Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleReview

Patient-Ventilator Asynchronies: Clinical Implications and Practical Solutions

Lucia Mirabella, Gilda Cinnella, Roberta Costa, Andrea Cortegiani, Livio Tullo, Michela Rauseo, Giorgio Conti and Cesare Gregoretti
Respiratory Care November 2020, 65 (11) 1751-1766; DOI: https://doi.org/10.4187/respcare.07284
Lucia Mirabella
Department of Medical and Surgical Science, University of Foggia, Foggia, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Gilda Cinnella
Department of Medical and Surgical Science, University of Foggia, Foggia, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roberta Costa
Department of Anesthesia and Intensive Care, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrea Cortegiani
Department of Surgical, Oncological and Oral Science, Section of Anesthesia, Analgesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy. Dr Gregoretti is affiliated with Istituto Fondazione G Giglio, Cefalù, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Livio Tullo
Department of Medical and Surgical Science, University of Foggia, Foggia, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michela Rauseo
Department of Medical and Surgical Science, University of Foggia, Foggia, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Giorgio Conti
Department of Anesthesia and Intensive Care, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cesare Gregoretti
Department of Surgical, Oncological and Oral Science, Section of Anesthesia, Analgesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy. Dr Gregoretti is affiliated with Istituto Fondazione G Giglio, Cefalù, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Vincent J-L,
    2. Abraham E,
    3. Moore FA,
    4. Kochanek PM,
    5. Fink MP
    1. Ranieri VM,
    2. Squadrone V,
    3. Appendini L,
    4. Gregoretti C
    . Patient-ventilator interaction. In: Vincent J-L, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care, 7th ed. Philadelphia: Elsevier; 2017:366-372.
  2. 2.↵
    1. Brochard L,
    2. Harf A,
    3. Lorino H,
    4. Lemaire F
    . Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis 1989;139(2):513-521.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Sassoon CS,
    2. Foster GT
    . Patient-ventilator asynchrony. Curr Opin Crit Care 2001;7(1):28-33.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Kacmarek RM,
    2. Pirrone M,
    3. Berra L
    . Assisted mechanical ventilation: the future is now! BMC Anesthesiol 2015;15:110
    OpenUrl
  5. 5.↵
    1. Tobin MJ1,
    2. Jubran A,
    3. Laghi F
    . Patient-ventilator interaction. Am J Respir Crit Care Med 2001;163(5):1059-1063.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Garofalo E,
    2. Bruni A,
    3. Pelaia C,
    4. Liparota L,
    5. Lombardo N,
    6. Longhini F,
    7. Navalesi P
    . Recognizing, quantifying and managing patient-ventilator asynchrony in invasive and noninvasive ventilation. Expert Rev Respir Med 2018;12(7):557-567.
    OpenUrl
  7. 7.↵
    1. Leung P,
    2. Jubran A,
    3. Tobin MJ
    . Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 1997;155(6):1940-1948.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Dick CR1,
    2. Sassoon CS
    . Patient-ventilator interactions. Clin Chest Med 1996;17(3):423-438.
    OpenUrlCrossRefPubMed
  9. 9.
    1. Mead J
    . Control of respiratory frequency. J Appl Physiol 1960;15(3):325-336.
    OpenUrlWeb of Science
  10. 10.↵
    1. Hubmayr RD,
    2. Abel MD,
    3. Rehder K
    . Physiologic approach to mechanical ventilation. Crit Care Med 1990;18(1):103-113.
    OpenUrlPubMed
  11. 11.↵
    1. Whitelaw WA,
    2. Derenne JP,
    3. Milic-Emili J
    . Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol 1975;23(2):181-199.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. Ward ME,
    2. Corbeil C,
    3. Gibbons W,
    4. Newman S,
    5. Macklem PT
    . Optimization of respiratory muscle relaxation during mechanical ventilation. Anesthesiology 1988;69(1):29-35.
    OpenUrlPubMedWeb of Science
  13. 13.
    1. Puddy A,
    2. Younes M
    . Effect of inspiratory flow rate on respiratory output in normal subjects. Am Rev Respir Dis 1992;146(3):787-789.
    OpenUrlPubMedWeb of Science
  14. 14.
    1. Georgopoulos D,
    2. Mitrouska I,
    3. Bshouty Z,
    4. Anthonisen NR,
    5. Younes M
    . Effects of non-REM sleep on the response of respiratory output to varying inspiratory flow. Am J Respir Crit Care Med 1996;153(5):1624-1630.
    OpenUrlPubMedWeb of Science
  15. 15.
    1. Laghi F,
    2. Karamchandani K,
    3. Tobin MJ
    . Influence of ventilator settings in determining respiratory frequency during mechanical ventilation. Am J Respir Crit Care Med 1999;160(5):1766-1770.
    OpenUrlPubMedWeb of Science
  16. 16.
    1. Banner MJ1,
    2. Blanch PB,
    3. Gabrielli A
    . Tracheal pressure control provides automatic and variable inspiratory pressure assist to decrease the imposed resistive work of breathing. Crit Care Med 2002;30(5):1106-1111.
    OpenUrlPubMed
  17. 17.↵
    1. Vincent J-L
    1. MacIntyre NR
    . Improving patient/ventilator interactions. In, Vincent J-L, editor. Yearbook of intensive care and emergency medicine. Berlin: Springer-Verlag; 1999:235-243.
  18. 18.↵
    1. Ranieri VM,
    2. Mascia L,
    3. Petruzzelli V,
    4. Bruno F,
    5. Brienza A,
    6. Giuliani R
    . Inspiratory effort and measurement of dynamic intrinsic PEEP in COPD patients: effects of ventilator triggering systems. Intensive Care Med 1995;21(11):896-903.
    OpenUrlCrossRefPubMed
  19. 19.
    1. Alberti A,
    2. Gallo F,
    3. Fongaro A,
    4. Valenti S,
    5. Rossi A
    . P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med 1995;21(7):547-553.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Sassoon CS,
    2. Gruer SE
    . Characteristics of the ventilator pressure- and flow-trigger variables. Intensive Care Med 1995;21(2):159-168.
    OpenUrlCrossRefPubMedWeb of Science
  21. 21.↵
    1. Hill LL,
    2. Pearl RG
    . Flow triggering, pressure triggering, and autotriggering during mechanical ventilation. Crit Care Med 2000;28(2):579-581.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Fabry B,
    2. Haberthür C,
    3. Zappe D,
    4. Guttmann J,
    5. Kuhlen R,
    6. Stocker R
    . Breathing pattern and additional work of breathing in spontaneously breathing patients with different ventilatory demands during inspiratory pressure support and automatic tube compensation. Intensive Care Med 1997;23(5):545-552.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.
    1. Ranieri VM,
    2. Giuliani R,
    3. Mascia L,
    4. Grasso S,
    5. Petruzzelli V,
    6. Puntillo N,
    7. et al
    . Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol (1985) 1996;81(1):426-436.
    OpenUrlPubMedWeb of Science
  24. 24.↵
    1. Nava S,
    2. Bruschi C,
    3. Fracchia C,
    4. Braschi A,
    5. Rubini F
    . Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J 1997;10(1):177-183.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Aslanian P,
    2. El Atrous S,
    3. Isabey D,
    4. Valente E,
    5. Corsi D,
    6. Harf A,
    7. et al
    . Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med 1998;157(1):135-143.
    OpenUrlPubMed
  26. 26.↵
    1. Sinderby C,
    2. Navalesi P,
    3. Beck J,
    4. Skrobik Y,
    5. Comtois N,
    6. Friberg S,
    7. et al
    . Neural control of mechanical ventilation in respiratory failure. Nat Med 1999;5(12):1433-1436.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Beck J,
    2. Gottfried S B,
    3. Navalesi P,
    4. Skrobik Y,
    5. Comtois N,
    6. Rossini M,
    7. Sinderby C
    . Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med 2001;164(3):419-424.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Navalesi P,
    2. Costa R
    . New modes of mechanical ventilation: proportional assist ventilation, neurally adjusted ventilatory assist, and fractal ventilation. Curr Opin Crit Care 2003;9(1):51-58.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Beck J,
    2. Sinderby C,
    3. Lindström L,
    4. Grassino A
    . Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol (1985) 1998;85(3):1123-1134.
    OpenUrlPubMedWeb of Science
  30. 30.↵
    1. Boysen PG,
    2. McGough E
    . Pressure-control and pressure support ventilation: flow patterns, inspiratory time, and gas distribution. Respir Care 1988;33:126-134.
    OpenUrl
  31. 31.↵
    1. Tobin MJ
    1. Kacmarek RM,
    2. Chipman D
    . Basic principles of ventilator machinery. In: Tobin MJ, editor. Principles and practice of mechanical ventilation, 2nd ed. New York: McGraw-Hill; 2006:53-95.
  32. 32.↵
    1. Tobin MJ
    1. Chatburn RL
    . Classification of mechanical ventilators. In: Tobin MJ, editor. Principles and practice of mechanical ventilation, 2nd ed. New York: McGraw-Hill; 2006:37-52.
  33. 33.↵
    1. Smith IE,
    2. Shneerson JM
    . A laboratory comparison of four positive pressure ventilators used in the home. Eur Respir J 1996;9(11):2410-2415.
    OpenUrlAbstract
  34. 34.
    1. Carlucci A,
    2. Schreiber A,
    3. Mattei A,
    4. Malovini A,
    5. Bellinati J,
    6. Ceriana P,
    7. Gregoretti C
    . The configuration of bi-level ventilator circuits may affect compensation for non-intentional leaks during volume-targeted ventilation. Intensive Care Med 2013;39(1):59-65.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Gregoretti C,
    2. Pisani L,
    3. Cortegiani A,
    4. Ranieri VM
    . Noninvasive ventilation in critically ill patients. Crit Care Clin 2015;31(3):435-457.
    OpenUrl
  36. 36.↵
    1. Kacmarek RM,
    2. Villar J,
    3. Blanch L
    . Cycle asynchrony: always a concern during pressure ventilation! Minerva Anestesiol 2016;82(7):728-730.
    OpenUrl
  37. 37.↵
    1. Parthasarathy S,
    2. Jubran A,
    3. Tobin MJ
    . Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 1998;158(5 Pt 1):1471-1478.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Tobin MJ,
    2. Yang KL,
    3. Jubran A,
    4. Lodato RF
    . Interrelationship of breath components in neighboring breaths of normal eupneic subjects. Am J Respir Crit Care Med 1995;152(6):1967-1976.
    OpenUrlPubMedWeb of Science
  39. 39.↵
    1. Longhini F,
    2. Colombo D,
    3. Pisani L,
    4. Idone F,
    5. Chun P,
    6. Doorduin J,
    7. et al
    . Efficacy of ventilator waveform observation for detection of patient-ventilator asynchrony during NIV: a multicentre study. ERJ Open Res 2017;3(4):00075-2017.
    OpenUrlAbstract/FREE Full Text
  40. 40.↵
    1. Olivieri C,
    2. Costa R,
    3. Conti G,
    4. Navalesi P
    . Bench studies evaluating devices for non-invasive ventilation: critical analysis and future perspectives. Intensive Care Med 2012;38(1):160-167.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Iotti G,
    2. Braschi A,
    3. Locatelli A,
    4. Bellinzona G
    . Spontaneous respiration in artificial ventilation. Importance of valve resistance. Presse Med 1985;14(3):165-166.
    OpenUrlPubMed
  42. 42.↵
    1. Giuliani R,
    2. Mascia L,
    3. Recchia F,
    4. Caracciolo A,
    5. Fiore T,
    6. Ranieri VM
    . Patient-ventilator interaction during synchronized intermittent mandatory ventilation. Effects of flow triggering. Am J Respir Crit Care Med 1995;151(1):1-9.
    OpenUrlPubMedWeb of Science
  43. 43.↵
    1. Racca F,
    2. Appendini L,
    3. Gregoretti C,
    4. Stra E,
    5. Patessio A,
    6. Donner CF,
    7. Ranieri VM
    . Effectiveness of mask and helmet interfaces to deliver noninvasive ventilation in a human model of resistive breathing. J Appl Physiol 2005;99(4):1262-1271.
    OpenUrlCrossRefPubMedWeb of Science
  44. 44.↵
    1. Costa R,
    2. Navalesi P,
    3. Antonelli M,
    4. Cavaliere F,
    5. Craba A,
    6. Proietti R,
    7. Conti G
    . Physiologic evaluation of different levels of assistance during noninvasive ventilation delivered through a helmet. Chest 2005;128(4):2984-2990.
    OpenUrlCrossRefPubMed
  45. 45.
    1. Racca F,
    2. Appendini L,
    3. Berta G,
    4. Barberis L,
    5. Vittone F,
    6. Gregoretti C,
    7. et al
    . Helmet ventilation for acute respiratory failure and nasal skin breakdown in neuromuscular disorders. Anesth Analg 2009;109(1):164-167.
    OpenUrlCrossRefPubMedWeb of Science
  46. 46.↵
    1. Fabry B,
    2. Guttmann J,
    3. Eberhard L,
    4. Bauer T,
    5. Haberthür C,
    6. Wolff G
    . An analysis of desynchronization between the spontaneously breathing patient and ventilator during inspiratory pressure support. Chest 1995;107(5):1387-1394.
    OpenUrlCrossRefPubMedWeb of Science
  47. 47.↵
    1. Fink JB
    . Device and equipment evaluations. Respir Care 2004;49(10):1157-1164.
    OpenUrlPubMed
  48. 48.↵
    1. Thille AW,
    2. Rodriguez P,
    3. Cabello B,
    4. Lellouche F,
    5. Brochard L
    . Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 2006;32(10):1515-1522.
    OpenUrlCrossRefPubMedWeb of Science
  49. 49.↵
    1. Petrof BJ,
    2. Legaré M,
    3. Goldberg P,
    4. Milic-Emili J,
    5. Gottfried SB
    . Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 1990;141(2):281-289.
    OpenUrlPubMedWeb of Science
  50. 50.↵
    1. Appendini L,
    2. Patessio A,
    3. Zanaboni S,
    4. Carone M,
    5. Gukov B,
    6. Donner CF,
    7. Rossi A
    . Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1994;149(5):1069-1076.
    OpenUrlCrossRefPubMedWeb of Science
  51. 51.↵
    1. Younes M,
    2. Kun J,
    3. Webster K,
    4. Roberts D
    . Response of ventilator-dependent patients to delayed opening of exhalation valve. Am J Respir Crit Care Med 2002;166(1):21-30.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Javaheri S,
    2. Kazemi H
    . Metabolic alkalosis and hypoventilation in humans. Am Rev Respir Dis 1987;136(4):1011-1016.
    OpenUrlPubMedWeb of Science
  53. 53.↵
    1. Vaschetto R,
    2. Cammarota G,
    3. Colombo D,
    4. Longhini F,
    5. Grossi F,
    6. Giovanniello A
    . Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med 2014;42(1):74-82.
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. Bassuoni AS,
    2. Elgebaly AS,
    3. Eldabaa AA,
    4. Elhafz AA
    . Patient-ventilator asynchrony during daily interruption of sedation versus no sedation protocol. Anesth Essays Res 2012;6(2):151-156.
    OpenUrl
  55. 55.↵
    1. Strøm T,
    2. Martinussen T,
    3. Toft P
    . A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet 2010;375(9713):475-480.
    OpenUrlCrossRefPubMedWeb of Science
  56. 56.↵
    1. de Wit M,
    2. Miller KB,
    3. Green DA,
    4. Ostman HE,
    5. Gennings C,
    6. Epstein SK
    . Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med 2009;37(10):2740-2745.
    OpenUrlCrossRefPubMedWeb of Science
  57. 57.↵
    1. Tobin MJ
    1. Brochard L
    . Pressure support ventilation. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. New York: McGraw-Hill; 1994:239-257.
  58. 58.↵
    1. Chiumello D,
    2. Polli F,
    3. Tallarini F,
    4. Chierichetti M,
    5. Motta G,
    6. Azzari S,
    7. et al
    . Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease. Crit Care Med 2007;35(11):2547-2552.
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. Yamada Y,
    2. Du HL
    . Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach. J Appl Physiol 2000;88(6):2143-2150.
    OpenUrlPubMedWeb of Science
  60. 60.↵
    1. Murata S,
    2. Yokoyama K,
    3. Sakamoto Y,
    4. Yamashita K,
    5. Oto J,
    6. Imanaka H,
    7. Nishimura M
    . Effects of inspiratory rise time on triggering workload during pressure-support ventilation: a lung model study. Respir Care 2010;55(7):878-884.
    OpenUrlAbstract/FREE Full Text
  61. 61.↵
    1. Calderini E,
    2. Confalonieri M,
    3. Puccio PG,
    4. Francavilla N,
    5. Stella L,
    6. Gregoretti C
    . Patient-ventilator asynchrony during noninvasive ventilation: the role of expiratory trigger. Intensive Care Med 1999;25(7):662-667.
    OpenUrlCrossRefPubMedWeb of Science
  62. 62.
    1. Gregoretti C,
    2. Foti G,
    3. Beltrame F,
    4. Giugiaro PM,
    5. Biolino P,
    6. Burbi L,
    7. et al
    . Pressure control ventilation and minitracheotomy in treating severe flail chest trauma. Intensive Care Med 1995;21(12):1054-1056.
    OpenUrlCrossRefPubMedWeb of Science
  63. 63.↵
    1. Vignaux L,
    2. Vargas F,
    3. Roeseler J,
    4. Tassaux D,
    5. Thille AW,
    6. Kossowsky MP,
    7. et al
    . Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med 2009;35(5):840-846.
    OpenUrlCrossRefPubMedWeb of Science
  64. 64.↵
    1. Vitacca M,
    2. Bianchi L,
    3. Zanotti E,
    4. Vianello A,
    5. Barbano L,
    6. Porta R,
    7. Clini E
    . Assessment of physiologic variables and subjective comfort under different levels of pressure support ventilation. Chest 2004;126(3):851-859.
    OpenUrlCrossRefPubMedWeb of Science
  65. 65.↵
    1. Imanaka H,
    2. Nishimura M,
    3. Takeuchi M,
    4. Kimball WR,
    5. Yahagi N,
    6. Kumon K
    . Autotriggering caused by cardiogenic oscillation during flow-triggered mechanical ventilation. Crit Care Med 2000;28(2):402-407.
    OpenUrlCrossRefPubMedWeb of Science
  66. 66.↵
    1. Branson RD,
    2. Blakeman TC,
    3. Robinson B
    . Asynchrony and dyspnea. Respir Care 2013;58(6):973-989.
    OpenUrlAbstract/FREE Full Text
  67. 67.↵
    1. Tokioka H,
    2. Tanaka T,
    3. Ishizu T,
    4. Fukushima T,
    5. Iwaki T,
    6. Nakamura Y,
    7. Kosogabe Y
    . The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation. Anesth Analg 2001;92(1):161-165.
    OpenUrlPubMedWeb of Science
  68. 68.↵
    1. de Haro C,
    2. López-Aguilar J,
    3. Magrans R,
    4. Montanya J,
    5. Fernández-Gonzalo S,
    6. Turon M,
    7. et al
    . Double cycling during mechanical ventilation: frequency, mechanisms, and physiologic implications. Crit Care Med 2018;46(9):1385-1392.
    OpenUrl
  69. 69.↵
    1. de Haro C,
    2. Ochagavia A,
    3. López-Aguilar J,
    4. Fernandez-Gonzalo S,
    5. Navarra-Ventura G,
    6. Magrans R,
    7. et al
    . Patient-ventilator asynchronies during mechanical ventilation: current knowledge and research priorities. Intensive Care Med Exp 2019;7(Suppl 1):43.
    OpenUrl
  70. 70.↵
    1. Kallet RH,
    2. Corral W,
    3. Silverman HJ,
    4. Luce J
    . Implementation of a low tidal volume ventilation protocol for patients with acute lung injury or acute respiratory distress syndrome. Respir Care 2001;46(10):1024-1037.
    OpenUrlPubMed
  71. 71.↵
    1. Correger E,
    2. Murias G,
    3. Chacon E,
    4. Estruga A,
    5. Sales B,
    6. Lopez-Aguilar J,
    7. et al
    . Interpretation of ventilator curves in patients with acute respiratory failure. Med Intensiva 2012;36(4):294-306.
    OpenUrlPubMed
  72. 72.↵
    1. Subirà C,
    2. de Haro C,
    3. Magrans R,
    4. Fernández R,
    5. Blanch L
    . Minimizing asynchronies in mechanical ventilation: current and future trends. Respir Care 2018;63(4):464-478.
    OpenUrlAbstract/FREE Full Text
  73. 73.↵
    1. Kallet RH,
    2. Campbell AR,
    3. Dicker RA,
    4. Katz JA,
    5. Mackersie RC
    . Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care 2005;50(12):1623-1631.
    OpenUrlAbstract/FREE Full Text
  74. 74.↵
    1. Murias G,
    2. de Haro C,
    3. Blanch L
    . Does this ventilated patient have asynchronies? Recognizing reverse triggering and entrainment at the bedside. Intensive Care Med 2016;42(6):1058-1061.
    OpenUrl
  75. 75.↵
    1. Akoumianaki E,
    2. Lyazidi A,
    3. Rey N,
    4. Matamis D,
    5. Perez-Martinez N,
    6. Giraud R,
    7. et al
    . Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 2013;143(4):927-938.
    OpenUrlCrossRefPubMed
  76. 76.↵
    1. Parsons PE,
    2. Wiener-Kronish JP,
    3. Berra L,
    4. Stapleton RD
    . General intensive care unit. In: Critical care secrets, 6th edition. Philadelphia: Elsevier; 2018:54.
  77. 77.↵
    1. Gilstrap D,
    2. MacIntyre N
    . Patient-ventilator interactions: implications for clinical management. Am J Respir Crit Care Med 2013;188(9):1058-1068.
    OpenUrlCrossRefPubMed
  78. 78.↵
    1. Yang LY,
    2. Huang YC,
    3. Macintyre NR
    . Patient-ventilator synchrony during pressure-targeted versus flow-targeted small tidal volume assisted ventilation. J Crit Care 2007;22(3):252-257.
    OpenUrlPubMed
  79. 79.↵
    1. Shelledy DC,
    2. Peters JI
    . Patient stabilization: adjusting ventilatory support. In: Mechanical ventilation. Burlington, MA: Jones & Bartlett; 2019:373.
  80. 80.↵
    1. Roussos C
    1. Younes M
    . Interactions between patients and ventilators. In: Roussos C, editor. Thorax, 2nd ed. New York: Marcel Dekker; 1995:2367-2420.
  81. 81.↵
    1. Murias G,
    2. Lucangelo U,
    3. Blanch L
    . Patient-ventilator asynchrony. Curr Opin Crit Care 2016;22(1):53-59.
    OpenUrl
  82. 82.↵
    1. Colombo D,
    2. Cammarota G,
    3. Bergamaschi V,
    4. De Lucia M,
    5. Corte FD,
    6. Navalesi P
    . Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med 2008;34(11):2010-2018.
    OpenUrlCrossRefPubMedWeb of Science
  83. 83.↵
    1. Gutierrez G,
    2. Ballarino GJ,
    3. Turkan H,
    4. Abril J,
    5. De La Cruz L,
    6. Edsall C,
    7. et al
    . Automatic detection of patient-ventilator asynchrony by spectral analysis of airway flow. Crit Care 2011;15(4):R167.
    OpenUrlCrossRefPubMed
  84. 84.↵
    1. Chao DC,
    2. Scheinhorn DJ,
    3. Stearn-Hassenpflug M
    . Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 1997;112(6):1592-1599.
    OpenUrlCrossRefPubMedWeb of Science
  85. 85.↵
    1. Blanch L,
    2. Villagra A,
    3. Sales B,
    4. Montanya J,
    5. Lucangelo U,
    6. Luján M,
    7. et al
    . Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med 2015;41(4):633-641.
    OpenUrlPubMed
  86. 86.↵
    1. Yang L,
    2. Luo J,
    3. Bourdon J,
    4. Lin MC,
    5. Gottfried SB,
    6. Petrof B
    . Controlled mechanical ventilation leads to remodeling of the rat diaphragm. Am J Respir Crit Care Med 2002;166(8):1135-1140.
    OpenUrlCrossRefPubMedWeb of Science
  87. 87.
    1. Radell PJ,
    2. Remahl S,
    3. Nichols DG,
    4. Eriksson LI
    . Effects of prolonged mechanical ventilation and inactivity on piglet diaphragm function. Intensive Care Med 2002;28(3):358-364.
    OpenUrlCrossRefPubMedWeb of Science
  88. 88.
    1. Levine S,
    2. Biswas C,
    3. Dierov J,
    4. Barsotti R,
    5. Shrager JB,
    6. Nguyen T,
    7. et al
    . Increased proteolysis, myosin depletion, and atrophic AKT-FOXO signaling in human diaphragm disuse. Am J Respir Crit Care Med 2011;183(4):483-490.
    OpenUrlCrossRefPubMedWeb of Science
  89. 89.↵
    1. Levine S,
    2. Nguyen T,
    3. Taylor N,
    4. Friscia ME,
    5. Budak MT,
    6. Rothenberg P,
    7. et al
    . Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008;358(13):1327-1335.
    OpenUrlCrossRefPubMedWeb of Science
  90. 90.
    1. Hermans G,
    2. Agten A,
    3. Testelmans D,
    4. Decramer M,
    5. Gayan-Ramirez G
    . Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care 2010;14(4):R127.
    OpenUrlCrossRefPubMed
  91. 91.↵
    1. Hussain SN,
    2. Mofarrahi M,
    3. Sigala I,
    4. Kim HC,
    5. Vassilakopoulos T,
    6. Maltais F,
    7. et al
    . Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med 2010;182(11):1377-1386.
    OpenUrlCrossRefPubMedWeb of Science
  92. 92.↵
    1. Kondili E,
    2. Prinianakis G,
    3. Georgopoulos D
    . Patient-ventilator interaction. Br J Anaesth 2003;91(1):106-119.
    OpenUrlCrossRefPubMed
  93. 93.↵
    1. Hunter KD,
    2. Faulkner JA
    . Pliometric contraction-induced injury of mouse skeletal muscle: effect of initial length. J Appl Physiol (1985) 1997;82(1):278-283.
    OpenUrlPubMedWeb of Science
  94. 94.
    1. Devor ST,
    2. Faulkner JA
    . Regeneration of new fibers in muscles of old rats reduces contraction-induced injury. J Appl Physiol (1985) 1999;87(2):750-756.
    OpenUrlPubMedWeb of Science
  95. 95.
    1. Hirose L,
    2. Nosaka K,
    3. Newton M,
    4. Laveder A,
    5. Kano M,
    6. Peake J,
    7. Suzuki K
    . Changes in inflammatory mediators following eccentric exercise of the elbow flexors. Exerc Immunol Rev 2004;10:75-90.
    OpenUrlPubMedWeb of Science
  96. 96.↵
    1. Gosselin LE,
    2. Burton H
    . Impact of initial muscle length on force deficit following lengthening contractions in mammalian skeletal muscle. Muscle Nerve 2002;25(6):822-827.
    OpenUrlCrossRefPubMedWeb of Science
  97. 97.↵
    1. Bosma K,
    2. Ferreyra G,
    3. Ambrogio C,
    4. Pasero D,
    5. Mirabella L,
    6. Braghiroli A,
    7. et al
    . Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med 2007;35(4):1048-1054.
    OpenUrlCrossRefPubMedWeb of Science
  98. 98.↵
    1. Parthasarathy S,
    2. Tobin MJ
    . Effect of ventilator mode on sleep quality in critically ill patients. Am J Respir Crit Care Med 2002;166(11):1423-1429.
    OpenUrlCrossRefPubMedWeb of Science
  99. 99.↵
    1. Alexopoulou C,
    2. Kondili E,
    3. Plataki M,
    4. Georgopoulos D
    . Patient-ventilator synchrony and sleep quality with proportional assist and pressure support ventilation. Intensive Care Med 2013;39(6):1040-1047.
    OpenUrlPubMed
  100. 100.↵
    1. Delisle S,
    2. Ouellet P,
    3. Bellemare P,
    4. Tétrault JP,
    5. Arsenault P
    . Sleep quality in mechanically ventilated patients: comparison between NAVA and PSV modes. Ann Intensive Care 2011;1(1):42.
    OpenUrlCrossRefPubMed
  101. 101.↵
    1. Schmidt M,
    2. Demoule A,
    3. Polito A,
    4. Porchet R,
    5. Aboab J,
    6. Siami S,
    7. et al
    . Dyspnea in mechanically ventilated critically ill patients. Crit Care Med 2011;39(9):2059-2065.
    OpenUrlCrossRefPubMedWeb of Science
  102. 102.↵
    1. Herridge MS,
    2. Tansey CM,
    3. Matté A,
    4. Tomlinson G,
    5. Diaz-Granados N,
    6. Cooper A,
    7. et al
    . Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 2011;364(14):1293-1304.
    OpenUrlCrossRefPubMedWeb of Science
  103. 103.↵
    1. Trompeo AC,
    2. Vidi Y,
    3. Locane MD,
    4. Braghiroli A,
    5. Mascia L,
    6. Bosma K,
    7. Ranieri VM
    . Sleep disturbances in the critically ill patients: role of delirium and sedative agents. Minerva Anestesiol 2011;77(6):604-612.
    OpenUrlPubMedWeb of Science
  104. 104.↵
    1. Mistraletti G,
    2. Pelosi P,
    3. Mantovani ES,
    4. Berardino M,
    5. Gregoretti C
    . Delirium: clinical approach and prevention. Best Pract Res Clin Anaesthesiol 2012;26(3):311-326.
    OpenUrlPubMed
  105. 105.↵
    1. Dres M,
    2. Rittayamai N,
    3. Brochard L
    . Monitoring patient-ventilator asynchrony. Curr Opin Crit Care 2016;22(3):246-253.
    OpenUrl
  106. 106.↵
    1. Georgopoulos D,
    2. Prinianakis G,
    3. Kondili E
    . Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med 2006;32(1):34-47.
    OpenUrlCrossRefPubMedWeb of Science
  107. 107.
    1. Fernández-Pérez ER,
    2. Hubmayr RD
    . Interpretation of airway pressure waveforms. Intensive Care Med 2006;32(5):658-659.
    OpenUrlPubMed
  108. 108.↵
    1. Vignaux L,
    2. Grazioli S,
    3. Piquilloud L,
    4. Bochaton N,
    5. Karam O,
    6. Jaecklin T,
    7. et al
    . Optimizing patient-ventilator synchrony during invasive ventilator assist in children and infants remains a difficult task. Pediatr Crit Care Med 2013;14(7):316-325.
    OpenUrl
  109. 109.↵
    1. Georgopoulos D
    . Ineffective efforts during mechanical ventilation: the brain wants, the machine declines. Intensive Care Med 2012;38(5):738-740.
    OpenUrlPubMed
  110. 110.↵
    1. Colombo D,
    2. Cammarota G,
    3. Alemani M,
    4. Carenzo L,
    5. Barra FL,
    6. Vaschetto R,
    7. et al
    . Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med 2011;39(11):2452-2457.
    OpenUrlCrossRefPubMed
  111. 111.↵
    1. Chacón E,
    2. Estruga A,
    3. Murias G,
    4. Sales B,
    5. Montanya J,
    6. Lucangelo U,
    7. et al
    . Nurses’ detection of ineffective inspiratory efforts during mechanical ventilation. Am J Crit Care 2012;21(4):e89-.
    OpenUrlAbstract/FREE Full Text
  112. 112.↵
    1. Chen CW,
    2. Lin WC,
    3. Hsu CH
    . Pseudo-double-triggering. Intensive Care Med 2007;33(4):742-743.
    OpenUrlPubMed
  113. 113.↵
    1. Brochard L
    . Measurement of esophageal pressure at bedside: pros and cons. Curr Opin Crit Care 2014;20(1):39-46.
    OpenUrlCrossRefPubMed
  114. 114.↵
    1. Gogineni VK,
    2. Brimeyer R,
    3. Modrykamien A
    . Patterns of patient-ventilator asynchrony as predictors of prolonged mechanical ventilation. Anaesth Intensive Care 2012;40(6):964-970.
    OpenUrlPubMed
  115. 115.↵
    1. Doorduin J,
    2. van Hees HW,
    3. van der Hoeven JG,
    4. Heunks LM
    . Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med 2013;187(1):20-27.
    OpenUrlCrossRefPubMed
  116. 116.↵
    1. Parthasarathy S,
    2. Jubran A,
    3. Tobin MJ
    . Assessment of neural inspiratory time in ventilator-supported patients. Am J Respir Crit Care Med 2000;162(2 Pt 1):546-552.
    OpenUrlPubMedWeb of Science
  117. 117.↵
    1. Goligher EC,
    2. Laghi F,
    3. Detsky ME,
    4. Farias P,
    5. Murray A,
    6. Brace D,
    7. et al
    . Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med 2015;41(4):642-649.
    OpenUrlCrossRefPubMed
  118. 118.↵
    1. Matamis D,
    2. Soilemezi E,
    3. Tsagourias M,
    4. Akoumianaki E,
    5. Dimassi S,
    6. Boroli F,
    7. et al
    . Sonographic evaluation of the diaphragm in critically ill patients: technique and clinical applications. Intensive Care Med 2013;39(5):801-810.
    OpenUrlCrossRefPubMedWeb of Science
  119. 119.↵
    1. Chen CW,
    2. Lin WC,
    3. Hsu CH,
    4. Cheng KS,
    5. Lo CS
    . Detecting ineffective triggering in the expiratory phase in mechanically ventilated patients based on airway flow and pressure deflection: feasibility of using a computer algorithm. Crit Care Med 2008;36(2):455-461.
    OpenUrlCrossRefPubMed
  120. 120.↵
    1. Mulqueeny Q,
    2. Redmond SJ,
    3. Tassaux D,
    4. Vignaux L,
    5. Jolliet P,
    6. Ceriana P,
    7. et al
    . Automated detection of asynchrony in patient-ventilator interaction. Conf Proc IEEE Eng Med Biol Soc 2009;2009:5324-5327.
    OpenUrlPubMed
  121. 121.↵
    1. Younes M,
    2. Brochard L,
    3. Grasso S,
    4. Kun J,
    5. Mancebo J,
    6. Ranieri M,
    7. et al
    . A method for monitoring and improving patient: ventilator interaction. Intensive Care Med 2007;33(8):1337-1346.
    OpenUrlPubMed
  122. 122.↵
    1. Blanch L,
    2. Sales B,
    3. Montanya J,
    4. Lucangelo U,
    5. Garcia-Esquirol O,
    6. Villagra A,
    7. et al
    . Validation of the Better Care® system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensive Care Med 2012;38(5):772-780.
    OpenUrlCrossRefPubMed
  123. 123.↵
    1. Cuvelier A,
    2. Achour L,
    3. Rabarimanantsoa H,
    4. Letellier C,
    5. Muir JF,
    6. Fauroux B
    . A noninvasive method to identify ineffective triggering in patients with noninvasive pressure support ventilation. Respiration 2010;80(3):198-206.
    OpenUrlPubMed
  124. 124.↵
    1. Leung RS,
    2. Bradley TD
    . Sleep apnea and cardiovascular disease. Am J Respir Crit Care Med 2001;164(12):2147-2165.
    OpenUrlCrossRefPubMedWeb of Science
  125. 125.↵
    1. Carlucci A,
    2. Pisani L,
    3. Ceriana P,
    4. Malovini A,
    5. Nava S
    . Patient-ventilator asynchronies: may the respiratory mechanics play a role? Crit Care 2013;17(2):R54
    OpenUrlCrossRefPubMed
  126. 126.↵
    1. Marini JJ,
    2. Roussos C
    1. Gottfried SB
    . The role of PEEP or CPAP in the mechanically ventilated COPD patient. In: Marini JJ, Roussos C, editor. Ventilatory failure. New York: Marcel Dekker; 1991:2471-2500.
  127. 127.↵
    1. Mancebo J,
    2. Albaladejo P,
    3. Touchard D,
    4. Bak E,
    5. Subirana M,
    6. Lemaire F,
    7. et al
    . Airway occlusion pressure to titrate positive end-expiratory pressure in patients with dynamic hyperinflation. Anesthesiology 2000;93(1):81-90.
    OpenUrlCrossRefPubMed
  128. 128.↵
    1. de Wit M,
    2. Pedram S,
    3. Best AM,
    4. Epstein SK
    . Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care 2009;24(1):74-80.
    OpenUrlCrossRefPubMed
  129. 129.↵
    1. Conti G,
    2. Ranieri VM,
    3. Costa R,
    4. Garratt C,
    5. Wighton A,
    6. Spinazzola G,
    7. et al
    . Effects of dexmedetomidine and propofol on patient-ventilator interaction in difficult-to-wean, mechanically ventilated patients: a prospective, open-label, randomised, multicentre study. Crit Care 2016;20(1):206.
    OpenUrl
  130. 130.↵
    1. Costa R,
    2. Navalesi P,
    3. Cammarota G,
    4. Longhini F,
    5. Spinazzola G,
    6. Cipriani F,
    7. et al
    . Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist. Respir Physiol Neurobiol 2017;244:10-16.
    OpenUrl
  131. 131.↵
    1. Piquilloud L,
    2. Vignaux L,
    3. Bialais E,
    4. Roeseler J,
    5. Sottiaux T,
    6. Laterre PF,
    7. et al
    . Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med 2011;37(2):263-271.
    OpenUrlCrossRefPubMedWeb of Science
  132. 132.
    1. de la Oliva P,
    2. Schüffelmann C,
    3. Gómez-Zamora A,
    4. Villar J,
    5. Kacmarek R
    . Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA versus pressure support in pediatric patients. A non-randomized cross-over trial. Intensive Care Med 2012;38(5):838-846.
    OpenUrlCrossRefPubMed
  133. 133.
    1. Costa R,
    2. Spinazzola G,
    3. Cipriani F,
    4. Ferrone G,
    5. Festa O,
    6. Arcangeli A,
    7. et al
    . A physiologic comparison of proportional assist ventilation with load-adjustable gain factors (PAV+) versus pressure support ventilation (PSV). Intensive Care Med 2011;37(9):1494-1500.
    OpenUrlCrossRefPubMed
  134. 134.↵
    1. Kacmarek RM
    . Proportional assist ventilation and neurally adjusted ventilatory assist. Respir Care 2011;56(2):140-148.
    OpenUrlAbstract/FREE Full Text
  135. 135.↵
    1. Schmidt M,
    2. Kindler F,
    3. Cecchini J,
    4. Poitou T,
    5. Morawiec E,
    6. Persichini R,
    7. et al
    . Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction. Crit Care 2015;25:19-56.
    OpenUrl
  136. 136.↵
    1. Yonis H,
    2. Crognier L,
    3. Conil JM,
    4. Serres I,
    5. Rouget A,
    6. Virtos M,
    7. et al
    . Patient-ventilator synchrony in neurally adjusted ventilatory assist (NAVA) and pressure support ventilation (PSV): a prospective observational study. BMC Anesthesiol 2015;15:117.
    OpenUrlCrossRefPubMed
  137. 137.↵
    1. Huhle R,
    2. Pelosi P,
    3. de Abreu MG
    . Variable ventilation from bench to bedside. Crit Care 2016;20:62.
    OpenUrl
  138. 138.↵
    1. Spieth PM,
    2. Carvalho AR,
    3. Pelosi P,
    4. Hoehn C,
    5. Meissner C,
    6. Kasper M,
    7. et al
    . Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med 2009;179(8):684-693.
    OpenUrlCrossRefPubMedWeb of Science
  139. 139.↵
    1. Spieth PM,
    2. Güldner A,
    3. Huhle R,
    4. Beda A,
    5. Bluth T,
    6. Schreiter D,
    7. et al
    . Short-term effects of noisy pressure support ventilation in patients with acute hypoxemic respiratory failure. Crit Care 2013;17(5):R261.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Respiratory Care: 65 (11)
Respiratory Care
Vol. 65, Issue 11
1 Nov 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Patient-Ventilator Asynchronies: Clinical Implications and Practical Solutions
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Patient-Ventilator Asynchronies: Clinical Implications and Practical Solutions
Lucia Mirabella, Gilda Cinnella, Roberta Costa, Andrea Cortegiani, Livio Tullo, Michela Rauseo, Giorgio Conti, Cesare Gregoretti
Respiratory Care Nov 2020, 65 (11) 1751-1766; DOI: 10.4187/respcare.07284

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Patient-Ventilator Asynchronies: Clinical Implications and Practical Solutions
Lucia Mirabella, Gilda Cinnella, Roberta Costa, Andrea Cortegiani, Livio Tullo, Michela Rauseo, Giorgio Conti, Cesare Gregoretti
Respiratory Care Nov 2020, 65 (11) 1751-1766; DOI: 10.4187/respcare.07284
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Respiratory Physiology and Mechanical Ventilation
    • Asynchronies
    • Types of Asynchronies
    • Clinical Implications
    • How to Monitor Asynchronies
    • Strategies to Improve Patient-Ventilator Interaction
    • Summary
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • asynchrony
  • diaphragm
  • dyspnea
  • intensive care units
  • Mechanical ventilation
  • work of breathing

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire