Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Research ArticleOriginal Research

Heterogeneity of Ventilation/Perfusion Mismatch at Different Levels of PEEP and in Respiratory Mechanics Phenotypes of COVID-19 ARDS

Gaetano Scaramuzzo, Dan Stieper Karbing, Alberto Fogagnolo, Tommaso Mauri, Elena Spinelli, Matilde Mari, Cecilia Turrini, Federica Montanaro, Carlo Alberto Volta, Stephen Edward Rees and Savino Spadaro
Respiratory Care February 2023, 68 (2) 188-198; DOI: https://doi.org/10.4187/respcare.10242
Gaetano Scaramuzzo
Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy; and Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dan Stieper Karbing
Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alberto Fogagnolo
Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tommaso Mauri
Department of Anesthesia, Critical Care and Emergency, Institute for Treatment and Research, Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy; and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elena Spinelli
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matilde Mari
Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cecilia Turrini
Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Federica Montanaro
Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carlo Alberto Volta
Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy; and Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen Edward Rees
Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Savino Spadaro
Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy; and Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Gattinoni L,
    2. Coppola S,
    3. Cressoni M,
    4. Busana M,
    5. Rossi S,
    6. Chiumello D
    . COVID-19 does not lead to a “Typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 2020;201(10):1299-1300.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Gattinoni L,
    2. Pesenti A
    . The concept of “baby lung.” Intensive Care Med 2005;31(6):776-784.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Scaramuzzo G,
    2. Gamberini L,
    3. Tonetti T,
    4. Zani G,
    5. Ottaviani I,
    6. Mazzoli CA,
    7. et al
    ; The ICU-RER COVID-19 Collaboration. Sustained oxygenation improvement after first prone positioning is associated with liberation from mechanical ventilation and mortality in critically ill COVID-19 patients: a cohort study. Ann Intensive Care 2021;11(1):63.
    OpenUrl
  4. 4.↵
    1. Poschenrieder F,
    2. Meiler S,
    3. Lubnow M,
    4. Zeman F,
    5. Rennert J,
    6. Scharf G,
    7. et al
    . Severe COVID-19 pneumonia: perfusion analysis in correlation with pulmonary embolism and vessel enlargement using dual-energy CT data. Plos One 2021;16(6):e0252478.
    OpenUrl
  5. 5.↵
    1. Busana M,
    2. Giosa L,
    3. Cressoni M,
    4. Gasperetti A,
    5. Di Girolamo L,
    6. Martinelli A,
    7. et al
    . The impact of ventilation-perfusion inequality in COVID-19: a computational model. J Appl Physiol (1985) 2021;130(3):865-876.
    OpenUrl
  6. 6.↵
    1. Herrmann J,
    2. Mori V,
    3. Bates JHT,
    4. Suki B
    . Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia. Nat Commun 2020;11(1):4883.
    OpenUrl
  7. 7.↵
    1. Ball L,
    2. Robba C,
    3. Maiello L,
    4. Herrmann J,
    5. Gerard SE,
    6. Xin Y,
    7. et al
    ; GECOVID (GEnoa COVID-19) group. Computed tomography assessment of PEEP-induced alveolar recruitment in patients with severe COVID-19 pneumonia. Crit Care 2021;25(1):1-10.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Spadaro S,
    2. Karbing DS,
    3. Mauri T,
    4. Marangoni E,
    5. Mojoli F,
    6. Valpiani G,
    7. et al
    . Effect of positive end-expiratory pressure on pulmonary shunt and dynamic compliance during abdominal surgery. Br J Anaesth 2016;116(6):855-861.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Amato MB,
    2. Barbas CS,
    3. Medeiros DM,
    4. Schettino G de P,
    5. Lorenzi Filho G,
    6. Kairalla RA,
    7. et al
    . Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 1995;152(6):1835-1846.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Fumagalli J,
    2. Santiago RRS,
    3. Teggia Droghi M,
    4. Zhang C,
    5. Fintelmann FJ,
    6. Troschel FM,
    7. et al
    ; on behalf of the Lung Rescue Team Investigators. Lung recruitment in obese patients with acute respiratory distress syndrome. Anesthesiology 2019;130(5):791-803.
    OpenUrlPubMed
  11. 11.↵
    1. Blankman P,
    2. Hasan D,
    3. Bikker IG,
    4. Gommers D
    . Lung stress and strain calculations in mechanically ventilated patients in the intensive care unit. Acta Anaesthesiol Scand 2016;60(1):69-78.
    OpenUrl
  12. 12.↵
    1. Gattinoni L,
    2. Chiumello D,
    3. Caironi P,
    4. Busana M,
    5. Romitti F,
    6. Brazzi L,
    7. et al
    . COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med 2020;46(6):1099-1102.
    OpenUrlPubMed
  13. 13.↵
    1. Rees SE,
    2. Kjaergaard S,
    3. Andreassen S,
    4. Hedenstierna G
    . Reproduction of MIGET retention and excretion data using a simple mathematical model of gas exchange in lung damage caused by oleic acid infusion. J Appl Physiol (1985) 2006;101(3):826-832.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Rees SE,
    2. Kjaergaard S,
    3. Andreassen S,
    4. Hedenstierna G
    . Reproduction of inert gas and oxygenation data: a comparison of the MIGET and a simple model of pulmonary gas exchange. Intensive Care Med 2010;36(12):2117-2124.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Karbing DS,
    2. Panigada M,
    3. Bottino N,
    4. Spinelli E,
    5. Protti A,
    6. Rees SE,
    7. et al
    . Changes in shunt, ventilation/perfusion mismatch, and lung aeration with PEEP in patients with ARDS: a prospective single-arm interventional study. Crit Care 2020;24(1):1-13.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Ranieri VM,
    2. Rubenfeld GD,
    3. Thompson BT,
    4. Ferguson ND,
    5. Caldwell E,
    6. Fan E,
    7. et al
    ; ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA 2012;307(23):2526-2533.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Sinha P,
    2. Calfee CS,
    3. Beitler JR,
    4. Soni N,
    5. Ho K,
    6. Matthay MA,
    7. et al
    . Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med 2019;199(3):333-341.
    OpenUrlPubMed
  18. 18.↵
    1. Gattinoni L,
    2. Brazzi L,
    3. Pelosi P,
    4. Latini R,
    5. Tognoni G,
    6. Pesenti A,
    7. et al
    . A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 1995;333(16):1025-1032.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Karbing DS,
    2. Kjærgaard S,
    3. Andreassen S,
    4. Espersen K,
    5. Rees SE
    . Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys 2011;33(2):240-248.
    OpenUrlCrossRefPubMed
  20. 20.
    1. Spadaro S,
    2. Grasso S,
    3. Karbing DS,
    4. Fogagnolo A,
    5. Contoli M,
    6. Bollini G,
    7. et al
    . Physiologic evaluation of ventilation/perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiology 2018;128(3):531-538.
    OpenUrl
  21. 21.
    1. Kjaergaard S,
    2. Rees S,
    3. Malczynski J,
    4. Nielsen JA,
    5. Thorgaard P,
    6. Toft E,
    7. et al
    . Noninvasive estimation of shunt and ventilation/perfusion mismatch. Intensive Care Med 2003;29(5):727-734.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Kjaergaard S,
    2. Rees SE,
    3. Grønlund J,
    4. Nielsen EM,
    5. Lambert P,
    6. Thorgaard P,
    7. et al
    . Hypoxemia after cardiac surgery: clinical application of a model of pulmonary gas exchange. Eur J Anaesthesiol 2004;21(4):296-301.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Bourgoin P,
    2. Baudin F,
    3. Brossier D,
    4. Emeriaud G,
    5. Wysocki M,
    6. Jouvet P
    . Assessment of Bohr and Enghoff dead-space equations in mechanically ventilated children. Respir Care 2017;62(4):468-474.
    OpenUrlAbstract/FREE Full Text
  24. 24.↵
    1. Chiumello D,
    2. Marino A,
    3. Brioni M,
    4. Cigada I,
    5. Menga F,
    6. Colombo A,
    7. et al
    . Lung recruitment assessed by respiratory mechanics and computed tomography in patients with acute respiratory distress syndrome. What is the relationship? Am J Respir Crit Care Med 2016;193(11):1254-1263.
    OpenUrl
  25. 25.↵
    1. Chiumello D,
    2. Bonifazi M,
    3. Pozzi T,
    4. Formenti P,
    5. Papa GFS,
    6. Zuanetti G,
    7. et al
    . Positive end-expiratory pressure in COVID-19 acute respiratory distress syndrome: the heterogeneous effects. Crit Care 2021;25(1):431.
    OpenUrl
  26. 26.↵
    1. Spadaro S,
    2. Mauri T,
    3. Böhm SH,
    4. Scaramuzzo G,
    5. Turrini C,
    6. Waldmann AD,
    7. et al
    . Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment. Crit Care 2018;22(1):26.
    OpenUrlPubMed
  27. 27.↵
    1. Mauri T,
    2. Spinelli E,
    3. Scotti E,
    4. Colussi G,
    5. Basile MC,
    6. Crotti S,
    7. et al
    . Potential for lung recruitment and ventilation/perfusion mismatch in patients with the acute respiratory distress syndrome from Coronavirus Disease 2019. Crit Care Med 2020;48(8):1129-1134.
    OpenUrlPubMed
  28. 28.↵
    1. Hedenstierna G,
    2. Chen L,
    3. Hedenstierna M,
    4. Scaramuzzo G
    . Treatment of COVID-19 by inhaled NO to reduce shunt? Am J Respir Crit Care Med 2020;202(4):618-618.
    OpenUrl
  29. 29.↵
    1. Reynolds AS,
    2. Lee AG,
    3. Renz J,
    4. DeSantis K,
    5. Liang J,
    6. Powell CA,
    7. et al
    . Pulmonary vascular dilatation detected by automated transcranial Doppler in COVID-19 pneumonia. Am J Respir Crit Care Med 2020;202(7):1037-1039.
    OpenUrl
  30. 30.↵
    1. Dalpiaz G,
    2. Gamberini L,
    3. Carnevale A,
    4. Spadaro S,
    5. Mazzoli CA,
    6. Piciucchi S,
    7. et al
    . Clinical implications of microvascular CT scan signs in COVID-19 patients requiring invasive mechanical ventilation. Radiol Med 2022;127(2):162-173.
    OpenUrl
  31. 31.↵
    1. McFadyen JD,
    2. Stevens H,
    3. Peter K
    . The emerging threat of (micro)thrombosis in COVID-19 and its therapeutic implications. Circ Res 2020;127(4):571-587.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Stavi D,
    2. Goffi A,
    3. Al Shalabi M,
    4. Piraino T,
    5. Chen L,
    6. Jackson R,
    7. et al
    . The pressure paradox: abdominal compression to detect lung hyperinflation in COVID-19 acute respiratory distress syndrome. Am J Respir Crit Care Med 2022;205(2):245-247.
    OpenUrl
  33. 33.↵
    1. Kummer RL,
    2. Shapiro RS,
    3. Marini JJ,
    4. Huelster JS,
    5. Leatherman JW
    . Paradoxically improved respiratory compliance with abdominal compression in COVID-19 ARDS. Chest 2021;160(5):1739-1742.
    OpenUrl
  34. 34.↵
    1. Bos LDJ,
    2. Sinha P,
    3. Dickson RP
    . Response to “COVID-19 conundrum: clinical phenotyping based on pathophysiology as a promising approach to guide therapy in a novel illness” and “Strengthening the foundation of the house of CARDS by phenotyping on the fly” and “COVID-19 phenotypes: leading or misleading?” European Respiratory Journal 2020.
  35. 35.↵
    1. Gattinoni L,
    2. Camporota L,
    3. Marini JJ
    . COVID-19 phenotypes: leading or misleading? Eur Respir J 2020;56(2):2002195.
    OpenUrlAbstract/FREE Full Text
  36. 36.↵
    1. Ball L,
    2. Serpa Neto A,
    3. Trifiletti V,
    4. Mandelli M,
    5. Firpo I,
    6. Robba C,
    7. et al
    ; PROVE Network: PROtective Ventilation Network. Effects of higher PEEP and recruitment maneuvers on mortality in patients with ARDS: a systematic review, meta-analysis, meta-regression, and trial sequential analysis of randomized controlled trials. Intensive Care Med Exp 2020;8(Suppl 1):39.
    OpenUrl
  37. 37.↵
    1. Pelosi P,
    2. Rocco PRM,
    3. Gama de Abreu M
    . Close down the lungs and keep them resting to minimize ventilator-induced lung injury. Crit Care 2018;22(1).
  38. 38.↵
    1. West JB,
    2. Dollery CT,
    3. Naimark A
    . Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 1964;19:713-724.
    OpenUrlCrossRefPubMedWeb of Science
  39. 39.↵
    1. Langer T,
    2. Brioni M,
    3. Guzzardella A,
    4. Carlesso E,
    5. Cabrini L,
    6. Castelli G,
    7. et al
    ; PRONA-COVID Group. Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1,000 patients. Crit Care 2021;25(1):1-11.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Laghlam D,
    2. Rahoual G,
    3. Malvy J,
    4. Estagnasié P,
    5. Brusset A,
    6. Squara P
    . Use of almitrine and inhaled nitric oxide in ARDS due to COVID-19. Front Med 2021;8:918.
    OpenUrl
  41. 41.↵
    1. Pelosi P,
    2. Ball L,
    3. Barbas CSV,
    4. Bellomo R,
    5. Burns KEA,
    6. Einav S,
    7. et al
    . Personalized mechanical ventilation in acute respiratory distress syndrome. Crit Care 2021;25(1):250.
    OpenUrl
  42. 42.↵
    1. Bertelli M,
    2. Fusina F,
    3. Prezioso C,
    4. Cavallo E,
    5. Nencini N,
    6. Crisci S,
    7. et al
    . COVID-19 ARDS is characterized by increased dead-space ventilation compared With non–COVID-19–related ARDS. Respir Care 2021;66(9):1406-1415.
    OpenUrlAbstract/FREE Full Text
  43. 43.↵
    1. Potus F,
    2. Mai V,
    3. Lebret M,
    4. Malenfant S,
    5. Breton-Gagnon E,
    6. Lajoie AC,
    7. et al
    . Novel insights on the pulmonary vascular consequences of COVID-19. Am J Physiol Lung Cell Mol Physiol 2020;319(2):L277-L288.
    OpenUrl
  44. 44.↵
    1. Michalski JE,
    2. Kurche JS,
    3. Schwartz DA
    . From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? Transl Res 2022;241:13-24.
    OpenUrl
  45. 45.↵
    1. Protti A,
    2. Santini A,
    3. Pennati F,
    4. et al
    . Lung response to a higher positive end-expiratory pressure in mechanically ventilated patients with COVID-19. Chest 2022;161(4):979-988.
    OpenUrl
  46. 46.↵
    1. Cavalcanti AB,
    2. Suzumura ÉA,
    3. Laranjeira LN,
    4. Paisani D de M,
    5. Damiani LP,
    6. Guimarães HP,
    7. et al
    ; Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2017;318(14):1335.
    OpenUrlCrossRefPubMed
  47. 47.↵
    1. Spadaro S,
    2. Karbing DS,
    3. Dalla Corte F,
    4. Mauri T,
    5. Moro F,
    6. Gioia A,
    7. et al
    . An open-loop, physiological model–based decision support system can reduce pressure support while acting to preserve respiratory muscle function. J Crit Care 2018;48:407-413.
    OpenUrlPubMed
  48. 48.↵
    1. Caravita S,
    2. Baratto C,
    3. Di Marco F,
    4. Calabrese A,
    5. Balestrieri G,
    6. Russo F,
    7. et al
    . Hemodynamic characteristics of COVID-19 patients with acute respiratory distress syndrome requiring mechanical ventilation. An invasive assessment using right heart catheterization. Eur J Heart Fail 2020;22(12):2228-2237.
    OpenUrlCrossRef
  49. 49.↵
    1. Dantzker DR,
    2. Lynch JP,
    3. Weg JG
    . Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest 1980;77(5):636-642.
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

Respiratory Care: 68 (2)
Respiratory Care
Vol. 68, Issue 2
1 Feb 2023
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Heterogeneity of Ventilation/Perfusion Mismatch at Different Levels of PEEP and in Respiratory Mechanics Phenotypes of COVID-19 ARDS
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Heterogeneity of Ventilation/Perfusion Mismatch at Different Levels of PEEP and in Respiratory Mechanics Phenotypes of COVID-19 ARDS
Gaetano Scaramuzzo, Dan Stieper Karbing, Alberto Fogagnolo, Tommaso Mauri, Elena Spinelli, Matilde Mari, Cecilia Turrini, Federica Montanaro, Carlo Alberto Volta, Stephen Edward Rees, Savino Spadaro
Respiratory Care Feb 2023, 68 (2) 188-198; DOI: 10.4187/respcare.10242

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Heterogeneity of Ventilation/Perfusion Mismatch at Different Levels of PEEP and in Respiratory Mechanics Phenotypes of COVID-19 ARDS
Gaetano Scaramuzzo, Dan Stieper Karbing, Alberto Fogagnolo, Tommaso Mauri, Elena Spinelli, Matilde Mari, Cecilia Turrini, Federica Montanaro, Carlo Alberto Volta, Stephen Edward Rees, Savino Spadaro
Respiratory Care Feb 2023, 68 (2) 188-198; DOI: 10.4187/respcare.10242
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • V̇/Q̇ mismatch
  • COVID-19
  • ARDS
  • PEEP
  • shunt
  • phenotypes

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire