of Science
  67. 67.↵
    1. Janssens HM,
    2. Tiddens HA
    . Aerosol therapy: the special needs of young children. Paediatr Respir Rev 2006;7(Suppl 1):S83–S85.
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.↵
    1. Rubin BK
    . Bye-bye, blow-by. Respir Care 2007;52(8):981.
    OpenUrlFREE Full Text
  69. 69.↵
    1. Pisut FM
    . Comparison of medication delivery by T-nebulizer with inspiratory and expiratory reservoirs. Respir Care 1989;34(11):985–988.
    OpenUrl
  70. 70.↵
    1. Pitance L,
    2. Reychler G,
    3. Leal T,
    4. Reychler H,
    5. Liistro G,
    6. Montharu J,
    7. et al
    . Aerosol delivery to the lung is more efficient using an extension with a standard jet nebulizer than an open-vent jet nebulizer. J Aerosol Med Pulm Drug Deliv 2013;26(4):208–214.
    OpenUrl
  71. 71.↵
    1. Corcoran TE,
    2. Dauber JH,
    3. Chigier N,
    4. Iacono AT
    . Improving drug delivery from medical nebulizers: the effects of increased nebulizer flow rates and reservoirs. J Aerosol Med 2002;15(3):271–282.
    OpenUrlCrossRefPubMedWeb of Science
  72. 72.
    1. Hoffman L,
    2. Smithline H
    . Comparison of Circulaire to conventional small volume nebulizer for the treatment of bronchospasm in the emergency department. Respir Care 1997;42(12):1170–1174.
    OpenUrl
  73. 73.
    1. Mason JW,
    2. Miller WC
    . Comparison of aerosol delivery via circulaire nebulizer system versus a disposable nebulizer in COPD patients. Respir Care 1996;41(11):1006–1008.
    OpenUrl
  74. 74.
    1. Mason JW,
    2. Miller WC,
    3. Small S
    . Comparison of aerosol delivery via circulaire system vs conventional small volume nebulizer. Respir Care 1994;39(12):1157–1161.
    OpenUrl
  75. 75.
    1. Piper SD
    . In vitro comparison of the Circulaire and AeroTee to a traditional nebulizer T-piece with corrugated tubing. Respir Care 2000;45(3):313–319.
    OpenUrlPubMed
  76. 76.↵
    1. Rau JL,
    2. Ari A,
    3. Restrepo RD
    . Performance comparison of nebulizer designs: constant-output, breath-enhanced, and dosimetric. Respir Care 2004;49(2):174–179.
    OpenUrlAbstract/FREE Full Text
  77. 77.↵
    1. Devadason SG,
    2. Everard M,
    3. Linto JM,
    4. Le Souef PN
    . Comparison of drug delivery from conventional versus “Venturi” nebulizers. Eur Respir J 1997;10(11):2497–2483.
    OpenUrl
  78. 78.
    1. Ho SL,
    2. Kwong WT,
    3. O'Drowsky L,
    4. Coates AL
    . Evaluation of four breath-enhanced nebulizers for home use. J Aerosol Med 2001;14(4):467–475.
    OpenUrlCrossRefPubMedWeb of Science
  79. 79.↵
    1. Lin HL,
    2. Fang TP,
    3. Cho HS,
    4. Wan GH,
    5. Hsieh MJ,
    6. Fink JB
    . Aerosol delivery during spontaneous breathing with different types of nebulizers-in vitro/ex vivo models evaluation. Pulm Pharmacol Ther 2018;48(2):225–231.
    OpenUrl
  80. 80.↵
    1. Leung K,
    2. Louca E,
    3. Coates AL
    . Comparison of breath-enhanced to breath-actuated nebulizers for rate, consistency, and efficiency. Chest 2004;126(5):1619–1627.
    OpenUrlCrossRefPubMed
  81. 81.
    1. Newman SP,
    2. Pitcairn GR,
    3. Hooper G,
    4. Knoch M
    . Efficient drug delivery to the lungs from a continuously operated open-vent nebulizer and a low pressure compressor system. Eur Respir J 1994;7(6):1177–1181.
    OpenUrlAbstract
  82. 82.↵
    1. Newnham DM,
    2. Lipworth BJ
    . Nebulizer performance, pharmacokinetics, airways and systemic effects of salbutamol given via a novel nebuliser system (Venstream). Thorax 1994;49(8):762–770.
    OpenUrlAbstract/FREE Full Text
  83. 83.↵
    1. Rau JL
    . Design principles of liquid nebulization devices currently in use. Respir Care 2002;47(11):1257–1275.
    OpenUrlPubMed
  84. 84.↵
    1. Nikander K,
    2. Bisgaard H
    . Impact of constant and breath-synchronized nebulization on inhaled mass of nebulized budesonide in infants and children. Pediatr Pulmonol 1999;28(3):187–193.
    OpenUrlCrossRefPubMed
  85. 85.
    1. Nikander K,
    2. Turpeinen M,
    3. Wollmer P
    . Evaluation of pulsed and breath-synchronized nebulization of budesonide as a means of reducing nebulizer wastage of drug. Pediatr Pulmonol 2000;29(2):120–126.
    OpenUrlCrossRefPubMed
  86. 86.↵
    1. Arunthari V,
    2. Bruinsma RS,
    3. Lee AS,
    4. Johnson MM
    . A prospective, comparative trial of standard and breath-actuated nebulizer: efficacy, safety, and satisfaction. Respir Care 2012;57(8):1242–1247.
    OpenUrlAbstract/FREE Full Text
  87. 87.↵
    1. Sabato K,
    2. Ward P,
    3. Hawk W,
    4. Gildengorin V,
    5. Asselin JM
    . Randomized controlled trial of a breath-actuated nebulizer in pediatric asthma patients in the emergency department. Respir Care 2011;56(6):761–770.
    OpenUrlAbstract/FREE Full Text
  88. 88.↵
    1. Dhand R
    . Nebulizers that use a vibrating mesh or plate with multiple apertures to generate aerosol. Respir Care 2002;47(12):1406–1416.
    OpenUrlPubMed
  89. 89.
    1. Lass JS,
    2. Sant A,
    3. Knoch M
    . New advances in aerosolised drug delivery: vibrating membrane nebuliser technology. Expert Opin Drug Deliv 2006;3(5):693–702.
    OpenUrlCrossRefPubMed
  90. 90.↵
    1. Knoch M,
    2. Keller M
    . The customised electronic nebuliser: a new category of liquid aerosol drug delivery systems. Expert Opin Drug Deliv 2005;2(2):377–390.
    OpenUrlCrossRefPubMed
  91. 91.↵
    1. Ari A
    . Aerosol therapy in pulmonary critical care. Respir Care 2015;60(6):858–874.
    OpenUrlAbstract/FREE Full Text
  92. 92.↵
    1. Gowda AA,
    2. Cuccia AD,
    3. Smaldone GC
    . Reliability of vibrating mesh technology. Respir Care 2017;62(1):65–69.
    OpenUrlAbstract/FREE Full Text
  93. 93.↵
    1. Pitance L,
    2. Vecellio L,
    3. Leal T,
    4. Reychler G,
    5. Reychler H,
    6. Liistro G
    . Delivery efficacy of a vibrating mesh nebulizer and a jet nebulizer under different configurations. J Aerosol Med Pulm Drug Deliv 2010;23(6):389–396.
    OpenUrlPubMed
  94. 94.↵
    1. Ari A,
    2. de Andrade AD,
    3. Sheard M,
    4. AlHamad B,
    5. Fink JB
    . Performance comparisons of jet and mesh nebulizers using different interfaces in simulated spontaneously breathing adults and children. J Aerosol Med Pulm Drug Deliv 2015;28(4):281–289.
    OpenUrlPubMed
  95. 95.↵
    1. Hill NS,
    2. Preston IR,
    3. Roberts KE
    . Inhaled therapies for pulmonary hypertension. Respir Care 2015;60(6):794–802.
    OpenUrlAbstract/FREE Full Text
  96. 96.↵
    1. Nikander K,
    2. Turpeinen M,
    3. Wollmer P
    . The conventional ultrasonic nebulizer proved inefficient in nebulizing a suspension. J Aerosol Med 1999;12(2):47–53.
    OpenUrlPubMedWeb of Science
  97. 97.↵
    1. Singh S,
    2. Kanbar-Agha F,
    3. Sharafkhaneh A
    . Novel aerosol delivery devices. Semin Respir Crit Care Med 2015;36(4):543–551.
    OpenUrl
  98. 98.↵
    1. Zhou QT,
    2. Tang P,
    3. Leung SS,
    4. Chan JG,
    5. Chan HK
    . Emerging inhalation aerosol devices and strategies: where are we headed? Adv Drug Deliv Rev 2014;75:3–17.
    OpenUrlCrossRefPubMed
  99. 99.↵
    1. Denyer J,
    2. Dyche T
    . The adaptive aerosol delivery (AAD) technology: past, present, and future. J Aerosol Med Pulm Drug Deliv 2010;23(Suppl 1):S1–S10.
    OpenUrl
  100. 100.
    1. Byrne NM,
    2. Keavey PM,
    3. Perry JD,
    4. Gould FK,
    5. Spencer DA
    . Comparison of lung deposition of colomycin using the HaloLite and the Pari LC Plus nebulisers in patients with cystic fibrosis. Arch Dis Child 2003;88(8):715–718.
    OpenUrlAbstract/FREE Full Text
  101. 101.
    1. Denyer J,
    2. Nikander K,
    3. Smith NJ
    . Adaptive aerosol delivery (AAD) technology. Expert Opin Drug Deliv 2004;1(1):165–176.
    OpenUrlCrossRefPubMed
  102. 102.
    1. Nikander K,
    2. Arheden L,
    3. Denyer J,
    4. Cobos N
    . Parents' adherence with nebulizer treatment of their children when using an adaptive aerosol delivery (AAD) system. J Aerosol Med 2003;16(3):273–281.
    OpenUrlCrossRefPubMed
  103. 103.↵
    1. Van Dyke RE,
    2. Nikander K
    . Delivery of iloprost inhalation solution with the HaloLite, Prodose, and I-neb Adaptive Aerosol Delivery systems: an in vitro study. Respir Care 2007;52(2):184–190.
    OpenUrlAbstract/FREE Full Text
  104. 104.↵
    1. Peters SG
    . Continuous bronchodilator therapy. Chest 2007;131(1):286–289.
    OpenUrlCrossRefPubMed
  105. 105.↵
    1. Salo D,
    2. Tuel M,
    3. Lavery RF,
    4. Reischel U,
    5. Lebowitz J,
    6. Moore T
    . A randomized, clinical trial comparing the efficacy of continuous nebulized albuterol (15 mg) versus continuous nebulized albuterol (15 mg) plus ipratropium bromide (2 mg) for the treatment of acute asthma. J Emerg Med 2006;31(4):371–376.
    OpenUrlCrossRefPubMed
  106. 106.↵
    1. Camargo CA Jr.,
    2. Spooner CH,
    3. Rowe BH
    . Continuous versus intermittent beta-agonists in the treatment of acute asthma. Cochrane Database Syst Rev 2003(4):CD001115.
  107. 107.↵
    1. Hess DR,
    2. Fink JB,
    3. Venkataraman ST,
    4. Kim IK,
    5. Myers TR,
    6. Tano BD
    . The history and physics of heliox. Respir Care 2006;51(6):608–612.
    OpenUrlAbstract/FREE Full Text
  108. 108.↵
    1. Rodrigo GJ,
    2. Castro-Rodriguez JA
    . Heliox-driven beta2-agonists nebulization for children and adults with acute asthma: a systematic review with meta-analysis. Ann Allergy Asthma Immunol 2014;112(1):29–34.
    OpenUrl
  109. 109.↵
    1. Hess DR,
    2. Acosta FL,
    3. Ritz RH,
    4. Kacmarek RM,
    5. Camargo CA Jr.
    . The effect of heliox on nebulizer function using a beta-agonist bronchodilator. Chest 1999;115(1):184–189.
    OpenUrlCrossRefPubMedWeb of Science
  110. 110.↵
    1. Corcoran TE,
    2. Gamard S
    . Development of aerosol drug delivery with helium oxygen gas mixtures. J Aerosol Med 2004;17(4):299–309.
    OpenUrlCrossRefPubMedWeb of Science
  111. 111.↵
    1. O'Callaghan C,
    2. White J,
    3. Jackson J,
    4. Crosby D,
    5. Dougill B,
    6. Bland H
    . The effects of heliox on the output and particle-size distribution of salbutamol using jet and vibrating mesh nebulizers. J Aerosol Med 2007;20(4):434–444.
    OpenUrlPubMed
  112. 112.↵
    1. Burchett DK,
    2. Darko W,
    3. Zahra J,
    4. Noviasky J,
    5. Probst L,
    6. Smith A
    . Mixing and compatibility guide for commonly used aerosolized medications. Am J Health Syst Pharm 2010;67(3):227–230.
    OpenUrlAbstract/FREE Full Text
  113. 113.↵
    1. Ari A,
    2. Fink JB,
    3. Dhand R
    . Inhalation therapy in patients receiving mechanical ventilation: an update. J Aerosol Med Pulm Drug Deliv 2012;25(6):319–332.
    OpenUrlPubMed
  114. 114.↵
    1. Dhand R
    . How should aerosols be delivered during invasive mechanical ventilation? Respir Care 2017;62(10):1343–1367.
    OpenUrlAbstract/FREE Full Text
  115. 115.↵
    1. Hess DR
    . Aerosol therapy during noninvasive ventilation or high-flow nasal cannula. Respir Care 2015;60(6):880–891.
    OpenUrlAbstract/FREE Full Text
  116. 116.↵
    1. Berlinski A,
    2. Ari A,
    3. Davies P,
    4. Fink J,
    5. Majaesic C,
    6. Reychler G,
    7. et al
    . Workshop report: aerosol delivery to spontaneously breathing tracheostomized patients. J Aerosol Med Pulm Drug Deliv 2017;30(4):207–222.
    OpenUrl
  117. 117.↵
    1. Standaert TA,
    2. Morlin GL,
    3. Williams-Warren J,
    4. Joy P,
    5. Pepe MS,
    6. Weber A,
    7. et al
    . Effects of repetitive use and cleaning techniques of disposable jet nebulizers on aerosol generation. Chest 1998;114(2):577–586.
    OpenUrlCrossRefPubMed
  118. 118.↵
    1. Melani AS,
    2. Bonavia M,
    3. Cilenti V,
    4. Cinti C,
    5. Lodi M,
    6. Martucci P,
    7. et al
    . Inhaler mishandling remains common in real life and is associated with reduced disease control. Respir Med 2011;105(6):930–938.
    OpenUrlCrossRefPubMed
  119. 119.↵
    1. Mahler DA,
    2. Waterman LA,
    3. Ward J,
    4. Gifford AH
    . Comparison of dry powder versus nebulized beta-agonist in patients with COPD who have suboptimal peak inspiratory flow rate. J Aerosol Med Pulm Drug Deliv 2014;27(2):103–109.
    OpenUrl
  120. 120.↵
    1. Price D,
    2. Roche N,
    3. Virchow JC
    . Device type and real-world effectiveness of asthma combination therapy: an observational study. Respir Med 2011;105:1457–1466.
    OpenUrlPubMed
  121. 121.
    1. Jones R,
    2. Martin J,
    3. Thomas V,
    4. Skinner D,
    5. Marshall J,
    6. Slagno D,
    7. et al
    . The comparative effectiveness of initiating fluticasone/salmeterol combination therapy via pMDI versus DPI in reducing exacerbations and treatment escalation in COPD: a UK database study. Int J Chron Obstruct Pulmon Dis 2017;12;2445–2454.
    OpenUrl
  122. 122.↵
    1. Dekhuijzen PNR,
    2. Batsiou M,
    3. Bjermer L,
    4. Bosnic-Anticevich S,
    5. Chrystyn H,
    6. Papi A,
    7. et al
    . Incidence of oral thrush in patients with COPD prescribed inhaled corticosteroids : effect of drug, dose, and device. Respir Med 2016;120:54–63.
    OpenUrl
  123. 123.↵
    1. Goldin JG,
    2. Tashkin DP,
    3. Kleerup EC,
    4. Greaser LE,
    5. Haywood UM,
    6. et al
    . Comparative effects of hydrofluoroalkane and chlorofluorocarbon beclomethasone dipropionate inhalation on small airways: Assessment with functional helical thin section computed tomography. J Aller Clin Immunol 1999;104(6):S258–S267.
    OpenUrlCrossRefPubMedWeb of Science
  124. 124.↵
    1. Nielsen KG,
    2. Bojsen AK,
    3. Iversen M,
    4. Ifversen M,
    5. Klug B,
    6. Bisgaard H
    . Clinical effect of Diskus dry-powder inhaler at low and high inspiratory flow-rates in asthmatic children. Eur Respir J 1998;11(2):350–354.
    OpenUrlAbstract
  125. 125.↵
    1. Loh CH,
    2. Peters SP,
    3. Lovings TM,
    4. Ohar JA
    . Suboptimal inspiratory flow rates are associated with chronic obstructive pulmonary disease and all cause readmissions. Ann Am Thorac Soc 2017;14(8):1305–1311.
    OpenUrl
  126. 126.↵
    1. Sharma G,
    2. Mayorga VM,
    3. Deering KL,
    4. Harshaw Q,
    5. Ganapathy V
    . Prevalence of low peak inspiratory flow rate at discharge in patients hospitalized for COPD exacerbation. J COPD Found 2017;4(3):217–224.
    OpenUrl
  127. 127.↵
    1. Stevenson NJ,
    2. Walker PP,
    3. Costello RW,
    4. Calverley PMA
    . Lung mechanics and dyspnea during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005;172(12):1510–1516.
    OpenUrlCrossRefPubMedWeb of Science
  128. 128.↵
    1. Broeders ME,
    2. Molema J,
    3. Hop WC,
    4. Vermue NA,
    5. Folgering HT
    . The course of inhalation profiles during an exacerbation of obstructive lung disease. Respir Med 2004;98(12):1173–1179.
    OpenUrlCrossRefPubMedWeb of Science
  129. 129.↵
    1. Bateman ED,
    2. Linnhof AE,
    3. Homik L,
    4. Freudensprung U,
    5. Smau L,
    6. Engelstätter R
    . Comparison of twice-daily inhaled ciclesonide and fluticasone propionate in patients with moderate-to-severe persistent asthma. Pulm Pharmacol Ther 2008;21(2):264–275.
    OpenUrlCrossRefPubMed
  130. 130.↵
    1. Derom E,
    2. Van De Velde V,
    3. Marissens S,
    4. Engelstätter R,
    5. Vincken W,
    6. Pauwels R
    . Effects of inhaled ciclesonide and fluticasone propionate on cortisol secretion and airway responsiveness to adenosine 5′monophosphate in asthmatic patients. Pulm Pharmacol Ther 2005;18(5):328–336.
    OpenUrlCrossRefPubMedWeb of Science
  131. 131.↵
    1. Derom E,
    2. Louis R,
    3. Tiesler C,
    4. Engelstätter R,
    5. Kaufman JM,
    6. Joos GF
    . Effects of ciclesonide and fluticasone on cortisol secretion in patients with persistent asthma. Eur Respir J 2009;33(6):1277–1286.
    OpenUrlAbstract/FREE Full Text
  132. 132.
    1. Hoshino M
    . Comparison of effectiveness in ciclesonide and fluticasone propionate on small airway function in mild asthma. Allergol Int 2010;59(1):59–66.
    OpenUrlCrossRefPubMed
  133. 133.↵
    1. Huchon G,
    2. Magnussen H,
    3. Chuchalin A,
    4. Dymek L,
    5. Gonod FB,
    6. Bousquet J,
    7. et al
    . Lung function and asthma control with beclomethasone and formoterol in a single inhaler. Respir Med 2009;103(1):41–49.
    OpenUrlCrossRefPubMed
  134. 134.
    1. Papi A,
    2. Paggiaro P,
    3. Nicolini G,
    4. Vignola AM,
    5. Fabbri LM
    , the ICAT SE study group. Beclomethasone/formoterol vs fluticasone/salmeterol inhaled combination in moderate to severe asthma. Allergy 2007;62(10):1182–1188.
    OpenUrlCrossRefPubMedWeb of Science
  135. 135.↵
    1. Postma DS,
    2. Roche N,
    3. Colice G,
    4. Israel E,
    5. Martin RJ,
    6. van Aalderen WM,
    7. et al
    . Comparing the effectiveness of small-particle versus large-particle inhaled corticosteroid in COPD. Int J Chron Obstruct Pulmon Dis 2014;9:1163–1186.
    OpenUrl
  136. 136.↵
    1. Usmani OS,
    2. Biddiscombe MF,
    3. Barnes PJ
    . Regional lung deposition and bronchodilator response as a function of beta2-agonist particle size. Am J Respir Crit Care Med 2005;172(12):1497–1504.
    OpenUrlCrossRefPubMedWeb of Science
  137. 137.↵
    1. Zanen P,
    2. Go LT,
    3. Lammers JW
    . Optimal particle size for beta 2agonist and anticholinergic aerosols in patients with severe airflow obstruction. Thorax 1996;51(10):977–980.
    OpenUrlAbstract/FREE Full Text
  138. 138.↵
    1. Small M,
    2. Anderson P,
    3. Vickers A,
    4. Kay S,
    5. Fermer S
    . Importance of inhaler-device satisfaction in asthma treatment: real-world observations of physician-observed compliance and clinical/patient-reported outcomes. Adv Ther 2011;28(3):202–212.
    OpenUrlCrossRefPubMed
  139. 139.↵
    1. Malmberg LP,
    2. Rytila P,
    3. Happonen P,
    4. Haahtela T
    . Inspiratory flows through dry powder inhaler in chronic obstructive pulmonary disease: age and gender rather than severity matters. Int J Chron Obstruct Pulmon Dis 2010;5:257–262.
    OpenUrlPubMed
  140. 140.↵
    1. Feddah MR,
    2. Brown KR,
    3. Gipps,
    4. Davies NM
    . In vitro characterization of metered dose inhaler versus dry powder inhaler glucocorticoid products: influence of inspiratory flow rates. J Pharm Pharmaceut Sci 2000;3(3):318–324.
    OpenUrlPubMed
  141. 141.↵
    1. Yokohama H,
    2. Yamamura Y,
    3. Oseki T
    . Analysis of relationship between peak inspiratory flow rate and amount of drug delivered to lungs following inhalation of fluticasone propionate with a Diskhaler. Biol Pharm Bull 2007;30(1):162–164.
    OpenUrlPubMed
  142. 142.
    1. Grant AC,
    2. Walker R,
    3. Hamilton M,
    4. Garrill K
    . The ELLIPTA dry powder inhaler: design, functionality, in vitro dosing performance and critical task compliance by patients and caregivers. J Aerosol Med Pulm Drug Deliv 2015;28(6):1–12.
    OpenUrlCrossRefPubMed
  143. 143.↵
    1. Prime D,
    2. de Backer W,
    3. Hamilton M,
    4. Cahn A,
    5. Preece A,
    6. Kelleher D,
    7. et al
    . Effect of disease severity in asthma and chronic obstructive pulmonary disease on inhaler-specific Inhalation profiles through the Ellipta dry powder inhaler. J Aerosol Med Pulm Drug Deliv 2015;28(6):486–497.
    OpenUrl
  144. 144.↵
    1. Buttini F,
    2. Brambilla G,
    3. Copella D,
    4. et al
    . Effect of flow rate on in vitro aerodynamic performance of NEXThaler in comparison with Diskus and Turbohaler dry powder inhalers. J Aerosol Med Pulm Drug Deliv 2016;29(2):167–178.
    OpenUrl
  145. 145.↵
    1. Hamilton M,
    2. Leggett R,
    3. Pang C,
    4. Charles S,
    5. Gillett BD
    . In vitro dosing performance of the ELLIPTA dry powder inhaler using asthma and COPD patient inhalation profiles replicated with the Electronic Lung (eLungTM). J Aerosol Med Pulm Drug Deliv 2015(6):28:1–9.
    OpenUrlCrossRefPubMed
  146. 146.↵
    1. Mahler DA,
    2. Waterman LA,
    3. Gifford AH
    . Prevalence and COPD phenotype for a suboptimal peak inspiratory flow rate against the simulated resistance of the Diskus dry powder inhaler. J Aerosol Med Pulm Drug Deliv 2013;26(3):174–179.
    OpenUrl
  147. 147.↵
    1. Janssens W,
    2. VandenBrande P,
    3. Hardeman E,
    4. De Langhe E,
    5. Philps T,
    6. Troosters T,
    7. Decramer M,
    8. et al
    . Inspiratory flow rates at different levels of resistance in elderly COPD patients. Eur Respir J 2008;31(1):78–83.
    OpenUrlAbstract/FREE Full Text
  148. 148.↵
    1. Jordanaglou J,
    2. Pride NB
    . A comparison of maximum inspiratory and expiratory flow in health and in lung disease. Thorax 1968;23(1):38.
    OpenUrlAbstract/FREE Full Text
  149. 149.↵
    1. Wade OL,
    2. Gilson JC
    . The effect of posture on diaphragmatic movement and vital capacity in normal subjects with a note on spirometry as an aid in determining radiological chest volumes. Thorax 1951;6(2):103.
    OpenUrlFREE Full Text
  150. 150.↵
    1. Taube C,
    2. Rydzy L,
    3. Eich A,
    4. Corn S,
    5. Kommann S,
    6. Sebastian M,
    7. et al
    . Use of a portable device to record maximum inspiratory flow in relation to dyspnoea in patients with COPD. Respir Med 2011;105:316–321.
    OpenUrlPubMed
  151. 151.↵
    1. Sa RC,
    2. Zeman KL,
    3. Bennett WD,
    4. Prisk GK,
    5. Darquenne C
    . Effect of posture on regional deposition of coarse particles in the healthy human lung. J Aerosol Pulm Drug Deliv 2014;28(6):423–431.
    OpenUrl
  152. 152.↵
    1. Pleasants RA
    . Dry powder inhalers and humidity: another factor to consider to ensure adequate lung delivery. Ann Am Thorac Soc 2017;14(10):1602.
    OpenUrl
  153. 153.↵
    1. Borgstrom L,
    2. Asking L,
    3. Lipiniuas P
    . An in vivo and in vitro comparison of two powder inhalers following storage at hot/humid conditions. J Aerosol Med 2005;18(3):304–310.
    OpenUrlCrossRefPubMed
  154. 154.↵
    1. Janson C,
    2. Loof T,
    3. Telg G,
    4. Stratelis G,
    5. Nilsson F
    . Difference in resistance to humidity between commonly used dry powder inhalers: an in vitro study. Prim Care Respir Med 2016;26:16053.
    OpenUrl
  155. 155.↵
    Breo Ellipta package insert. Research Triangle Park, NC: GlaxoSmithKline.
  156. 156.↵
    Seretide Accuhaler package insert. Hertfordshire, UK: GlaxoSmithKline.
  157. 157.↵
    Spiriva Handihaler package insert. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc.
  158. 158.↵
    1. Normansell R,
    2. Kew KM,
    3. Mathioudakis AG
    . Interventions to improve inhaler technique for people with asthma. Cochrane Database Syst Rev 2017;3:CD012286.
    OpenUrl
  159. 159.↵
    1. Goodwin R,
    2. Chander T,
    3. Shah N,
    4. Tomlin S
    . Inhaler counselling, the real deal or just fresh air? Arch Dis Child 2016;101(9):e2.
    OpenUrlAbstract/FREE Full Text
  160. 160.↵
    1. Bosnic-Anticevich SZ,
    2. Sinha H,
    3. So S,
    4. Reddel HK
    . Metered-dose inhaler technique: the effect of two educational interventions delivered in community pharmacy over time. J Asthma 2010;47(3):251–256.
    OpenUrlCrossRefPubMedWeb of Science
  161. 161.↵
    1. Takaku Y,
    2. Kurashima K,
    3. Ohta C,
    4. Ishiguro T,
    5. Kagiyama N,
    6. Yanagisawa T,
    7. Takayanagi N
    . How many instructions are required to correct inhalation errors in patients with asthma and chronic obstructive pulmonary disease? Respir Med 2017;123(2):110–115.
    OpenUrl
  162. 162.↵
    1. Chrystyn H,
    2. van der Palen J,
    3. Sharma R,
    4. Barnes N,
    5. Delafont B,
    6. et al
    . Device errors in asthma and COPD: systematic literature review and meta-analysis. NPJ Primary Care Respir Med 2017;27(1):22.
    OpenUrl
  163. 163.↵
    1. Lavorini F,
    2. Levy ML,
    3. Corrigan C,
    4. Crompton G
    , ADMIT Working Group. The ADMIT series – issues in inhalation therapy. 6) Training tools for inhalation devices. Prim Care Respir J 2010;19(4):335–341.
    OpenUrlPubMed
  164. 164.↵
    National Jewish Health. Instructional videos. Available at: https://www.nationaljewish.org/treatment-programs/medications/asthma-medications/devices/instructional-videos. Accessed May 2, 2018.
  165. 165.↵
    1. Mulhall AM,
    2. Zafar MA,
    3. Record S,
    4. Channell H,
    5. Panos RJ
    . A tablet-based multimedia education tool improves provider and subject knowledge of inhaler use techniques. Respir Care 2017;62(2):163–171.
    OpenUrlAbstract/FREE Full Text
  166. 166.↵
    1. Godara N,
    2. Godara R,
    3. Khullar M
    . Impact of inhalation therapy on oral health. Lung India 2011;28(4):272–275.
    OpenUrlPubMed
  167. 167.↵
    1. Gardenhire DS,
    2. Burnett D,
    3. Strickland S,
    4. Myers TR
    . A Guide to Aerosol Delivery Devices for Respiratory Therapists, 4th ed. Irving, Texas: American Association for Respiratory Care; 2017.
  168. 168.↵
    1. Hess DR,
    2. Myers TR,
    3. Rau JL
    . A guide to aerosol delivery devices for respiratory therapists. Irving, Texas: American Association for Respiratory Care; 2005.
PreviousNext
Back to top

In this issue

Respiratory Care: 63 (6)
Respiratory Care
Vol. 63, Issue 6
1 Jun 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Aerosol Delivery Devices for Obstructive Lung Diseases
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Aerosol Delivery Devices for Obstructive Lung Diseases
Roy A Pleasants, Dean R Hess
Respiratory Care Jun 2018, 63 (6) 708-733; DOI: 10.4187/respcare.06290

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Aerosol Delivery Devices for Obstructive Lung Diseases
Roy A Pleasants, Dean R Hess
Respiratory Care Jun 2018, 63 (6) 708-733; DOI: 10.4187/respcare.06290
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • History of Modern Aerosol Devices
    • Definition of Terms
    • Methods to Measure Aerosol Delivery and Deposition
    • Aerosol Deposition in the Airways
    • Inhaler Devices
    • Nebulizers
    • Clinical Studies Supporting the Impact of Aerosols
    • Inhalation Device Selection
    • Patient Education
    • Proper Inhalation Techniques
    • Summary
    • Discussion
    • Footnotes
    • References
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • inhalational therapies
  • COPD
  • asthma
  • dry powder inhalers
  • metered-dose inhalers
  • nebulization
  • patient education
  • smart inhalers
  • lung deposition

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire