Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Open Forum
    • 2023 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Open Forum
    • 2023 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Review ArticleYear in Reviews

2019 Year in Review: Patient-Ventilator Synchrony

Robert L Chatburn and Eduardo Mireles-Cabodevila
Respiratory Care April 2020, 65 (4) 558-572; DOI: https://doi.org/10.4187/respcare.07635
Robert L Chatburn
Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio.
Respiratory Institute, Cleveland Clinic, Cleveland, Ohio.
Education Institute, Cleveland Clinic, Cleveland, Ohio.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Eduardo Mireles-Cabodevila
Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio.
Respiratory Institute, Cleveland Clinic, Cleveland, Ohio.
Education Institute, Cleveland Clinic, Cleveland, Ohio.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Garofalo E,
    2. Bruni A,
    3. Pelaia C,
    4. Liparota L,
    5. Lombardo N,
    6. Longhini F,
    7. et al
    . Recognizing, quantifying and managing patient-ventilator asynchrony in invasive and noninvasive ventilation. Expert Rev Respir Med 2018;12(7):557–567.
    OpenUrl
  2. 2.↵
    1. Bruni A,
    2. Garofalo E,
    3. Pelaia C,
    4. Messina A,
    5. Cammarota G,
    6. Murabito P,
    7. et al
    . Patient-ventilator asynchrony in adult critically ill patients. Minerva Anestesiol 2019;85(6):676–688.
    OpenUrl
  3. 3.↵
    1. Mireles-Cabodevila E,
    2. Chatburn RL
    . The challenge of patient-ventilator interactions and technological solutions. AARC Times 2017;41(6):9–14.
    OpenUrl
  4. 4.↵
    1. Fabry B,
    2. Guttmann J,
    3. Eberhard L,
    4. Bauer T,
    5. Haberthür C,
    6. Wolff G
    . An analysis of desynchronization between the spontaneously breathing patient and ventilator during inspiratory pressure support. Chest 1995;107(5):1387–1394.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Marini JJ,
    2. Capps JS,
    3. Culver BH
    . The inspiratory work of breathing during assisted mechanical ventilation. Chest 1985;87(5):612–618.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. MacIntyre NR,
    2. McConnell R,
    3. Cheng KC,
    4. Sane A
    . Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Crit Care Med 1997;25(10):1671–1677.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Flick GR,
    2. Bellamy PE,
    3. Simmons DH
    . Diaphragmatic contraction during assisted mechanical ventilation. Chest 1989;96(1):130–135.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Kallet RH,
    2. Campbell AR,
    3. Dicker RA,
    4. Katz JA,
    5. Mackersie RC
    . Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care 2005;50(12):1623–1631.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Akoumianaki E,
    2. Lyazidi A,
    3. Rey N,
    4. Matamis D,
    5. Perez-Martinez N,
    6. Giraud R,
    7. et al
    . Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 2013;143(4):927–938.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Chao DC,
    2. Scheinhorn DJ,
    3. Stearn-Hassenpflug M
    . Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 1997;112(6):1592–1599.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Kondili E,
    2. Prinianakis G,
    3. Georgopoulos D
    . Patient-ventilator interaction. Br J Anaesth 2003;91(1):106–119.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Georgopoulos D,
    2. Prinianakis G,
    3. Kondili E
    . Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med 2006;32(1):34–47.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Thille AW,
    2. Rodriguez P,
    3. Cabello B,
    4. Lellouche F,
    5. Brochard L
    . Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 2006;32(10):1515–1522.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Younes M,
    2. Brochard L,
    3. Grasso S,
    4. Kun J,
    5. Mancebo J,
    6. Ranieri M,
    7. et al
    . A method for monitoring and improving patient: ventilator interaction. Intensive Care Med 2007;33(8):1337–1346.
    OpenUrlPubMed
  15. 15.↵
    1. Younes M
    . Proportional assist ventilation, a new approach to ventilatory support: theory. Am Rev Respir Dis 1992;145(1):114–120.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Kondili E,
    2. Alexopoulou C,
    3. Xirouchaki N,
    4. Vaporidi K,
    5. Georgopoulos D
    . Estimation of inspiratory muscle pressure in critically ill patients. Intensive Care Med 2010;36(4):648–655.
    OpenUrlPubMed
  17. 17.↵
    1. Mulqueeny Q,
    2. Ceriana P,
    3. Carlucci A,
    4. Fanfulla F,
    5. Delmastro M,
    6. Nava S
    . Automatic detection of ineffective triggering and double triggering during mechanical ventilation. Intensive Care Med 2007;33(11):2014–2018.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Mulqueeny Q,
    2. Redmond SJ,
    3. Tassaux D,
    4. Vignaux L,
    5. Jolliet P,
    6. Ceriana P,
    7. et al
    . Automated detection of asynchrony in patient-ventilator interaction. Conf Proc IEEE Eng Med Biol Soc 2009;2009:5324–5327.
    OpenUrlPubMed
  19. 19.↵
    1. Sinderby C,
    2. Liu S,
    3. Colombo D,
    4. Camarotta G,
    5. Slutsky AS,
    6. Navalesi P,
    7. et al
    . An automated and standardized neural index to quantify patient-ventilator interaction. Crit Care 2013;17(5):R239.
    OpenUrlPubMed
  20. 20.↵
    1. Gutierrez G,
    2. Ballarino GJ,
    3. Turkan H,
    4. Abril J,
    5. De La Cruz L,
    6. Edsall C,
    7. et al
    . Automatic detection of patient-ventilator asynchrony by spectral analysis of airway flow. Crit Care 2011;15(4):R167.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. de Wit M,
    2. Pedram S,
    3. Best AM,
    4. Epstein SK
    . Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care 2009;24(1):74–80.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. de Haro C,
    2. Ochagavia A,
    3. Lopez-Aguilar J,
    4. Fernandez-Gonzalo S,
    5. Navarra-Ventura G,
    6. Magrans R,
    7. et al
    . Patient-ventilator asynchronies during mechanical ventilation: current knowledge and research priorities. Intensive Care Med Exp 2019;7(Suppl 1):43.
    OpenUrl
  23. 23.↵
    1. Pham T,
    2. Telias I,
    3. Piraino T,
    4. Yoshida T,
    5. Brochard LJ
    . Asynchrony consequences and management. Crit Care Clin 2018;34(3):325–341.
    OpenUrl
  24. 24.↵
    1. Holanda MA,
    2. Vasconcelos RDS,
    3. Ferreira JC,
    4. Pinheiro BV
    . Patient-ventilator asynchrony. J Bras Pneumol 2018;44(4):321–333.
    OpenUrl
  25. 25.↵
    1. Arnal JM,
    2. Garnero A,
    3. Saoli M,
    4. Chatburn RL
    . Parameters for simulation of adult subjects during mechanical ventilation. Respir Care 2018;63(2):158–168.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Chatburn RL,
    2. El-Khatib M,
    3. Mireles-Cabodevila E
    . A taxonomy for mechanical ventilation: 10 fundamental maxims. Respir Care 2014;59(11):1747–1763.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Mireles-Cabodevila E,
    2. Hatipoğlu U,
    3. Chatburn RL
    . A rational framework for selecting modes of ventilation. Respir Care 2013;58(2):348–366.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. Bulleri E,
    2. Fusi C,
    3. Bambi S,
    4. Pisani L
    . Patient-ventilator asynchronies: types, outcomes and nursing detection skills. Acta Biomed 2018;89(7-s):6–18.
    OpenUrl
  29. 29.↵
    1. Blokpoel RGT,
    2. Wolthuis DW,
    3. Koopman AA,
    4. Kneyber M
    . Reverse triggering: a novel type of patient-ventilator asynchrony in mechanically ventilated children. Am J Respir Crit Care Med 2019;200(2):e4–e5.
    OpenUrl
  30. 30.↵
    1. Carnevale FA,
    2. Razack S
    . An item analysis of the COMFORT scale in a pediatric intensive care unit. Pediatr Crit Care Med 2002;3(2):177–180.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Su HK,
    2. Loring SH,
    3. Talmor D,
    4. Baedorf Kassis E
    . Reverse triggering with breath stacking during mechanical ventilation results in large tidal volumes and transpulmonary pressure swings. Intensive Care Med 2019;45(8):1161–1162.
    OpenUrl
  32. 32.↵
    1. de Haro C,
    2. López-Aguilar J,
    3. Magrans R,
    4. Montanya J,
    5. Fernández-Gonzalo S,
    6. Turon M,
    7. et al
    . Double cycling during mechanical ventilation: frequency, mechanisms, and physiologic implications. Crit Care Med 2018;46(9):1385–1392.
    OpenUrl
  33. 33.↵
    1. Soilemezi E,
    2. Vasileiou M,
    3. Spyridonidou C,
    4. Tsagourias M,
    5. Matamis D
    . Understanding patient-ventilator asynchrony using diaphragmatic ultrasonography. Am J Respir Crit Care Med 2019;200(4):e27–e28.
    OpenUrl
  34. 34.↵
    1. Matamis D,
    2. Soilemezi E,
    3. Tsagourias M,
    4. Akoumianaki E,
    5. Dimassi S,
    6. Boroli F,
    7. et al
    . Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med 2013;39(5):801–810.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.↵
    1. Sottile PD,
    2. Albers D,
    3. Higgins C,
    4. McKeehan J,
    5. Moss MM
    . The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm. Crit Care Med 2018;46(2):e151–e157.
    OpenUrl
  36. 36.↵
    1. Gholami B,
    2. Phan TS,
    3. Haddad WM,
    4. Cason A,
    5. Mullis J,
    6. Price L,
    7. et al
    . Replicating human expertise of mechanical ventilation waveform analysis in detecting patient-ventilator cycling asynchrony using machine learning. Comput Biol Med 2018;97:137–144.
    OpenUrl
  37. 37.↵
    1. Chiew YS,
    2. Tan CP,
    3. Chase JG,
    4. Chiew YW,
    5. Desaive T,
    6. Ralib AM,
    7. Mat Nor MB
    . Assessing mechanical ventilation asynchrony through iterative airway pressure reconstruction. Comput Methods Programs Biomed 2018;157:217–224.
    OpenUrl
  38. 38.↵
    1. Sousa MLA,
    2. Magrans R,
    3. Hayashi FK,
    4. Blanch L,
    5. Kacmarek RM,
    6. Ferreira JC
    . EPISYNC study: predictors of patient-ventilator asynchrony in a prospective cohort of patients under invasive mechanical ventilation - study protocol. BMJ Open 2019;9(5):e028601.
    OpenUrlAbstract/FREE Full Text
  39. 39.↵
    1. Blanch L,
    2. Sales B,
    3. Montanya J,
    4. Lucangelo U,
    5. Garcia-Esquirol O,
    6. Villagra A,
    7. et al
    . Validation of the Better Care(R) system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensive Care Med 2012;38(5):772–780.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Murias G,
    2. Montanyà J,
    3. Chacón E,
    4. Estruga A,
    5. Subirà C,
    6. Fernández R,
    7. et al
    . Automatic detection of ventilatory modes during invasive mechanical ventilation. Crit Care 2016;20(1):258.
    OpenUrl
  41. 41.↵
    1. Marchuk Y,
    2. Magrans R,
    3. Sales B,
    4. Montanya J,
    5. López-Aguilar J,
    6. de Haro C,
    7. et al
    . Predicting patient-ventilator asynchronies with hidden Markov models. Sci Rep 2018;8(1):17614.
    OpenUrl
  42. 42.↵
    1. Baum L,
    2. Petrie T
    . Statistical inference for probabilistic functions of finite state Markov chains. Ann Math Statist 1966;37(6):1554–1563.
    OpenUrlCrossRef
  43. 43.↵
    1. Longhini F,
    2. Colombo D,
    3. Pisani L,
    4. Idone F,
    5. Chun P,
    6. Doorduin J,
    7. et al
    . Efficacy of ventilator waveform observation for detection of patient-ventilator asynchrony during NIV: a multicentre study. ERJ Open Res 2017;3(4):00075-2017.
  44. 44.↵
    1. Rehm GB,
    2. Han J,
    3. Kuhn BT,
    4. Delplanque JP,
    5. Anderson NR,
    6. Adams JY,
    7. et al
    . Creation of a robust and generalizable machine learning classifier for patient ventilator asynchrony. Methods Inf Med 2018;57(4):208–219.
    OpenUrl
  45. 45.↵
    1. Pettenuzzo T,
    2. Aoyama H,
    3. Englesakis M,
    4. Tomlinson G,
    5. Fan E
    . Effect of neurally adjusted ventilatory assist on patient-ventilator interaction in mechanically ventilated adults: a systematic review and meta-analysis. Crit Care Med 2019;47(7):e602–e609.
    OpenUrl
  46. 46.↵
    1. Chen C,
    2. Wen T,
    3. Liao W
    . Neurally adjusted ventilatory assist versus pressure support ventilation in patient-ventilator interaction and clinical outcomes: a meta-analysis of clinical trials. Ann Transl Med 2019;7(16):382.
    OpenUrl
  47. 47.↵
    1. Karikari S,
    2. Rausa J,
    3. Flores S,
    4. Loomba RS
    . Neurally adjusted ventilatory assist versus conventional ventilation in the pediatric population: are there benefits? Pediatr Pulmonol 2019;54(9):1374–1381.
    OpenUrl
  48. 48.↵
    1. de Waal CG,
    2. van Leuteren RW,
    3. de Jongh FH,
    4. van Kaam AH,
    5. Hutten GJ
    . Patient-ventilator asynchrony in preterm infants on nasal intermittent positive pressure ventilation. Arch Dis Child Fetal Neonatal Ed 2019;104(3):F280–F284.
    OpenUrlAbstract/FREE Full Text
  49. 49.↵
    1. Vignaux L,
    2. Vargas F,
    3. Roeseler J,
    4. Tassaux D,
    5. Thille AW,
    6. Kossowsky MP,
    7. et al
    . Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med 2009;35(5):840–846.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Longhini F,
    2. Liu L,
    3. Pan C,
    4. Xie J,
    5. Cammarota G,
    6. Bruni A,
    7. et al
    . Neurally-adjusted ventilatory assist for noninvasive ventilation via a helmet in subjects with COPD exacerbation: a physiologic study. Respir Care 2019;64(5):582–589.
    OpenUrlAbstract/FREE Full Text
  51. 51.↵
    1. Lamouret O,
    2. Crognier L,
    3. Vardon Bounes F,
    4. Conil JM,
    5. Dilasser C,
    6. Raimondi T,
    7. et al
    . Neurally adjusted ventilatory assist (NAVA) versus pressure support ventilation: patient-ventilator interaction during invasive ventilation delivered by tracheostomy. Crit Care 2019;23(1):2.
    OpenUrl
  52. 52.↵
    1. Grieco DL,
    2. Bitondo MM,
    3. Aguirre-Bermeo H,
    4. Italiano S,
    5. Idone FA,
    6. Moccaldo A,
    7. et al
    . Patient-ventilator interaction with conventional and automated management of pressure support during difficult weaning from mechanical ventilation. J Crit Care 2018;48:203–210.
    OpenUrl
  53. 53.↵
    1. Zhang J,
    2. Luo Q,
    3. Chen R
    . Patient-ventilator interaction with noninvasive proportional assist ventilation in subjects with COPD. Respir Care 2020;65(1):45–52.
    OpenUrlAbstract/FREE Full Text
  54. 54.↵
    1. Amargiannitakis V,
    2. Gialamas I,
    3. Pediaditis E,
    4. Soundoulounaki S,
    5. Prinianakis G,
    6. Vaporidi K,
    7. et al
    . Validation of a proposed algorithm for assistance titration during proportional assist ventilation with load-adjustable gain factors. Respir Care 2020;65(1):36–44.
    OpenUrlAbstract/FREE Full Text
  55. 55.↵
    1. Carteaux G,
    2. Mancebo J,
    3. Mercat A,
    4. Dellamonica J,
    5. Richard JC,
    6. Aguirre-Bermeo H,
    7. et al
    . Bedside adjustment of proportional assist ventilation to target a predefined range of respiratory effort. Crit Care Med 2013;41(9):2125–2132.
    OpenUrl
  56. 56.↵
    1. de Haro C,
    2. Magrans R,
    3. López-Aguilar J,
    4. Montanyà J,
    5. Lena E,
    6. Subirà C,
    7. et al
    . Effects of sedatives and opioids on trigger and cycling asynchronies throughout mechanical ventilation: an observational study in a large dataset from critically ill patients. Crit Care 2019;23(1):245.
    OpenUrl
  57. 57.↵
    1. Gonzalez-Bermejo J,
    2. Janssens JP,
    3. Rabec C,
    4. Perrin C,
    5. Lofaso F,
    6. Langevin B,
    7. et al
    . Framework for patient-ventilator asynchrony during long-term non-invasive ventilation. Thorax 2019;74(7):715–717.
    OpenUrlAbstract/FREE Full Text
  58. 58.↵
    1. Hedden H
    . The Accidental Taxonomist. Medford, New Jersey: Information Today; 2010.
  59. 59.↵
    1. Navarro-Sune X,
    2. Hudson AL,
    3. De Vico Fallani F,
    4. Martinerie J,
    5. Witon A,
    6. Pouget P,
    7. et al
    . Riemannian geometry applied to detection of respiratory states from EEG signals: the basis for a brain-ventilator interface. IEEE Trans Biomed Eng 2017;64(5):1138–1148.
    OpenUrl
  60. 60.↵
    1. Becher T,
    2. van der Staay M,
    3. Schädler D,
    4. Frerichs I,
    5. Weiler N
    . Calculation of mechanical power for pressure-controlled ventilation. Intensive Care Med 2019;45(9):1321–1323.
    OpenUrl
  61. 61.↵
    1. Tobin M
    1. Younes M
    . Proportional assist ventilation. In: Tobin M, editor. Principles and Practice of Mechanical Ventilation. New York: McGraw Hill; 2013:315–349.
PreviousNext
Back to top

In this issue

Respiratory Care: 65 (4)
Respiratory Care
Vol. 65, Issue 4
1 Apr 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
2019 Year in Review: Patient-Ventilator Synchrony
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
2019 Year in Review: Patient-Ventilator Synchrony
Robert L Chatburn, Eduardo Mireles-Cabodevila
Respiratory Care Apr 2020, 65 (4) 558-572; DOI: 10.4187/respcare.07635

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
2019 Year in Review: Patient-Ventilator Synchrony
Robert L Chatburn, Eduardo Mireles-Cabodevila
Respiratory Care Apr 2020, 65 (4) 558-572; DOI: 10.4187/respcare.07635
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Year in Review
    • Toward a Taxonomy for Patient-Ventilator Synchrony
    • Summary
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire