Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Most-Read Papers of 2021
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2022 Open Forum
    • 2021 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Most-Read Papers of 2021
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2022 Open Forum
    • 2021 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleOriginal Research

Real-Time Analysis of Dry-Side Nebulization With Heated Wire Humidification During Mechanical Ventilation

Janice A Lee, Michael McPeck, Ann D Cuccia and Gerald C Smaldone
Respiratory Care August 2022, 67 (8) 914-928; DOI: https://doi.org/10.4187/respcare.09459
Janice A Lee
Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Michael McPeck
Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ann D Cuccia
Respiratory Care Program, School of Health Technology and Management, Stony Brook University, Stony Brook, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerald C Smaldone
Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Abstract

BACKGROUND: Recent observational studies of nebulizers placed on the wet side of the humidifier suggest that, after some time, considerable condensation can form, which triggers an occlusion alarm. In the current study, an inline breath-enhanced jet nebulizer was tested and compared in vitro with a vibrating mesh nebulizer on the humidifier dry–inlet side of the ventilator circuit.

METHODS: Two duty cycle breathing patterns were tested during continuous infusion (5 or 10 mL/h) with and without dynamic changes in infusion flow and duty cycle, or bolus delivery (3 or 6 mL) of radiolabeled saline solution. Inhaled mass (IM) was measured by a real-time ratemeter (µCi/min) and analyzed by multiple linear regression.

RESULTS: During simple continuous infusion, IM increased linearly for both nebulizer types. IM variability was attributable to the duty cycle (P < .001) (34%) and infusion flow (P < .001) (32%) but independent of nebulizer technology (P = .38) (7%). Dynamic continuous infusion studies that simulate clinical scenarios with ventilator and pump flow changes demonstrated a linear increase in the rate of aerosol that was dependent on pump flow (P < .001) (63%) and minimally dependent on the duty cycle (P = .003) (8%). During bolus treatments, IM increased linearly to plateau. IM variability was attributable to the duty cycle (P < .001) (40%) and residual radioactivity in the nebulizer (P < .001) (20%). Separate analysis revealed that the vibrating mesh nebulizer residual volume contributed 16% of the variability and inline breath-enhanced jet nebulizer contributed 5%. IM variability was independent of bolus volume (P = .82) (1%). System losses were similar (the inline breath-enhanced jet nebulizer: 32% residual in nebulizer; the vibrating mesh nebulizer: 34% in circuitry).

CONCLUSIONS: Aerosol delivery during continuous infusion and bolus delivery was comparable between the inline breath-enhanced jet nebulizer and the vibrating mesh nebulizer, and was determined by pump flow and initial ventilator settings. Further adjustments in ventilator settings did not significantly affect drug delivery. Expiratory losses predicted by the duty cycle were reduced with placement of the nebulizer near the ventilator outlet.

  • aerosol delivery
  • continuous drug delivery
  • inhalation administration
  • mechanical ventilation

Footnotes

  • Correspondence: Janice A Lee MD, HSC T17-040, Division of Pulmonary, Critical Care and Sleep Medicine, Stony Brook School of Medicine, 101 Nicolls Road, Stony Brook, NY 11794–8172. E-mail: Janice.lee{at}stonybrookmedicine.edu
  • See the Related Editorial on Page 1064

  • The study was supported, in part, by InspiRx, Somerset, New Jersey. The State University of New York at Stony Brook holds patents in the fields of nebulizer development and inhaled antibiotic delivery that have been licensed to InspiRx. Dr Smaldone and Ms Cuccia disclose relationships with InspiRx. Dr Lee and Mr McPeck have disclosed no conflicts of interest.

  • A version of this paper was presented in part by Dr Janice A Lee at the International Society for Aerosols in Medicine Congress, held May 22-26, 2021, in Boise, Idaho.

  • Copyright © 2022 by Daedalus Enterprises
View Full Text

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$30.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

Respiratory Care: 67 (8)
Respiratory Care
Vol. 67, Issue 8
1 Aug 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Real-Time Analysis of Dry-Side Nebulization With Heated Wire Humidification During Mechanical Ventilation
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Real-Time Analysis of Dry-Side Nebulization With Heated Wire Humidification During Mechanical Ventilation
Janice A Lee, Michael McPeck, Ann D Cuccia, Gerald C Smaldone
Respiratory Care Aug 2022, 67 (8) 914-928; DOI: 10.4187/respcare.09459

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Real-Time Analysis of Dry-Side Nebulization With Heated Wire Humidification During Mechanical Ventilation
Janice A Lee, Michael McPeck, Ann D Cuccia, Gerald C Smaldone
Respiratory Care Aug 2022, 67 (8) 914-928; DOI: 10.4187/respcare.09459
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • aerosol delivery
  • continuous drug delivery
  • inhalation administration
  • mechanical ventilation

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board
  • Reprints/Permissions

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire