Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Open Forum
    • 2023 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Open Forum
    • 2023 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleOriginal Research

Effect of Pulmonary Rehabilitation on Erector Spinae Muscles in Individuals With COPD

Yuji Higashimoto, Masashi Shiraishi, Ryuji Sugiya, Hiroki Mizusawa, Osamu Nishiyama, Yamazaki Ryo, Takashi Iwanaga, Yasutaka Chiba, Yuji Tohda and Kanji Fukuda
Respiratory Care September 2021, 66 (9) 1458-1468; DOI: https://doi.org/10.4187/respcare.08678
Yuji Higashimoto
Department of Rehabilitation Medicine, Kindai University School of Medicine, Osaka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Masashi Shiraishi
Department of Rehabilitation Medicine, Kindai University School of Medicine, Osaka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryuji Sugiya
Department of Rehabilitation Medicine, Kindai University School of Medicine, Osaka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroki Mizusawa
Department of Rehabilitation Medicine, Kindai University School of Medicine, Osaka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Osamu Nishiyama
Department of Respiratory Medicine and Allergology, Kindai University School of Medicine, Osaka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yamazaki Ryo
Department of Respiratory Medicine and Allergology, Kindai University School of Medicine, Osaka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takashi Iwanaga
Department of Respiratory Medicine and Allergology, Kindai University School of Medicine, Osaka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yasutaka Chiba
Division of Biostatistics, Clinical Research Center, Kindai University School of Medicine, Osaka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuji Tohda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kanji Fukuda
Department of Rehabilitation Medicine, Kindai University School of Medicine, Osaka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Maltais F,
    2. Decramer M,
    3. Casaburi R,
    4. Barreiro E,
    5. Burelle Y,
    6. Debigaré R,
    7. et al
    . An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014;189(9):e15-e62.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Jones SE,
    2. Maddocks M,
    3. Kon SS,
    4. Canavan JL,
    5. Nolan CM,
    6. Clark AL,
    7. et al
    . Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax 2015;70(3):213-218.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Limpawattana P,
    2. Inthasuwan P,
    3. Putraveephong S,
    4. Boonsawat W,
    5. Theerakulpisut D,
    6. Sawanyawisuth K
    . Sarcopenia in chronic obstructive pulmonary disease: a study of prevalence and associated factors in the Southeast Asian population. Chron Respir Dis 2018;15(3):250-257.
    OpenUrl
  4. 4.↵
    1. Celli BR,
    2. Cote CG,
    3. Marin JM,
    4. Casanova C,
    5. Montes De Oca M,
    6. Mendez RA,
    7. et al
    . The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 2004;350(10):1005-1012.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Marquis K,
    2. Debigaré R,
    3. Lacasse Y,
    4. LeBlanc P,
    5. Jobin J,
    6. Carrier G,
    7. Maltais F
    . Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;166(6):809-813.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Koo H-K,
    2. Park J-H,
    3. Park HK,
    4. Jung H,
    5. Lee S-S
    . Conflicting role of sarcopenia and obesity in male patients with chronic obstructive pulmonary disease: Korean National Health and Nutrition Examination Survey. PLoS ONE 2014;9(10):e110448.
    OpenUrl
  7. 7.↵
    1. McDonald M-LN,
    2. Diaz AA,
    3. Ross JC,
    4. San Jose ER,
    5. Zhou L,
    6. Regan EA,
    7. et al
    . Quantitative computed tomography measures of pectoralis muscle area and disease severity in chronic obstructive pulmonary disease: a cross-sectional study. Annals Ats 2014;11(3):326-334.
    OpenUrl
  8. 8.↵
    1. Gayan-Ramirez G,
    2. Decramer M
    . The respiratory muscles. In: Fishman's Pulmonary Diseases and Disorders. New York: McGraw-Hill Companies; 2015.
  9. 9.↵
    1. Tanimura K,
    2. Sato S,
    3. Fuseya Y,
    4. Hasegawa K,
    5. Uemasu K,
    6. Sato A,
    7. et al
    . Quantitative assessment of erector spinae muscles in patients with chronic obstructive pulmonary disease: novel chest computed tomography-derived index for prognosis. Ann Am Thorac Soc 2016;13(3):334-341.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Tanimura K,
    2. Sato S,
    3. Sato A,
    4. Tanabe N,
    5. Hasegawa K,
    6. Uemasu K,
    7. et al
    . Accelerated loss of antigravity muscles is associated with mortality in patients with COPD. Respiration 2020;99(4):298-306.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Ikezoe T,
    2. Mori N,
    3. Nakamura M,
    4. Ichihashi N
    . Effects of age and inactivity due to prolonged bed rest on atrophy of trunk muscles. Eur J Appl Physiol 2012;112(1):43-48.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Smith MD,
    2. Chang AT,
    3. Hodges PW
    . Balance recovery is compromised and trunk muscle activity is increased in chronic obstructive pulmonary disease. Gait Posture 2016;43:101-107.
    OpenUrlPubMed
  13. 13.↵
    1. De Brandt J,
    2. Spruit MA,
    3. Hansen D,
    4. Franssen FM,
    5. Derave W,
    6. Sillen MJ,
    7. Burtin C
    . Changes in lower limb muscle function and muscle mass following exercise-based interventions in patients with chronic obstructive pulmonary disease: a review of the English-language literature. Chron Respir Dis 2018;15(2):182-219.
    OpenUrlPubMed
  14. 14.↵
    1. Higashimoto Y,
    2. Yamagata T,
    3. Maeda K,
    4. Honda N,
    5. Sano A,
    6. Nishiyama O,
    7. et al
    . Influence of comorbidities on the efficacy of pulmonary rehabilitation in patients with chronic obstructive pulmonary disease. Geriatr Gerontol Int 2016;16(8):934-941.
    OpenUrl
  15. 15.↵
    1. Alison JA,
    2. McKeough ZJ,
    3. Johnston K,
    4. McNamara RJ,
    5. Spencer LM,
    6. Jenkins SC,
    7. et al
    . Australian and New Zealand Pulmonary Rehabilitation Guidelines. Respirology 2017;22(4):800-819.
    OpenUrlPubMed
  16. 16.↵
    Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management and prevention of Chronic Obstructive Pulmonary Disease. GOLD Report 2020. Available at: https://goldcopd.org/gold-reports. Accessed January 20, 2020.
  17. 17.↵
    1. Minoguchi H,
    2. Shibuya M,
    3. Miyagawa T,
    4. Kokubu F,
    5. Yamada M,
    6. Tanaka H,
    7. et al
    . Cross-over comparison between respiratory muscle stretch gymnastics and inspiratory muscle training. Intern Med 2002;41(10):805-812.
    OpenUrlPubMed
  18. 18.↵
    1. Kaneko H,
    2. Shiranita S,
    3. Horie J,
    4. Hayashi S
    . Reduced chest and abdominal wall mobility and their relationship to lung function, respiratory muscle strength, and exercise tolerance in subjects with COPD. Respir Care 2016;61(11):1472-1480.
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    1. Divo M,
    2. Cote C,
    3. de Torres JP,
    4. Casanova C,
    5. Marin JM,
    6. Pinto-Plata V,
    7. et al
    . Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012;186(2):155-161.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Charlson ME,
    2. Pompei P,
    3. Ales KL,
    4. MacKenzie CR
    . A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40(5):373-383.
    OpenUrlCrossRefPubMedWeb of Science
  21. 21.↵
    1. Miller MR,
    2. Hankinson J,
    3. Brusasco V,
    4. Burgos F,
    5. Casaburi R,
    6. Coates A,
    7. et al
    . Standardisation of spirometry. Eur Respir J 2005;26(2):319-338.
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. Macintyre N,
    2. Crapo RO,
    3. Viegi G,
    4. Johnson DC,
    5. van der Grinten CP,
    6. Brusasco V,
    7. et al
    . Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 2005;26(4):720-735.
    OpenUrlAbstract/FREE Full Text
  23. 23.↵
    1. Kubota M,
    2. Kobayashi H,
    3. Quanjer PH,
    4. Omori H,
    5. Tatsumi K,
    6. Kanazawa M
    , Clinical Pulmonary Functions Committee of the Japanese Respiratory Society. Reference values for spirometry, including vital capacity, in Japanese adults calculated with the LMS method and compared with previous values. Respir Investig 2014;52(4):242-250.
    OpenUrlPubMed
  24. 24.↵
    1. Hanamoto S,
    2. Ohsuji T,
    3. Tsuyuguchi I,
    4. Kawabata S,
    5. Kimura K
    . Prediction formulas for pulmonary function tests expressed in linear and exponential form for healthy Japanese adults. Nihon Kyobu Shikkan Gakkai Zasshi 1992;30(12):2051-2060.
    OpenUrlPubMed
  25. 25.↵
    1. Laboratories A
    . ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166(1):111-117.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Polkey MI,
    2. Spruit MA,
    3. Edwards LD,
    4. Watkins ML,
    5. Pinto-Plata V,
    6. Vestbo J,
    7. et al
    . Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization. Am J Respir Crit Care Med 2013;187(4):382-386.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Taka C,
    2. Hayashi R,
    3. Shimokawa K,
    4. Tokui K,
    5. Okazawa S,
    6. Kambara K,
    7. et al
    . SIRT1 and FOXO1 mRNA expression in PBMC correlates to physical activity in COPD patients. Int J Chron Obstruct Pulmon Dis 2017;12:3237-3244.
    OpenUrl
  28. 28.↵
    1. Schober P,
    2. Boer C,
    3. Schwarte LA
    . Correlation coefficients: appropriate use and interpretation. Anesth Analg 2018;126(5):1763-1768.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Schols AM,
    2. Broekhuizen R,
    3. Weling-Scheepers CA,
    4. Wouters EF
    . Body composition and mortality in chronic obstructive pulmonary disease. Am J Clin Nutr 2005;82(1):53-59.
    OpenUrlAbstract/FREE Full Text
  30. 30.↵
    1. Lee CS,
    2. Cron DC,
    3. Terjimanian MN,
    4. Canvasser LD,
    5. Mazurek AA,
    6. Vonfoerster E,
    7. et al
    . Dorsal muscle group area and surgical outcomes in liver transplantation. Clin Transplant 2014;28(10):1092-1098.
    OpenUrl
  31. 31.↵
    1. Olson SL,
    2. Panthofer AM,
    3. Harris DJ,
    4. Jordan WD,
    5. Farber MA,
    6. Cambria RP,
    7. Matsumura J
    . CT-derived pre-treatment thoracic sarcopenia is associated with late mortality after thoracic endovascular aortic repair. Ann Vasc Surg 2020;66:171-178.
    OpenUrl
  32. 32.↵
    1. Lindenauer PK,
    2. Stefan MS,
    3. Pekow PS,
    4. Mazor KM,
    5. Priya A,
    6. Spitzer KA,
    7. et al
    . Association between initiation of pulmonary rehabilitation after hospitalization for COPD and 1-year survival among medicare beneficiaries. JAMA 2020;323(18):1813-1823.
    OpenUrlPubMed
  33. 33.↵
    1. Hakamy A,
    2. Bolton CE,
    3. McKeever TM
    . The effect of pulmonary rehabilitation on mortality, balance, and risk of fall in stable patients with chronic obstructive pulmonary disease. Chron Respir Dis 2017;14(1):54-62.
    OpenUrl
  34. 34.
    1. Marques A,
    2. Jácome C,
    3. Cruz J,
    4. Gabriel R,
    5. Figueiredo D
    . Effects of a pulmonary rehabilitation program with balance training on patients with COPD. J Cardiopulm Rehabil Prev 2015;35(2):154-158.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Beauchamp MK,
    2. O'Hoski S,
    3. Goldstein RS,
    4. Brooks D
    . Effect of pulmonary rehabilitation on balance in persons with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 2010;91(9):1460-1465.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Hides JA,
    2. Lambrecht G,
    3. Richardson CA,
    4. Stanton WR,
    5. Armbrecht G,
    6. Pruett C,
    7. et al
    . The effects of rehabilitation on the muscles of the trunk following prolonged bed rest. Eur Spine J 2011;20(5):808-818.
    OpenUrlCrossRefPubMedWeb of Science
  37. 37.↵
    1. Ribeiro F,
    2. Thériault ME,
    3. Debigaré R,
    4. Maltais F
    . Should all patients with COPD be exercise trained? J Appl Physiol (1985) 2013;114(9):1300-1308.
    OpenUrlCrossRefPubMed
  38. 38.↵
    1. Rabe KF,
    2. Martinez FJ,
    3. Ferguson GT,
    4. Wang C,
    5. Singh D,
    6. Wedzicha JA,
    7. et al
    . Triple inhaled therapy at two glucocorticoid doses in moderate-to-very-severe COPD. N Engl J Med 2020;383(1):35-48.
    OpenUrl
  39. 39.↵
    1. Lipson DA,
    2. Crim C,
    3. Criner GJ,
    4. Day NC,
    5. Dransfield MT,
    6. Halpin DMG,
    7. et al
    . Reduction in all-cause mortality with fluticasone furoate/umeclidinium/vilanterol in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2020;201(12):1508-1516.
    OpenUrl
  40. 40.↵
    1. Keller A,
    2. Johansen JG,
    3. Hellesnes J,
    4. Brox JI
    . Predictors of isokinetic back muscle strength in patients with low back pain. Spine (Phila Pa 1976) 1999;24(3):275-280.
    OpenUrl
  41. 41.
    1. Keller A,
    2. Gunderson R,
    3. Reikeras O,
    4. Brox JI
    . Reliability of computed tomography measurements of paraspinal muscle cross-sectional area and density in patients with chronic low back pain. Spine (Phila Pa 1976) 2003;28(13):1455-1460.
    OpenUrl
  42. 42.↵
    1. Schlaeger S,
    2. Inhuber S,
    3. Rohrmeier A,
    4. Dieckmeyer M,
    5. Freitag F,
    6. Klupp E,
    7. et al
    . Association of paraspinal muscle water–fat MRI-based measurements with isometric strength measurements. Eur Radiol 2019;29(2):599-608.
    OpenUrl
  43. 43.↵
    1. Peltonen JE,
    2. Taimela S,
    3. Erkintalo M,
    4. Salminen JJ,
    5. Oksanen A,
    6. Kujala UM
    . Back extensor and psoas muscle cross-sectional area, prior physical training, and trunk muscle strength? A longitudinal study in adolescent girls. European J Appl Physiol 1997;77(1-2):66-71.
    OpenUrl
  44. 44.↵
    1. Tanaka NI,
    2. Ogawa M,
    3. Yoshiko A,
    4. Akima H
    . Validity of extended-field-of-view ultrasound imaging to evaluate quantity and quality of trunk skeletal muscles. Ultrasound Med Biol 2021;47(3):376-385.
    OpenUrl
  45. 45.↵
    1. Kim S,
    2. Shim J,
    3. Kim S,
    4. Namkoong S,
    5. Kim H
    . The effect of superficial trunk muscle exercise and deep trunk muscle exercise on the foot pressure of healthy adults. J Phys Ther Sci 2015;27(3):711-713.
    OpenUrl
PreviousNext
Back to top

In this issue

Respiratory Care: 66 (9)
Respiratory Care
Vol. 66, Issue 9
1 Sep 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Effect of Pulmonary Rehabilitation on Erector Spinae Muscles in Individuals With COPD
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Effect of Pulmonary Rehabilitation on Erector Spinae Muscles in Individuals With COPD
Yuji Higashimoto, Masashi Shiraishi, Ryuji Sugiya, Hiroki Mizusawa, Osamu Nishiyama, Yamazaki Ryo, Takashi Iwanaga, Yasutaka Chiba, Yuji Tohda, Kanji Fukuda
Respiratory Care Sep 2021, 66 (9) 1458-1468; DOI: 10.4187/respcare.08678

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Effect of Pulmonary Rehabilitation on Erector Spinae Muscles in Individuals With COPD
Yuji Higashimoto, Masashi Shiraishi, Ryuji Sugiya, Hiroki Mizusawa, Osamu Nishiyama, Yamazaki Ryo, Takashi Iwanaga, Yasutaka Chiba, Yuji Tohda, Kanji Fukuda
Respiratory Care Sep 2021, 66 (9) 1458-1468; DOI: 10.4187/respcare.08678
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • COPD
  • rehabilitation
  • skeletal muscle
  • computed tomography
  • rehabilitation outcome

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire