Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Most-Read Papers of 2021
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2022 Call for Abstracts
    • 2021 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Most-Read Papers of 2021
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2022 Call for Abstracts
    • 2021 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleConference Proceedings

Monitoring Asynchrony During Invasive Mechanical Ventilation

José Aquino Esperanza, Leonardo Sarlabous, Candelaria de Haro, Rudys Magrans, Josefina Lopez-Aguilar and Lluis Blanch
Respiratory Care June 2020, 65 (6) 847-869; DOI: https://doi.org/10.4187/respcare.07404
José Aquino Esperanza
Critical Care Center, Hospital Universitari Parc Taulí, Institut d’ Investigació i Innovació Parc Taulí, Sabadell, Spain.
Centro de Investigaciones Biomedicas en Red Enfermedades Respiratorios, Instituto de Salúd Carlos III, Madrid, Spain.
Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leonardo Sarlabous
Critical Care Center, Hospital Universitari Parc Taulí, Institut d’ Investigació i Innovació Parc Taulí, Sabadell, Spain.
Centro de Investigaciones Biomedicas en Red Bioingenieria, Biomateriales y Nanotecnologia, Insituto de Salúd Carlos III, Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Candelaria de Haro
Critical Care Center, Hospital Universitari Parc Taulí, Institut d’ Investigació i Innovació Parc Taulí, Sabadell, Spain.
Centro de Investigaciones Biomedicas en Red Enfermedades Respiratorios, Instituto de Salúd Carlos III, Madrid, Spain.
Universitat Autònoma de Barcelona, Bellaterra, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rudys Magrans
Bettercare SL, Sabadell, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Josefina Lopez-Aguilar
Critical Care Center, Hospital Universitari Parc Taulí, Institut d’ Investigació i Innovació Parc Taulí, Sabadell, Spain.
Centro de Investigaciones Biomedicas en Red Enfermedades Respiratorios, Instituto de Salúd Carlos III, Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lluis Blanch
Critical Care Center, Hospital Universitari Parc Taulí, Institut d’ Investigació i Innovació Parc Taulí, Sabadell, Spain.
Centro de Investigaciones Biomedicas en Red Enfermedades Respiratorios, Instituto de Salúd Carlos III, Madrid, Spain.
Universitat Autònoma de Barcelona, Bellaterra, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Georgopoulos D,
    2. Roussos C
    . Control of breathing in mechanically ventilated patients. Eur Respir J 1996;9(10):2151-2160.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Tobin MJ
    1. Georgopoulos D
    . Effects of mechanical ventilation on control of breathing. In: Tobin MJ, ed. Principles and Practice of Mechanical Ventilation, 3e. New York: McGraw-Hill; 2013:805-820.
  3. 3.↵
    1. Tobin MJ
    . Advances in mechanical ventilation. N Engl J Med 2001;344(26):1986-1996.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Blanch L,
    2. Villagra A,
    3. Sales B,
    4. Montanya J,
    5. Lucangelo U,
    6. Luján M,
    7. et al
    . Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med 2015;41(4):633-641.
    OpenUrlPubMed
  5. 5.↵
    1. Telias I,
    2. Brochard L,
    3. Goligher EC
    . Is my patient’s respiratory drive (too) high? Intensive Care Med 2018;44(11):1936-1939.
    OpenUrl
  6. 6.↵
    1. Pham T,
    2. Telias I,
    3. Piraino T,
    4. Yoshida T,
    5. Brochard LJ
    . Asynchrony consequences and management. Crit Care Clin 2018;34(3):325-341.
    OpenUrl
  7. 7.
    1. Branson RD,
    2. Blakeman TC,
    3. Robinson BR
    . Asynchrony and dyspnea. Respir Care 2013;58(6):973-989.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. Kavanagh BP,
    2. Slutsky AS
    . Ventilator-induced lung injury: more studies, more questions. Crit Care Med 1999;27:1666-1671.
    OpenUrlPubMed
  9. 9.↵
    1. Aquino Esperanza J,
    2. Sarlabous L,
    3. de Haro C,
    4. Batlle M,
    5. Magrans R,
    6. Lopez-Aguilar J,
    7. et al
    . Double and multiple cycling in mechanical ventilation: complex events with varying clinical effects. Med Intensiva 2019 [Epub ahead of print].
  10. 10.↵
    1. Subirà C,
    2. de Haro C,
    3. Magrans R,
    4. Fernández R,
    5. Blanch L
    . Minimizing asynchronies in mechanical ventilation: current and future trends. Respir Care 2018;63(4):464-478.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. de Wit M
    . Monitoring of patient-ventilator interaction at the bedside. Respir Care 2011;56(1):61-72.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Gilstrap D,
    2. MacIntyre N
    . Patient-ventilator interactions implications for clinical management. Am J Respir Crit Care Med 2013;188(9):1058-1068.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Vaporidi K,
    2. Akoumianaki E,
    3. Telias I,
    4. Goligher EC,
    5. Brochard L,
    6. Georgopoulos D
    . Respiratory drive in critically ill patients: pathophysiology and clinical implications. Am J Respir Crit Care Med 2020;201(1):20-32.
    OpenUrl
  14. 14.↵
    1. Yoshida T,
    2. Fujino Y,
    3. Amato MBP,
    4. Kavanagh BP
    . Fifty years of research in ARDS spontaneous breathing during mechanical ventilation risks, mechanisms, and management. Am J Respir Crit Care Med 2017;195(8):985-992.
    OpenUrl
  15. 15.↵
    1. Levine S,
    2. Nguyen T,
    3. Taylor N,
    4. Friscia M,
    5. Budak MT,
    6. Rothenberg P,
    7. et al
    . Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008;358(13):1327-1335.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Putensen C,
    2. Zech S,
    3. Wrigge H,
    4. Zinserling J,
    5. Stüber F,
    6. Von ST,
    7. et al
    . Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001;164(1):43-49.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Yoshida T,
    2. Uchiyama A,
    3. Matsuura N,
    4. Mashimo T,
    5. Fujino Y
    . Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 2012;40(5):1578-1585.
    OpenUrlCrossRefPubMed
  18. 18.
    1. Yoshida T,
    2. Roldan R,
    3. Beraldo MA,
    4. Torsani V,
    5. Gomes S,
    6. De Santis RR,
    7. et al
    . Spontaneous effort during mechanical ventilation: maximal injury with less positive end-expiratory pressure. Crit Care Med 2016;44(8):e678-88.
    OpenUrl
  19. 19.↵
    1. Brochard L,
    2. Martin GS,
    3. Blanch L,
    4. Pelosi P,
    5. Belda FJ,
    6. Jubran A,
    7. et al
    . Clinical review: respiratory monitoring in the ICU - a consensus of 16. Crit Care 2012;16(2):219.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Dres M,
    2. Goligher EC,
    3. Heunks LMA,
    4. Brochard LJ
    . Critical illness-associated diaphragm weakness. Intensive Care Med 2017;43(10):1441-1452.
    OpenUrl
  21. 21.↵
    1. Papazian L,
    2. Forel J-M,
    3. Gacouin A,
    4. Penot-Ragon C,
    5. Perrin G,
    6. Loundou A,
    7. et al
    . Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010;363(12):1107-1116.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Doorduin J,
    2. Nollet JL,
    3. Roesthuis LH,
    4. Hees HWH,
    5. Van rochard LJ,
    6. Sinderby CA,
    7. et al
    . Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes. Am J Respir Crit Care Med 2017;195(8):1033-1042.
    OpenUrl
  23. 23.↵
    1. Morais CC,
    2. Koyama Y,
    3. Yoshida T,
    4. Plens G,
    5. Gomes S,
    6. Lima CL,
    7. et al
    . High positive end-expiratory pressure renders spontaneous effort non-injurious. Am J Respir Crit Care Med 2018;197(10):1285-1296.
    OpenUrl
  24. 24.↵
    1. Tobin MJ
    . Physiologic basis of mechanical ventilation. Ann Am Thorac Soc 2018;15(Suppl 1):S49-S52.
    OpenUrl
  25. 25.↵
    1. de Haro C,
    2. Ochagavia A,
    3. López-Aguilar J,
    4. Fernandez-Gonzalo S,
    5. Navarra-Ventura G,
    6. Magrans R,
    7. et al
    . Patient-ventilator asynchronies during mechanical ventilation: current knowledge and research priorities. Intensive Care Med Exp 2019;7(S1):1-14.
    OpenUrl
  26. 26.↵
    1. Murias G,
    2. Lucangelo U,
    3. Blanch L
    . Patient-ventilator asynchrony. Curr Opin Crit Care 2016;22(1):53-59.
    OpenUrl
  27. 27.↵
    1. Ward M,
    2. Corbeil C,
    3. Gibbons W,
    4. Newman S,
    5. Macklem P
    . Optimization of respiratory muscle relaxation during mechanical ventialtion. Anestesiology 1988;69:29-35.
    OpenUrl
  28. 28.↵
    1. Cinnella G,
    2. Conti G,
    3. Lofaso F,
    4. Lorino H,
    5. Harf A,
    6. Lemaire OIS,
    7. et al
    . Effects of assisted ventilation on the work of breathing volume-controlled versus pressure-controlled ventilation. Am J Respir Crit Care Med 1996;153(3):1025-1033.
    OpenUrlPubMedWeb of Science
  29. 29.↵
    1. MacIntyre NR,
    2. McConnell R,
    3. Cheng K,
    4. Sane A
    . Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Crit Care Med 1997;25:161-167.
    OpenUrl
  30. 30.↵
    1. Banzett RB,
    2. Schwartzstein RM
    . Dyspnea: don’t just look, ask. Am J Respir Crit Care Med 2015;192(12):1404-1406.
    OpenUrl
  31. 31.↵
    1. Schmidt M,
    2. Banzett RB,
    3. Raux M,
    4. Morélot-Panzini C,
    5. Dangers L,
    6. Similowski T,
    7. Demoule A
    . Unrecognized suffering in the ICU: addressing dyspnea in mechanically ventilated patients. Intensive Care Med 2014;40(1):1-10.
    OpenUrlWeb of Science
  32. 32.
    1. Parshall MB,
    2. Schwartzstein RM,
    3. Adams L,
    4. Banzett RB,
    5. Manning HL,
    6. Bourbeau J,
    7. et al
    . An official American thoracic society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med 2012;185(4):435-452.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.↵
    1. Soffler MI,
    2. Rose A,
    3. Hayes MM,
    4. Banzett R,
    5. Schwartzstein RM
    . Treatment of acute dyspnea with morphine to avert respiratory failure. Ann Am Thorac Soc 2017;14(4):584-588.
    OpenUrl
  34. 34.↵
    1. Schmidt M,
    2. Demoule A,
    3. Polito A,
    4. Porchet R,
    5. Aboab J,
    6. Siami S,
    7. et al
    . Dyspnea in mechanically ventilated critically ill patients. Crit Care Med 2011;39(9):2059-2065.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.↵
    1. Haugdahl HS,
    2. Storli SL,
    3. Meland B,
    4. Dybwik K,
    5. Romild U,
    6. Klepstad P
    . Underestimation of patient breathlessness by nurses and physicians during a spontaneous breathing trial. Am J Respir Crit Care Med 2015;192(12):1440-1448.
    OpenUrl
  36. 36.↵
    1. Decavèle M,
    2. Similowski T,
    3. Demoule A
    . Detection and management of dyspnea in mechanically ventilated patients. Curr Opin Crit Care 2019;25(1):86-94.
    OpenUrl
  37. 37.↵
    1. Quilez ME,
    2. Fuster G,
    3. Villar J,
    4. Flores C,
    5. Martí-Sistac O,
    6. Blanch L,
    7. et al
    . Injurious mechanical ventilation affects neuronal activation in ventilated rats. Crit Care 2011;15(3):R124.
    OpenUrlCrossRefPubMed
  38. 38.
    1. Bilotta F,
    2. Giordano G,
    3. Sergi PG,
    4. Pugliese F
    . Harmful effects of mechanical ventilation on neurocognitive functions. Crit Care 2019;23(1):273.
    OpenUrl
  39. 39.
    1. Evans J,
    2. Sumners C,
    3. Moore J,
    4. Huentelman MJ,
    5. Deng J,
    6. Gelband CH,
    7. et al
    . Characterization of mitotic neurons derived from adult rat hypothalamus and brain stem. J Neurophysiol 2002;87(2):1076-1085.
    OpenUrlPubMedWeb of Science
  40. 40.↵
    1. Blanch L,
    2. Quintel M
    . Lung–brain cross talk in the critically ill. Intensive Care Med 2017;43(4):557-559.
    OpenUrl
  41. 41.↵
    1. Quílez ME,
    2. López-Aguilar J,
    3. Blanch L
    . Organ crosstalk during acute lung injury, acute respiratory distress syndrome, and mechanical ventilation. Curr Opin Crit Care 2012;18(1):23-28.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Thille AW,
    2. Rodriguez P,
    3. Cabello B,
    4. Lellouche F,
    5. Brochard L
    . Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 2006;32(10):1515-1522.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.↵
    1. Beitler JR,
    2. Sands SA,
    3. Loring SH,
    4. Owens RL,
    5. Malhotra A,
    6. Spragg RG,
    7. et al
    . Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med 2016;42(9):1427-1436.
    OpenUrlCrossRef
  44. 44.↵
    1. de Haro C,
    2. López-Aguilar J,
    3. Magrans R,
    4. Montanya J,
    5. Fernández-Gonzalo S,
    6. Turon M,
    7. et al
    . Double cycling during mechanical ventilation: frequency, mechanisms, and physiological implications. Crit Care Med 2018;46(9):1385-1392.
    OpenUrl
  45. 45.↵
    1. Thille AW,
    2. Cabello B,
    3. Galia F,
    4. Lyazidi A,
    5. Brochard L
    . Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med 2008;34(8):1477-1486.
    OpenUrlCrossRefPubMedWeb of Science
  46. 46.↵
    1. Pohlman MC,
    2. McCallister KE,
    3. Schweickert WD,
    4. Pohlman AS,
    5. Nigos CP,
    6. Krishnan JA,
    7. et al
    . Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 2008;36(11):3019-3023.
    OpenUrlCrossRefPubMed
  47. 47.↵
    1. Goligher EC
    . Myotrauma in mechanically ventilated patients. Intensive Care Med 2019;45(6):881-884.
    OpenUrl
  48. 48.
    1. Goligher EC,
    2. Fan E,
    3. Herridge MS,
    4. Murray A,
    5. Vorona S,
    6. Brace D,
    7. et al
    . Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med 2015;192(9):1080-1088.
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. Gea J,
    2. Zhu E,
    3. Gáldiz JB,
    4. Comtois N,
    5. Salazkin I,
    6. Antonio Fiz J,
    7. et al
    . Functional consequences of eccentric contractions of the diaphragm. Arch Bronconeumol 2009;45(2):68-74.
    OpenUrlPubMed
  50. 50.↵
    1. Chanques G,
    2. Kress J,
    3. Pohlman A,
    4. Patel S,
    5. Poston J,
    6. Jaber S,
    7. et al
    . Impact of ventilator adjustement and sedation-analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Crit Care Med 2013;41:2177-2187.
    OpenUrlPubMed
  51. 51.↵
    1. Vitacca M,
    2. Bianchi L,
    3. Zanotti E,
    4. Vianello A,
    5. Barbano L,
    6. Porta R,
    7. et al
    . Assessment of physiologic variables and subjective comfort under different levels of pressure support ventilation. Chest 2004;126(3):851-859.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Tassaux D,
    2. Gainnier M,
    3. Battisti A,
    4. Jolliet P
    . Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 2005;172(10):1283-1289.
    OpenUrlCrossRefPubMed
  53. 53.↵
    1. Leung P,
    2. Jubran A,
    3. Tobin MJ
    . Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 1997;155(6):1940-1948.
    OpenUrlCrossRefPubMedWeb of Science
  54. 54.↵
    1. Parthasarathy S,
    2. Jubran A,
    3. Tobin MJ
    . Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 1998;158(5):1471-1478.
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.↵
    1. Brochard L
    . Intrinsic (or auto-) positive end-expiratory pressure during spontaneous or assisted ventilation. Intensive Care Med 2002;28(11):1552-1554.
    OpenUrlCrossRefPubMed
  56. 56.↵
    1. Vaschetto R,
    2. Cammarota G,
    3. Colombo D,
    4. Longhini F,
    5. Grossi F,
    6. Giovanniello A,
    7. et al
    . Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med 2014;42(1):74-82.
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. de Wit M,
    2. Pedram S,
    3. Best AM,
    4. Epstein SK
    . Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care 2009;24(1):74-80.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Parthasarathy S,
    2. Jubran A,
    3. Laghi F,
    4. Tobin MJ
    . Sternomastoid, rib cage, and expiratory muscle activity during weaning failure. J Appl Physiol 2007;103(1):140-147.
    OpenUrlCrossRefPubMedWeb of Science
  59. 59.↵
    1. Fernandez R,
    2. Mendez M,
    3. Younes M
    . Effect of ventilator flow rate on respiratory timing in normal humans. 1999;159:710-719.
  60. 60.↵
    1. Gilstrap D,
    2. Davies J
    . Patient-Ventilator Interactions. Clin Chest Med 2016;37(4):669-681.
    OpenUrl
  61. 61.↵
    1. Shi ZH,
    2. Jonkman A,
    3. de Vries H,
    4. Jansen D,
    5. Ottenheijm C,
    6. Girbes A,
    7. et al
    . Expiratory muscle dysfunction in critically ill patients: towards improved understanding. Intensive Care Med 2019;45(8):1061-1071.
    OpenUrl
  62. 62.↵
    1. Doorduin J,
    2. Roesthuis LH,
    3. Jansen D,
    4. Van Der Hoeven JG,
    5. van Hees HWH,
    6. Heunks LMA,
    7. et al
    . Respiratory Muscle Effort during Expiration in successful and failed weaning from mechanical ventilaton. Anesthesiology 2018;129(3):490-501.
    OpenUrl
  63. 63.↵
    1. Petrillo G,
    2. Glass L
    . A theory for phase locking of respiration in cats to a mechanical ventilator. Am J Physiol 1984;246(3 Part 2):311-320.
    OpenUrl
  64. 64.↵
    1. Muzzin S,
    2. Trippenbach T,
    3. Baconnier P,
    4. Benchetrit G
    . Entrainment of the respiratory rhythm by periodic lung inflation during vagal cooling. 1989;75:157-172.
  65. 65.↵
    1. Muzzin S,
    2. Baconnier P,
    3. Benchetrit G
    . Entrainment of respiratory rhythm by periodic inflation: effect of airflow rate and duration. Am J Physiol 1992:292-300.
  66. 66.↵
    1. Petrillo G,
    2. Glass L,
    3. Trippenbach T
    . Phase locking of the respiratory rhythm in cats to a mechanical ventilator. Can J Physiol Pharmacol 1983;61(6):599-607.
    OpenUrlCrossRefPubMedWeb of Science
  67. 67.↵
    1. Simon P M,
    2. Zurob A S,
    3. Wies W M,
    4. Leiter J C,
    5. Hubmayr R D,
    6. Jensen M L,
    7. et al
    . Entrainment of respiration in humans by periodic lung inflations: effect of state and CO2. Am J Respir Crit Care Med 1999;160(3):950-960.
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.↵
    1. Simon PM,
    2. Habel AM,
    3. Daubenspeck JA,
    4. Leiter JC, PM,
    5. Habel AM,
    6. et al
    . Vagal feedback in the entrainment of respiration to mechanical ventilation in sleeping humans. J Appl Physiol 2000;89(2):760-769.
    OpenUrlPubMedWeb of Science
  69. 69.↵
    1. Delisle S,
    2. Charbonney E,
    3. Albert M,
    4. Ouellet P,
    5. Marsolais P,
    6. Rigollot M,
    7. et al
    . Patient–ventilator asynchrony due to reverse triggering occurring in brain-dead patients: clinical implications and physiological meaning. Am J Respir Crit Care Med 2016;194(9):1166-1168.
    OpenUrl
  70. 70.↵
    1. Akoumianaki E,
    2. Lyazidi A,
    3. Rey N,
    4. Matamis D,
    5. Perez-Martinez N,
    6. Giraud R,
    7. et al
    . Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 2013;143(4):927-938.
    OpenUrlCrossRefPubMed
  71. 71.↵
    1. de Vries HJ,
    2. Jonkman AH,
    3. Tuinman PR,
    4. Girbes ARJ,
    5. Heunks L
    . Respiratory entrainment and reverse triggering in a mechanically ventilated patient. Ann Am Thorac Soc 2019;16(4):499-505.
    OpenUrl
  72. 72.↵
    1. Murias G,
    2. de Haro C,
    3. Blanch L
    . Does this ventilated patient have asynchronies? Recognizing reverse triggering and entrainment at the bedside. Intensive Care Med 2016;42(6):1058-1061.
    OpenUrl
  73. 73.↵
    1. Pham T,
    2. Montanya J,
    3. Piraino T,
    4. Magrans Nicieza R,
    5. Mellado Artigas R,
    6. Damiani F,
    7. et al
    . Reverse triggering during invasive mechanical ventilation: validation of an automatic detection software [abstract]. Presented at the 2019 ATS International Conference. 2019. doi: 10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A4253.
  74. 74.↵
    1. Su HK,
    2. Loring SH,
    3. Talmor D,
    4. Kassis EB
    . Reverse triggering with breath stacking during mechanical ventilation results in large tidal volumes and transpulmonary pressure swings. Intensive Care Med 2019;45(8):1161-1162.
    OpenUrl
  75. 75.↵
    1. Yoshida T,
    2. Nakamura MAM,
    3. Morais CCA,
    4. Amato MBP,
    5. Kavanagh BP
    . Reverse triggering causes an injurious inflation pattern during mechanical ventilation. Am J Respir Crit Care Med 2018;198(8):1096-1099.
    OpenUrl
  76. 76.↵
    1. Kallet RH,
    2. Campbell AR,
    3. Dicker RA,
    4. Katz JA,
    5. Mackersie RC
    . Effects of tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome. Crit Care Med 2006;34(1):8-14.
    OpenUrlPubMed
  77. 77.↵
    1. Chacon E,
    2. Estruga A,
    3. Murias G,
    4. Sales B,
    5. Montanya J,
    6. Lucangelo U,
    7. et al
    . Nurses’ detection of ineffective inspiratory efforts during mechanical ventilation. Am J Crit Care 2012;21(4):89-94.
    OpenUrlAbstract/FREE Full Text
  78. 78.↵
    1. Akoumianaki E,
    2. Maggiore SM,
    3. Valenza F,
    4. Bellani G,
    5. Jubran A,
    6. Loring SH,
    7. et al
    . The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 2014;189(5):520-531.
    OpenUrlCrossRefPubMed
  79. 79.↵
    1. Yoshida T,
    2. Amato MBP,
    3. Grieco DL,
    4. Chen L,
    5. Lima CAS,
    6. Roldan R,
    7. et al
    . Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med 2018;197(8):1018-1026.
    OpenUrl
  80. 80.↵
    1. Rolland-Debord C,
    2. Bureau C,
    3. Poitou T,
    4. Belin L,
    5. Clavel M,
    6. Perbet S,
    7. et al
    . Prevalence and prognosis impact of patient – ventilator asynchrony in early phase of weaning according to two detection methods. Anesthesiology 2017;127:989-997.
    OpenUrl
  81. 81.↵
    1. Vaporidi K,
    2. Babalis D,
    3. Chytas A,
    4. Lilitsis E,
    5. Kondili E,
    6. Amargianitakis V,
    7. et al
    . Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med 2017;43(2):184-191.
    OpenUrl
  82. 82.↵
    1. Sottile PD,
    2. Albers D,
    3. Higgins C,
    4. Mckeehan J,
    5. Moss MM
    . The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm. Crit Care Med 2018;46(2):e151-e157.
    OpenUrl
  83. 83.↵
    1. Blanch L,
    2. Sales B,
    3. Montanya J,
    4. Lucangelo U,
    5. Oscar GE,
    6. Villagra A,
    7. et al
    . Validation of the Bette Care® system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensive Care Med 2012;38(5):772-780.
    OpenUrlCrossRefPubMed
  84. 84.↵
    1. Adams JY,
    2. Lieng MK,
    3. Kuhn BT,
    4. Rehm GB,
    5. Guo EC,
    6. Taylor SL,
    7. et al
    . Development and validation of a multi-algorithm analytic platform to detect off-target mechanical ventilation. Sci Rep 2017;7(1):14980.
    OpenUrl
  85. 85.↵
    1. Gutierrez G,
    2. Ballarino GJ,
    3. Turkan H,
    4. Abril J,
    5. De La Cruz L,
    6. Edsall C,
    7. et al
    . Automatic detection of patient-ventilator asynchrony by spectral analysis of airway flow. Crit Care 2011;15(4):R167.
    OpenUrlCrossRefPubMed
  86. 86.↵
    1. Aurell J,
    2. Elmqvist D
    . Sleep in the surgical intensive care unit: continuous polygraphic recording of sleep in nine patients receiving postoperative care. Br Med J (Clin Res Ed) 1985;290(6474):1029-1032.
    OpenUrlAbstract/FREE Full Text
  87. 87.
    1. Cooper AB,
    2. Thornley KS,
    3. Young GB,
    4. Slutsky AS,
    5. Stewart TE,
    6. Hanly PJ
    . Sleep in critically ill patients requiring mechanical ventilation. Chest 2000;117(3):809-818.
    OpenUrlCrossRefPubMedWeb of Science
  88. 88.
    1. Richards K,
    2. Brainsfather L
    . A description of night sleep patterns in the critical care unit. Hear Lung 1988;17:35-42.
    OpenUrl
  89. 89.
    1. Broughton R,
    2. Baron R
    . Sleep patterns in the intensive care unit and on the ward after acute myocardial infarction. Electroencephalogr Clin Neurophysiol 1978;45(3):348-360.
    OpenUrlCrossRefPubMedWeb of Science
  90. 90.↵
    1. Freedman NS,
    2. Gazendam J,
    3. Levan L,
    4. Pack AI,
    5. Schwab RJ
    . Abnormal sleep/wake cycles and the effect of environmental noise on sleep disruption in the intensive care unit. Am J Respir Crit Care Med 2001;163(2):451-457.
    OpenUrlCrossRefPubMedWeb of Science
  91. 91.↵
    1. Weinhouse GL,
    2. Schwab RJ
    . Sleep in the critically ill patient. Sleep 2006;29(5):707-716.
    OpenUrlPubMedWeb of Science
  92. 92.↵
    1. Cabello B,
    2. Parthasarathy S,
    3. Mancebo J
    . Mechanical ventilation: let us minimize sleep disturbances. Curr Opin Crit Care 2007;13:20-26.
    OpenUrlPubMedWeb of Science
  93. 93.↵
    1. Trompeo A,
    2. Vidi Y,
    3. Locane M,
    4. Braghiroli A,
    5. MAscia L,
    6. Bosma K,
    7. et al
    . Sleep disturbances in the critically ill patients: role of delirium and sedative agents. Minerva Anestesiol 2011;77(6):604-612.
    OpenUrlPubMedWeb of Science
  94. 94.↵
    1. Younes M
    . To sleep: perchance to ditch the ventilator. Eur Respir J 2018;51(4):1800624.
    OpenUrlAbstract/FREE Full Text
  95. 95.↵
    1. Pisani MA,
    2. Friese RS,
    3. Gehlbach BK,
    4. Schwab RJ,
    5. Weinhouse GL,
    6. Jones SF
    . Sleep in the intensive care unit. Am J Respir Crit Care Med 2015;191(7):731-738.
    OpenUrlCrossRefPubMed
  96. 96.↵
    1. Meza S,
    2. Mendez M,
    3. Ostrowski M,
    4. Younes M
    . Susceptibility to periodic breathing with assisted ventilation during sleep in normal subjects. J Appl Physiol 1998;85(5):1929-1940.
    OpenUrlPubMedWeb of Science
  97. 97.↵
    1. Parthasarathy S,
    2. Tobin MJ
    . Effect of ventilator mode on sleep quality in critically ill patients. Am J Respir Crit Care Med 2002;166(11):1423-1429.
    OpenUrlCrossRefPubMedWeb of Science
  98. 98.↵
    1. Thille AW,
    2. Reynaud F,
    3. Marie D,
    4. Barrau S,
    5. Rousseau L,
    6. Rault C,
    7. et al
    . Impact of sleep alterations on weaning duration in mechanically ventilated patients: a prospective study. Eur Respir J 2018;51(4):1702465.
    OpenUrlAbstract/FREE Full Text
  99. 99.↵
    1. Alexopoulou C,
    2. Kondili E,
    3. Plataki M,
    4. Georgopoulos D
    . Patient-ventilator synchrony and sleep quality with proportional assist and pressure support ventilation. Intensive Care Med 2013;39(6):1040-1047.
    OpenUrlPubMed
  100. 100.↵
    1. Bosma K,
    2. Ferreyra G,
    3. Ambrogio C,
    4. Pasero D,
    5. Mirabella L,
    6. Braghiroli A,
    7. et al
    . Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med 2007;35(4):1048-1054.
    OpenUrlCrossRefPubMedWeb of Science
  101. 101.↵
    1. Delisle S,
    2. Ouellet P,
    3. Bellemare P,
    4. Tétrault J,
    5. Arsenault P
    . Sleep quality in mechanically ventilated patients: comparison between NAVA and PSV modes. Ann Intensive Care 2011:1-8.
  102. 102.↵
    1. Cherniack N,
    2. Widdicombe J
    1. Cunningham D,
    2. Robbins P,
    3. Wolf C
    . Integration of respiratory response to changes in alveolar partial pressure of CO2 and O2 and in the arterial pH. In: Cherniack N, Widdicombe J, editors. Handbook of physiology: the respiratory system, vol 2. Rockville, MD: American Physiological Society; 1986:475-528.
  103. 103.
    1. Cherniack N,
    2. Widdicombe J
    1. Coleridge H,
    2. Coleridge J
    . Reflexes evoked from tracheobronchial tree and lungs. In: Cherniack N, Widdicombe J, editors. Handbook of physiology: the respiratory system, vol 2. Rockville, MD: American Physiological Society; 1986:395-430.
  104. 104.↵
    1. Cherniack N,
    2. Widdicombe J
    1. Shannon R
    . Reflexes evoked from respiratory muscles and cortovertebral joint. In: Cherniack N, Widdicombe J, editors. Handbook of physiology: the respiratory system, vol 2. Rockville, MD: American Physiological Society; 1986:431-438.
  105. 105.↵
    1. Hansen-Flaschen JH,
    2. Brazinsky S,
    3. Basile C,
    4. Lanken PN
    . Use of sedating drugs and neuromuscular blocking agents in patients requiring mechanical ventilation for respiratory failure survey. JAMA 1991;266:2870-2875.
    OpenUrlCrossRefPubMedWeb of Science
  106. 106.
    1. Fernandez-Gonzalo S,
    2. Turon M,
    3. de Haro C,
    4. López-Aguilar J,
    5. Jodar M,
    6. Blanch L
    . Do sedation and analgesia contribute to long-term cognitive dysfunction in critical care survivors? Med Intensiva 2018;42(2):114-128.
    OpenUrl
  107. 107.↵
    1. Jarman AM,
    2. Duke GJ,
    3. Reade MC,
    4. Casamento A
    . The association between sedation practices and duration of mechanical ventilation in intensive care. Anaesth Intensive Care 2013;41(3):311-315.
    OpenUrl
  108. 108.↵
    1. Shehabi Y,
    2. Chan L,
    3. Kadiman S,
    4. Alias A,
    5. Ismail W,
    6. Ismail Tan M,
    7. et al
    . Sedation depth and long-term mortality in mechanically ventilated critically ill adults: a prospective longitudinal multicentre cohort study. Intensive Care Med 2013;39(5):910-918.
    OpenUrlCrossRefPubMedWeb of Science
  109. 109.↵
    1. Barr J,
    2. Fraser GL,
    3. Puntillo K,
    4. Ely EW,
    5. Gélinas C,
    6. Dasta JF,
    7. et al
    . Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit: executive summary. Am J Heal Pharm 2013;70(1):53-58.
    OpenUrl
  110. 110.
    1. Patel SP,
    2. Kress JP
    . Sedation and analgesia in the mechanically ventilated patient. Am J Respir Crit Care Med 2012;185(5):486-497.
    OpenUrlCrossRefPubMed
  111. 111.
    1. Kress JP,
    2. Pohlman AS,
    3. O'Connor MF,
    4. Hall JB
    . Daily interruption of sedatives infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 2000;342(20):1471-1477.
    OpenUrlCrossRefPubMedWeb of Science
  112. 112.↵
    1. Devlin JW,
    2. Skrobik Y,
    3. Vice-Chair F,
    4. Gélinas C,
    5. Needham DM,
    6. Slooter AJC
    . Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 2018;46:825-873.
    OpenUrl
  113. 113.↵
    1. de Haro C,
    2. Magrans R,
    3. López-Aguilar J,
    4. Montanyà J,
    5. Lena E,
    6. Subirà C,
    7. et al
    . Effects of sedatives and opioids on trigger and cycling asynchronies throughout mechanical ventilation: an observational study in a large dataset from critically ill patients. Crit Care 2019;23(1):245.
    OpenUrl
  114. 114.↵
    1. Laghi F,
    2. Karamchandani K,
    3. Tobin MJ
    . Influence of ventilator settings in determining respiratory frequency during mechanical ventilation. Am J Respir Crit Care Med 1999;160(5):1766-1770.
    OpenUrlPubMedWeb of Science
  115. 115.↵
    1. Xirouchaki N,
    2. Kondili E,
    3. Vaporidi K,
    4. Xirouchakis G,
    5. Klimathianaki M,
    6. Gavriilidis G,
    7. et al
    . Proportional assist ventilation with load-adjustable gain factors in critically ill patients: comparison with pressure support. Intensive Care Med 2008;34(11):2026-2034.
    OpenUrlCrossRefPubMedWeb of Science
  116. 116.
    1. Costa R,
    2. Spinazzola G,
    3. Cipriani F,
    4. Ferrone G,
    5. Festa O,
    6. Arcangeli A,
    7. et al
    . A physiologic comparison of proportional assist ventilation with load-adjustable gain factors (PAV+) versus pressure support ventilation (PSV). Intensive Care Med 2011;37(9):1494-1500.
    OpenUrlCrossRefPubMed
  117. 117.↵
    1. Vasconcelos RS,
    2. Sales RP,
    3. Melo LHP,
    4. Marinho LS,
    5. Bastos VP,
    6. Nogueira ADN,
    7. et al
    . Influences of duration of inspiratory effort, respiratory mechanics, and ventilator type on asynchrony with pressure support and proportional assist ventilation. Respir Care 2017;62(5):550-557.
    OpenUrlAbstract/FREE Full Text
  118. 118.↵
    1. Yonis H,
    2. Crognier L,
    3. Conil J,
    4. Serres I,
    5. Rouget A,
    6. Virtos M,
    7. et al
    . Patient-ventilator synchrony in neurally adjusted ventilatory assist (NAVA) and pressure support ventilation (PSV): a prospective observational study. BMC Anesthesiol 2015;15:117.
    OpenUrlCrossRefPubMed
  119. 119.
    1. Di Mussi R,
    2. Spadaro S,
    3. Mirabella L,
    4. Volta CA,
    5. Serio G,
    6. Staffieri F,
    7. et al
    . Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care 2016;20:1.
    OpenUrlPubMed
  120. 120.
    1. Schmidt M,
    2. Kindler F,
    3. Cecchini J,
    4. Poitou T,
    5. Morawiec E,
    6. Persichini R,
    7. et al
    . Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction. Crit Care 2015;19(1):56.
    OpenUrlCrossRefPubMed
  121. 121.↵
    1. Piquilloud L,
    2. Vignaux L,
    3. Bialais E,
    4. Roeseler J,
    5. Sottiaux T,
    6. Laterre P-F,
    7. et al
    . Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med 2011;37(2):263-271.
    OpenUrlCrossRefPubMedWeb of Science
  122. 122.↵
    1. De Wit M,
    2. Miller KB,
    3. Green DA,
    4. Ostman HE,
    5. Gennings C,
    6. Epstein SK
    . Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med 2009;37(10):2740-2745.
    OpenUrlCrossRefPubMedWeb of Science
  123. 123.↵
    1. Rué M,
    2. Andrinopoulou ER,
    3. Alvares D,
    4. Armero C,
    5. Forte A,
    6. Blanch L
    . Bayesian joint modeling of bivariate longitudinal and competing risks data: an application to study patient-ventilator asynchronies in critical care patients. Biom J 2017;59(6):1184-1203.
    OpenUrl
  124. 124.↵
    1. Ince C
    . Personalized physiological medicine. Crit Care 2017;21(Suppl 3):308.
    OpenUrl
  125. 125.↵
    1. Suarez-Sipmann F,
    2. Blanch L
    . Physiological markers for acute respiratory distress syndrome: let’s get more efficient! Am J Respir Crit Care Med 2019;199(3):260-261.
    OpenUrl
  126. 126.↵
    1. Orphanidou C
    . A review of big data applications of physiological signal data. Biophys Rev 2019;11(1):83-87.
    OpenUrl
  127. 127.↵
    1. De Backere F,
    2. Vanhove T,
    3. Dejonghe E,
    4. Feys M,
    5. Herinckx T,
    6. Vankelecom J,
    7. et al
    . Platform for efficient switching between multiple devices in the intensive care unit. Methods Inf Med 2015;54(1):5-15.
    OpenUrl
  128. 128.
    1. Triguero I,
    2. Garcia-Gil D,
    3. Maillo J,
    4. Luengo J,
    5. Garcia S,
    6. Herrera F
    . Transforming big data into smart data: an insight on the use of the k-nearest neighbors algorithm to obtain quality data. Wires Data Min Knowl Discov 2018:1-24.
  129. 129.↵
    1. Koch SH,
    2. Weir C,
    3. Westenskow D,
    4. Gondan M,
    5. Agutter J,
    6. Haar M,
    7. et al
    . Evaluation of the effect of information integration in displays for ICU nurses on situation awareness and task completion time: a prospective randomized controlled study. Int J Med Inform 2013;82(8):665-675.
    OpenUrlCrossRefPubMed
  130. 130.↵
    1. Keim-Malpass J,
    2. Clark MT,
    3. Lake DE,
    4. Moorman JR
    . Towards development of alert thresholds for clinical deterioration using continuous predictive analytics monitoring. J Clin Monit Comput 2019
  131. 131.↵
    1. Deo RC
    . Basic science for clinicians. Circulation 2015;132(20):1920-1930.
    OpenUrlAbstract/FREE Full Text
  132. 132.↵
    1. Marchuk Y,
    2. Magrans R,
    3. Sales B,
    4. Montanya J,
    5. López-Aguilar J,
    6. de Haro C,
    7. et al
    . Predicting patient-ventilator asynchronies with hidden Markov models. Sci Rep 2018;8(1):17614.
    OpenUrl
PreviousNext
Back to top

In this issue

Respiratory Care: 65 (6)
Respiratory Care
Vol. 65, Issue 6
1 Jun 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Monitoring Asynchrony During Invasive Mechanical Ventilation
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Monitoring Asynchrony During Invasive Mechanical Ventilation
José Aquino Esperanza, Leonardo Sarlabous, Candelaria de Haro, Rudys Magrans, Josefina Lopez-Aguilar, Lluis Blanch
Respiratory Care Jun 2020, 65 (6) 847-869; DOI: 10.4187/respcare.07404

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Monitoring Asynchrony During Invasive Mechanical Ventilation
José Aquino Esperanza, Leonardo Sarlabous, Candelaria de Haro, Rudys Magrans, Josefina Lopez-Aguilar, Lluis Blanch
Respiratory Care Jun 2020, 65 (6) 847-869; DOI: 10.4187/respcare.07404
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Insufficient Assistance: Patients With High Respiratory Drive
    • Overassistance: Patients With Low Respiratory Drive
    • Reverse-Triggering: Entrainment Phenomenon
    • Assessment of Asynchronies
    • Asynchronies and Sleep in Critically Ill Patients
    • Management
    • Outcomes
    • Future Directions
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • asynchrony
  • mechanical ventilation
  • patient–ventilator interactions
  • respiratory monitoring
  • respiratory physiology

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board
  • Reprints/Permissions

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire