Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleNew Horizons Symposium

Technical Advances in the Field of ECMO

Peter Betit
Respiratory Care September 2018, 63 (9) 1162-1173; DOI: https://doi.org/10.4187/respcare.06320
Peter Betit
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Thiagarajan RR,
    2. Barbaro RP,
    3. Rycus PT,
    4. McMullan M,
    5. Conrad SA,
    6. Fortenberry JD,
    7. Paden ML
    . Extracorporeal life support organization registry international report 2016. ASAIO J 2017;63(1):60–67.
    OpenUrl
  2. 2.↵
    1. Abrams D,
    2. Brodie D
    . Extracorporeal membrane oxygenation for adult respiratory failure: 2017 update. Chest 2017;152(3):639–649.
    OpenUrl
  3. 3.↵
    1. Müller T,
    2. Bein T,
    3. Phillip A,
    4. Graf B,
    5. Schmid C,
    6. Riegger G
    . Extracorporeal pulmonary support in severe pulmonary failure in adults. Dtsch Arztebl Int 2013;110(10):159–166.
    OpenUrlPubMed
  4. 4.↵
    1. Toomasian JM,
    2. Schreiner RJ,
    3. Meyer DE,
    4. Schmidt ME,
    5. Hagan SE,
    6. Griffith GW,
    7. et al
    . A polymethylpentene fiber gas exchanger for long-term extracorporeal life support. ASAIO J 2005;51(4):390–397.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Weems MF,
    2. Friedlich PS,
    3. Nelson LP,
    4. Rake AJ,
    5. Klee L,
    6. Stein JE,
    7. Stavroudis TA
    . The role of extracorporeal membrane oxygenation simulation training at extracorporeal life support organization centers in the United States. Sim Healthcare 2017;12(3):233–239.
    OpenUrl
  6. 6.↵
    1. Yeager T,
    2. Shuvo R
    . Evolution of gas permeable membranes for extracorporeal membrane oxygenation. Artificial Organs 2017;41(8):700–709.
    OpenUrl
  7. 7.↵
    1. Strueber M
    . Artificial lungs: are we there yet? Thorac Surg Clin 2015;25(1):107–113.
    OpenUrlCrossRef
  8. 8.↵
    1. Eash HJ,
    2. Jones HM,
    3. Hattler BG,
    4. Federspiel WJ
    . Evaluation of plasma resistant hollow fiber membranes for artificial lungs. ASAIO J 2004;50(5):491–497.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Rambaud J,
    2. Guilbert J,
    3. Guellec I,
    4. Renolleau S
    . A pilot study comparing two polymethylpentene extracorporeal membrane oxygenators. Perfusion 2012;218(1):14–20.
    OpenUrl
  10. 10.↵
    1. Gill MC,
    2. O'Shaughnessy K,
    3. Dittmer J
    . A paedatric ECMO case of plasma leakage through a polymethylpentene oxygenator. Perfusion 2015;30(7):600–603.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. O'Brien C,
    2. Monteagudo J,
    3. Schad C,
    4. Cheung E,
    5. Middlesworth W
    . Centrifugal pumps and hemolysis in pediatric extracorporeal membrane oxygenation (ECMO) patients: an analysis of Extracorporeal Life Support (ELSO) registry data. J Pediatr Surg 2017;52(6):975–978.
    OpenUrl
  12. 12.↵
    1. Lawson DS,
    2. Lawson AF,
    3. Walczak R,
    4. McRobb C,
    5. McDermott P,
    6. Shearer IR,
    7. et al
    . North American neonatal extracorporeal membrane oxygenation (ECMO) devices and team roles: 2008 survey results of Extracorporeal Life Support Organization (ELSO) centers. Extra Corpor Technol 2008;40(3):166–174.
    OpenUrl
  13. 13.↵
    1. Alwardt CM,
    2. Wilson DS,
    3. Alore ML,
    4. Lanza LA,
    5. Devaleria PA,
    6. Pajaro OE
    . Performance and safety of an integrated portable extracorporeal life support system for adults. J Extra Corpor Technol 2015;47(1):38–43.
    OpenUrl
  14. 14.↵
    1. Haneya A,
    2. Philipp A,
    3. Foltan M,
    4. Camboni D,
    5. Müeller T,
    6. Bein T,
    7. et al
    . First experience with the new portable extracorporeal membrane oxygenation system Cardiohelp for severe respiratory failure in adults. Perfusion 2012;27(2):150–155.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Philipp A,
    2. Arlt M,
    3. Amann M,
    4. Lunz D,
    5. Müller T,
    6. Hilker M,
    7. et al
    . First experience with the ultra-compact mobile extracorporeal membrane oxygenation system Cardiohelp in interhospital transport. Interact Cardiovasc Thorac Surg 2011;12(6):978–981.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Fleck T,
    2. Benk C,
    3. Klemm R,
    4. Kroll J,
    5. Siepe M,
    6. Grohmann J,
    7. et al
    . First serial in vivo results of mechanical circulatory support in children with a new diagonal pump. Eur J Cardiothorac Surg 2013;44(5):828–835.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Lunz D,
    2. Phillip A,
    3. Judeman K,
    4. Amann M,
    5. Foltan M,
    6. Schmid C,
    7. et al
    . First experience with the Deltastream DP3 in venovenous extracorporeal membrane oxygenation and air-supported inter-hospital transport. Interact CardioVasc Thorac Surg 2013;17(5):773–777.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Stiller B,
    2. Houmes RJ,
    3. Rüffer A,
    4. Kumpf M,
    5. Müller A,
    6. Kipfmüller F,
    7. et al
    . Multicenter experience with mechanical circulatory support using a new diagonal pump in 233 children. Artif Organs 2018;42(4):377–385.
    OpenUrl
  19. 19.↵
    1. Speth M,
    2. Münch F,
    3. Purbojo A,
    4. Glöckler M,
    5. Toka O,
    6. Cesnjevar RA,
    7. Rüffer A
    . Pediatric extracorporeal life support using a third generation diagonal pump. ASAIO J 2016;62(4):482–490.
    OpenUrl
  20. 20.↵
    1. Evenson A,
    2. Wang S,
    3. Kunselman AR,
    4. Ündar A
    . Use of a novel diagonal pump in an in vitro neonatal pulsatile extracorporeal life support circuit. Artificial Organs 2014;38(1):E1–E9.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Wang S,
    2. Kunselman AR,
    3. Clark JB,
    4. Ündar A
    . In vitro hemodynamic evaluation of a novel pulsatile extracorporeal life support system: impact of perfusion modes and circuit components on energy loss. Artif Organs 2015;39(1):59–66.
    OpenUrl
  22. 22.↵
    1. Wang S,
    2. Kunselman AR,
    3. Ündar A
    . Novel diagonal pump for pediatric extracorporeal life support system. Artificial Organs 2013;37(1):37–47.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Patel S,
    2. Wang S,
    3. Pauliks L,
    4. Chang D,
    5. Clark JB,
    6. Kunselman AR,
    7. Ündar A
    . Evaluation of a novel pulsatile extracorporeal life support system synchronized to the cardiac cycle: effect of rhythm changes on hemodynamic performance. Artif Organs 2015;39(1):67–76.
    OpenUrl
  24. 24.↵
    1. Cove ME,
    2. MacLaren G,
    3. Federspiel WJ,
    4. Kellum JA
    . Bench to bedside review: extracorporeal carbon dioxide removal, past, present and future. Critical Care 2012;16(5):232–241.
    OpenUrlPubMed
  25. 25.↵
    1. Hermann A,
    2. Staudinger T,
    3. Bojic A,
    4. Riss K,
    5. Wohlfarth P,
    6. Robak O,
    7. et al
    . First experience with a new miniaturized pump-driven venovenous extracorporeal CO2 removal system (iLA Activve): a retrospective data analysis. ASAIO J. 2014;60(3):342–347.
    OpenUrl
  26. 26.↵
    1. Hermann A,
    2. Riss K,
    3. Schellongowski P,
    4. Bojic A,
    5. Wohlfarth P,
    6. Robak O,
    7. et al
    . A novel pump-driven veno-venous gas exchange system during extracorporeal CO2-removal. Intensive Care Med 2015;41(10):1773–1780.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Braune S,
    2. Sieweke A,
    3. Brettner F,
    4. Staudinger T,
    5. Joannidis M,
    6. Verbrugge S,
    7. et al
    . The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med 2016;42(9):1437–1444.
    OpenUrl
  28. 28.↵
    1. Jeffries RG,
    2. Mussin Y,
    3. Bulanin DS,
    4. Lund LW,
    5. Kocyildirim E,
    6. Zhumadilov ZZ,
    7. et al
    . Pre-clinical evaluation of an adult extracorporeal carbon dioxide removal system with active mixing for pediatric respiratory support. Int J Artif Organs 2014;37(12):888–899.
    OpenUrl
  29. 29.↵
    1. Bermudez CA,
    2. Zaldonis D,
    3. Fan MH,
    4. Pilewski JM,
    5. Crespo MM
    . Prolonged use of the hemolung respiratory assist system as a bridge to redo lung transplantation. Ann Thorac Surg 2015;100(6):2330–2333.
    OpenUrl
  30. 30.↵
    1. Burki NK,
    2. Mani RK,
    3. Herth FJF,
    4. Schmidt W,
    5. Teschler H,
    6. Bonin F,
    7. et al
    . A novel extracorporeal CO2 removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest 2013;143(3):678–686.
    OpenUrlCrossRefPubMedWeb of Science
  31. 31.↵
    1. Tiruvoipati R,
    2. Buscher H,
    3. Winearls J,
    4. Breeding J,
    5. Ghosh D,
    6. Chaterjee S,
    7. et al
    . Early experience of a new extracorporeal carbon dioxide removal device for acute hypercapnic respiratory failure. Crit Care Resusc 2016;18(4):261–269.
    OpenUrl
  32. 32.↵
    1. Fanelli V,
    2. Ranieri MV,
    3. Mancebo J,
    4. Moerer O,
    5. Quintel M,
    6. Morley S,
    7. et al
    . Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome. Crit Care 2016;20:36–43.
    OpenUrl
  33. 33.↵
    1. Romagnoli S,
    2. Ricci Z,
    3. Ronco C
    . Novel extracorporeal therapies for combined renal-pulmonary dysfunction. Semin Nephrol 2016;36(1):71–77.
    OpenUrl
  34. 34.↵
    1. Godet T,
    2. Combes A,
    3. Zogheib E,
    4. Jabaudon M,
    5. Futier E,
    6. Slutsky AS,
    7. Constantin JM
    . Novel CO2 removal device driven by a renal-replacement system without hemofilter: a first step experimental validation. Anaesth Crit Care Pain Med 2015;34(3):135–140.
    OpenUrl
  35. 35.↵
    1. Eloot S,
    2. Peperstraete H,
    3. DeSomer F,
    4. Hoste E
    . Assessment of the optimal operating parameters during extracorporeal CO2 removal with the Abylcap® system. Int J Artif Organs 2016;39(11):580–585.
    OpenUrl
  36. 36.↵
    1. Peperstraete H,
    2. Eloot S,
    3. Depuydt P,
    4. DeSomer F,
    5. Hoste E,
    6. Roosen C,
    7. Hoste E
    . Low flow extracorporeal CO2 removal in ARDS patients: a prospective short-term crossover pilot study. BMJ Anesthesiology 2017;17(1):155–164.
    OpenUrl
  37. 37.↵
    1. Quintard JM,
    2. Barbot O,
    3. Thevenot F,
    4. de Matteis O,
    5. Benayoun L,
    6. Leibinger F
    . Partial extracorporeal carbon dioxide removal using a standard continuous renal replacement therapy device: a preliminary study. ASAIO J 2014;60(5):564–569.
    OpenUrl
  38. 38.↵
    1. Forster C,
    2. Schriewer J,
    3. John S,
    4. Eckardt KU,
    5. Willam C
    . Low-flow CO2 removal integrated into a renal-replacement circuit can reduce acidosis and decrease vasopressor requirements. Crit Care 2013;17(4):R154.
    OpenUrl
  39. 39.↵
    1. Rehder KJ,
    2. Turner DA,
    3. Hartwig MG,
    4. Williford WL,
    5. Bonadonna D,
    6. Walczak RJ Jr..,
    7. et al
    . Active rehabilitation during extracorporeal membrane oxygenation as a bridge to lung transplantation. Respir Care 2013;58(8):1291–1298.
    OpenUrlAbstract/FREE Full Text
  40. 40.↵
    1. Bain JC,
    2. Turner DA,
    3. Rehder KJ,
    4. Eisenstein EL,
    5. Davis RD,
    6. Cheifetz IM,
    7. Zaas DW
    . Economic outcomes of extracorporeal membrane oxygenation with and without ambulation as a bridge to lung transplantation. Respir Care 2016;61(1):1–7.
    OpenUrlAbstract/FREE Full Text
  41. 41.↵
    1. Spinelli E,
    2. Protti A
    . Get fit for lung transplant with ambulatory extracorporeal membrane oxygenation! Respir Care 2016;61(1):117–118.
    OpenUrlFREE Full Text
  42. 42.↵
    1. Liu Y,
    2. Sanchez PG,
    3. Wei X,
    4. Watkins AC,
    5. Niu S,
    6. Wu ZJ,
    7. Griffith BP
    . Effects of cardiopulmonary support with a novel pediatric pump-lung in a 30-day ovine animal model. Artif Organs 2015;39(12):989–997.
    OpenUrl
  43. 43.↵
    1. Wei X,
    2. Sanchez PG,
    3. Liu Y,
    4. Watkins AC,
    5. Li T,
    6. Griffith BP,
    7. Wu ZJ
    . Extracorporeal respiratory support with a miniature integrated pediatric pump-lung device in an acute ovine respiratory failure model. Artif Organs 2016;40(11):1046–1053.
    OpenUrl
  44. 44.↵
    1. Madhani SP,
    2. Frankowski BJ,
    3. Burgreen GW,
    4. Antaki JF,
    5. Kormos R,
    6. D'Cunha J,
    7. Federspiel WJ
    . In vitro and in vivo evaluation of a novel integrated wearable artificial lung. J Heart Lung Transplant 2017;36(7):806–811.
    OpenUrl
  45. 45.↵
    1. Skoog DJ,
    2. Pohlmann JR,
    3. Demos DS,
    4. Scipione CN,
    5. Iyengar A,
    6. Schewe RE,
    7. et al
    . Fourteen day in vivo testing of a compliant thoracic artificial lung. ASAIO J 2017;63(5):644–649.
    OpenUrl
  46. 46.↵
    1. Fernando UP,
    2. Thompson AJ,
    3. Potkay J,
    4. Cheriyan H,
    5. Toomasian J,
    6. Kaesler A,
    7. et al
    . A membrane lung design based on circular blood flow paths. ASAIO J 2017;63(5):637–643.
    OpenUrl
  47. 47.↵
    1. Schewe RE,
    2. Khanafer KM,
    3. Arab A,
    4. Mitchell JA,
    5. Skoog DJ,
    6. Cook KE
    . Design and in vitro assessment of an improved, low-resistance, compliant thoracic artificial lung. ASAIO J 2012 58(6):583–589.
    OpenUrlPubMed
  48. 48.↵
    1. Beal MD,
    2. Kinnear J,
    3. Anderson CR,
    4. Martin TD,
    5. Wamboldt R,
    6. Hooper L
    . The effectiveness of medical simulation in teaching medical students critical care medicine: a systematic review and meta-analysis. Simul Healthcare 2017;12(2):104–116.
    OpenUrl
  49. 49.
    1. Allan CK,
    2. Thiagarajan RR,
    3. Beke D,
    4. Imprescia A,
    5. Kappus LJ,
    6. Garden A,
    7. et al
    . Simulation-based training delivered directly to the pediatric cardiac intensive care unit engenders preparedness, comfort, and decreased anxiety among multidisciplinary resuscitation teams. J Thorac Cardiovasc Surg 2010;14D(3)140:645–652.
    OpenUrl
  50. 50.↵
    1. Smelt JLC,
    2. Phillips S,
    3. Hamilton C,
    4. Fricker P,
    5. Spray D,
    6. Nowell JL,
    7. Jahangiri M
    . Simulator teaching of cardiopulmonary bypass complications: a prospective, randomized study. J Surg Ed 2016;73(6):1026–1031.
    OpenUrl
  51. 51.↵
    1. Fehr JJ,
    2. Shepard M,
    3. McBride ME,
    4. Mehegan M,
    5. Reddy K,
    6. Murray DJ,
    7. Boulet JR
    . Simulation-based assessment of ECMO clinical specialists. Sim Healthcare 2016;11(3):194–199.
    OpenUrl
  52. 52.
    1. Sanchez-Glanville C,
    2. Brindle ME,
    3. Spence T,
    4. Blackwood J,
    5. Drews T,
    6. Menzies S,
    7. Lopushinsky SR
    . Evaluating the introduction of extracorporeal life support technology to a tertiary-care pediatric institution: smoothing the learning curve through interprofessional simulation training. J Pediatr Surg 2015;50(5):798–804.
    OpenUrl
  53. 53.↵
    1. Zakhary BM,
    2. Kam LM,
    3. Kaufman BS,
    4. Felner KJ
    . The utility of high-fidelity simulation for training critical care fellows in the management of extracorporeal membrane oxygenation emergencies: a randomized controlled trial. Crit Care Med 2017;45(8):1367–1373.
    OpenUrl
  54. 54.↵
    1. Thompson JL,
    2. Grisham LM,
    3. Scott J,
    4. Mogan C,
    5. Prescher H,
    6. Biffar D,
    7. et al
    . Construction of a reusable, high-fidelity model to enhance extracorporeal membrane oxygenation training through simulation. Adv Neonatal Care 2014;14(2):103–109.
    OpenUrl
  55. 55.↵
    1. Allan CK,
    2. Pigula F,
    3. Bacha EA,
    4. Emani S,
    5. Fynn-Thompson F,
    6. Thiagarajan RR,
    7. et al
    . An extracorporeal membrane oxygenation cannulation curriculum featuring a novel integrated skills trainer leads to improved performance among pediatric cardiac surgery trainees. Sim Healthcare 2013;8(4):221–228.
    OpenUrl
  56. 56.↵
    1. Atamanyuka I,
    2. Gheza O,
    3. Saeeda I,
    4. Laneb M,
    5. Hall J,
    6. Jackson T,
    7. et al
    . Impact of an open-chest extracorporeal membrane oxygenation model for in situ simulated team training: a pilot study. Interact Cardiovasc Thorac Surg 2014;18(1):17–20.
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. Ribeiro IB,
    2. Ngu JMC,
    3. Gurinder G,
    4. Rubens FD
    . Development of a high fidelity beating heart simulator for cardiac surgery training. Perfusion 2017;32(7):568–573.
    OpenUrl
PreviousNext
Back to top

In this issue

Respiratory Care: 63 (9)
Respiratory Care
Vol. 63, Issue 9
1 Sep 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Technical Advances in the Field of ECMO
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Technical Advances in the Field of ECMO
Peter Betit
Respiratory Care Sep 2018, 63 (9) 1162-1173; DOI: 10.4187/respcare.06320

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Technical Advances in the Field of ECMO
Peter Betit
Respiratory Care Sep 2018, 63 (9) 1162-1173; DOI: 10.4187/respcare.06320
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Artificial Gas Exchange
    • ECMO Systems
    • Extracorporeal CO2 Removal
    • Respiratory Dialysis
    • Wearable ECMO
    • Simulation-Based Training
    • Summary
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • extracorporeal membrane oxygenation
  • polymethylpentene
  • centrifugal pump
  • respiratory dialysis
  • decarboxylation
  • high-fidelity simulation

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire