Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Archives
    • Most-Read Papers of 2022
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Reviewer Guidelines: Original Research
    • Reviewer Guidelines: Reviews
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • 2023 Call for Abstracts
    • 2022 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Videos
    • Video Abstracts
    • Author Interviews
    • Highlighted Articles
    • The Journal
  • Twitter
  • Facebook
  • YouTube
Review ArticleNarrative Review

The Evolution of Intermittent Mandatory Ventilation

Robert L Chatburn and Ping-Hui Liu
Respiratory Care March 2023, 68 (3) 417-428; DOI: https://doi.org/10.4187/respcare.10184
Robert L Chatburn
Enterprise Respiratory Care Research, Cleveland Clinic, Cleveland, Ohio; and Department of Medicine, Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Ping-Hui Liu
Cleveland Clinic, Cleveland, Ohio.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Sanderson RR
    . History of intermittent mandatory ventilation prior to 1972. Part One. JMV 2021;2(4):149-156.
    OpenUrl
  2. 2.↵
    1. Chatburn RL,
    2. El-Khatib M,
    3. Mireles-Cabodevila E
    . A taxonomy for mechanical ventilation: 10 fundamental maxims. Respir Care 2014;59(11):1747-1763.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Chatburn RL
    . Computer control of mechanical ventilation. Respir Care 2004;49(5):507-517.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Chatburn RL,
    2. Mireles-Cabodevila E
    . Closed-loop control of mechanical ventilation: description and classification of targeting schemes. Respir Care 2011;56(1):85-102.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Volsko TA,
    2. Chatburn RL,
    3. El-Khatib MF
    . Equipment for respiratory care, 2nd edition. Burlington, Massachusetts: Jones & Bartlett Learning; 2022.
  6. 6.↵
    1. Roth H,
    2. Luecke T,
    3. Lansche G,
    4. Bender HJ,
    5. Quintel M
    . Effects of patient-triggered automatic switching between mandatory and supported ventilation in the postoperative weaning period. Intensive Care Med 2001;27(1):47-51.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Chatburn RL,
    2. Mireles-Cabodevila E,
    3. Sasidhar M
    . Tidal volume measurement error in pressure control modes of mechanical ventilation: a model study. Comput Biol Med 2016;75:235-242.
    OpenUrl
  8. 8.↵
    1. Jhou H-J,
    2. Chen P-H,
    3. Ou-Yang L-J,
    4. Lin C,
    5. Tang S-E,
    6. Lee C-H
    . Methods of weaning from mechanical ventilation in adult: a network meta-nalysis. Front Med (Lausanne) 2021;8:752984.
    OpenUrl
  9. 9.↵
    1. Kacmarek RM,
    2. Branson RD
    . Should intermittent mandatory ventilation be abolished? Respir Care 2016;61(6):854-866.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Chatburn RL
    . Intermittent mandatory ventilation will live forever. Respir Care 2016;61(9):1281-1282.
    OpenUrlFREE Full Text
  11. 11.↵
    1. Downs JB,
    2. Klein EF,
    3. Desautels D,
    4. Modell JH,
    5. Kirby RR
    . Intermittent mandatory ventilation: a new approach to weaning patients from mechanical ventilators. Chest 1973;64(3):331-335.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. Downs JB,
    2. Perkins HM,
    3. Modell JH
    . Intermittent mandatory ventilation. An Evaluation. Arch Surg Chic Ill 1960 1974;109(4):519-523.
    OpenUrl
  13. 13.↵
    1. Downs JB,
    2. Douglas ME
    . Intermittent mandatory ventilation and weaning. Int Anesthesiol Clin 1980;18(2):81-95.
    OpenUrlPubMed
  14. 14.↵
    1. Kirby RR,
    2. Robison EJ,
    3. Schulz J,
    4. DeLemos R
    . A new pediatric volume ventilator. Anesth Analg 1971;50(4):533-537.
    OpenUrlPubMed
  15. 15.↵
    1. Hewlett AM,
    2. Platt AS,
    3. Terry VG
    . Mandatory minute volume. A new concept in weaning from mechanical ventilation. Anaesthesia 1977;32(2):163-169.
    OpenUrlPubMedWeb of Science
  16. 16.↵
    1. Tehrani FT
    . The origin of adaptive support ventilation. Int J Artif Organs 2005;28(10):1051-1052.
    OpenUrlPubMed
  17. 17.↵
    1. van der Staay M,
    2. Chatburn RL
    . Advanced modes of mechanical ventilation and optimal targeting schemes. Intensive Care Med Exp 2018;6(1):30.
    OpenUrl
  18. 18.↵
    Method and apparatus for maintaining airway patency to treat sleep apnea and other disorders. Available at: https://patents.justia.com/patent/5148802. Published Sept 22, 1989. Accessed January 22, 2022.
  19. 19.↵
    1. Cooper AB,
    2. Thornley KS,
    3. Young GB,
    4. Slutsky AS,
    5. Stewart TE,
    6. Hanly PJ
    . Sleep in critically ill patients requiring mechanical ventilation. Chest 2000;117(3):809-818.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Volsko TA,
    2. Hoffman J,
    3. Conger A,
    4. Chatburn RL
    . The effect of targeting scheme on tidal volume delivery during volume control mechanical ventilation. Respir Care 2012;57(8):1297-1304.
    OpenUrlAbstract/FREE Full Text
  21. 21.↵
    1. Branson RD,
    2. Johannigman JA
    . What is the evidence base for the newer ventilation modes? Respir Care 2004;49(7):742-760.
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. Mireles-Cabodevila E,
    2. Siuba MT,
    3. Chatburn RL
    . A taxonomy for patient-ventilator interactions and a method to read ventilator waveforms. Respir Care 2021 September. respcare.09316. Online ahead of print.
  23. 23.↵
    1. Mireles-Cabodevila E,
    2. Hatipoğlu U,
    3. Chatburn RL
    . A rational framework for selecting modes of ventilation. Respir Care 2013;58(2):348-366.
    OpenUrlAbstract/FREE Full Text
  24. 24.↵
    1. Brower RG,
    2. Matthay MA,
    3. Morris A,
    4. Schoenfeld D,
    5. Thompson BT,
    6. Wheeler A
    Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342(18):1301-1308.
    OpenUrlCrossRefPubMedWeb of Science
  25. 25.↵
    1. Keszler M
    . Mechanical ventilation strategies. Semin Fetal Neonatal Med 2017;22(4):267-274.
    OpenUrl
  26. 26.↵
    1. Determann RM,
    2. Royakkers A,
    3. Wolthuis EK,
    4. Vlaar AP,
    5. Choi G,
    6. Paulus F,
    7. et al
    . Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care 2010;14(1):R1.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Amato MBP,
    2. Meade MO,
    3. Slutsky AS,
    4. Brochard L,
    5. Costa ELV,
    6. Schoenfeld DA,
    7. et al
    . Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372(8):747-755.
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. Chatburn RL,
    2. van der Staay M
    . Driving pressure or tidal pressure: what a difference a name makes. Respir Care 2019;64(9):1176-1179.
    OpenUrlFREE Full Text
  29. 29.↵
    1. Willatts SM
    . Alternative modes of ventilation. Part I. Disadvantages of controlled mechanical ventilation: intermittent mandatory ventilation. Intensive Care Med 1985;11(2):51-55.
    OpenUrlPubMedWeb of Science
  30. 30.↵
    1. Wood SM,
    2. Thurman TL,
    3. Holt SJ,
    4. Bai S,
    5. Heulitt MJ,
    6. Courtney SE
    . Effect of ventilator mode on patient-ventilator synchrony and work of breathing in neonatal pigs. Pediatr Pulmonol 2017;52(7):922-928.
    OpenUrl
  31. 31.↵
    1. Auer-Hackenberg L,
    2. Haselmann C,
    3. Brandner J,
    4. Hofstaetter E,
    5. Stroicz P,
    6. Wald M
    . When synchronized isn’t synchronous- an experimental benchmarking study on the efficiency of SIMV in very low birthweight premature infants. Minerva Pediatr 2021 November. Online ahead of print.
  32. 32.↵
    1. Zhou Y,
    2. Holets SR,
    3. Li M,
    4. Cortes-Puentes GA,
    5. Meyer TJ,
    6. Hanson AC,
    7. et al
    . Etiology, incidence, and outcomes of patient-ventilator asynchrony in critically-ill patients undergoing invasive mechanical ventilation. Sci Rep 2021;11(1):12390.
    OpenUrl
  33. 33.↵
    1. Robinson BR,
    2. Blakeman TC,
    3. Toth P,
    4. Hanseman DJ,
    5. Mueller E,
    6. Branson RD
    . Patient-ventilator asynchrony in a traumatically injured population. Respir Care 2013;58(11):1847-1855.
    OpenUrlAbstract/FREE Full Text
  34. 34.↵
    1. Shimatani T,
    2. Yoon B,
    3. Kyogoku M,
    4. Kyo M,
    5. Ohshimo S,
    6. Newth CJL,
    7. et al
    . Frequency and risk factors for reverse triggering in pediatric acute respiratory distress syndrome during synchronized intermittent mandatory ventilation. Ann Am Thorac Soc 2021;18(5):820-829.
    OpenUrlPubMed
  35. 35.↵
    1. Klein EF
    . Weaning from mechanical breathing with intermittent mandatory ventilation. Arch Surg Chic Surg 1975;110(3):345-347.
    OpenUrl
  36. 36.↵
    1. Gabel JC,
    2. Hulett WB,
    3. Glass DD,
    4. Poirier J
    . Intermittent mandatory ventilation. South Med J 1977;70(3):274-276.
    OpenUrlPubMed
  37. 37.↵
    1. Weisman IM,
    2. Rinaldo JE,
    3. Rogers RM,
    4. Sanders MH
    . Intermittent mandatory ventilation. Am Rev Respir Dis 1983;127(5):641-647.
    OpenUrlPubMedWeb of Science
  38. 38.↵
    1. Esteban A,
    2. Frutos F,
    3. Tobin MJ,
    4. Alía I,
    5. Solsona JF,
    6. Valverdu V,
    7. et al
    . A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med 1995;332(6):345-350.
    OpenUrlCrossRefPubMedWeb of Science
  39. 39.↵
    1. Brochard L,
    2. Rauss A,
    3. Benito S,
    4. Conti G,
    5. Mancebo J,
    6. Rekik N,
    7. et al
    . Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med 1994;150(4):896-903.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.↵
    1. de Godoi TB,
    2. Marson FAL,
    3. Palamim CVC,
    4. Cannonieri-Nonose GC
    . Influence of ventilatory strategies on outcomes and length of hospital stay: assist-control and synchronized intermittent mandatory ventilation modes. Intern Emerg Med 2021;16(2):409-418.
    OpenUrl
  41. 41.↵
    1. Vrijsen B,
    2. Buyse B,
    3. Belge C,
    4. Vanpee G,
    5. Van Damme P,
    6. Testelmans D
    . Randomized crossover trial of ventilator modes during noninvasive ventilation titration in amyotrophic lateral sclerosis. Respirology 2017;22(6):1212-1218.
    OpenUrl
  42. 42.↵
    1. Mireles-Cabodevila E,
    2. Chatburn RL
    . Work of breathing in adaptive pressure control continuous mandatory ventilation. Respir Care 2009;54(11):1467-1472.
    OpenUrlAbstract/FREE Full Text
  43. 43.↵
    1. Hendrix H,
    2. Kaiser ME,
    3. Yusen RD,
    4. Merk J
    . A randomized trial of automated versus conventional protocol-driven weaning from mechanical ventilation following coronary artery bypass surgery. Eur J Cardiothorac Surg 2006;29(6):957-963.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Ceylan G,
    2. Topal S,
    3. Atakul G,
    4. Colak M,
    5. Soydan E,
    6. Sandal O,
    7. et al
    . Randomized crossover trial to compare driving pressures in a closed-loop and a conventional mechanical ventilation mode in pediatric patients. Pediatr Pulmonol 2021;56(9):3035-3043.
    OpenUrl
  45. 45.↵
    1. Dai Y-L,
    2. Wu C-P,
    3. Yang G-G,
    4. Chang H,
    5. Peng C-K,
    6. Huang K-L
    . Adaptive support ventilation attenuates ventilator-induced lung injury: human and animal study. IJMS 2019;20(23):5848.
    OpenUrl
  46. 46.↵
    1. Davis S,
    2. Potgieter PD,
    3. Linton DM
    . Mandatory minute volume weaning in patients with pulmonary pathology. Anaesth Intensive Care 1989;17(2):170-174.
    OpenUrlPubMedWeb of Science
  47. 47.
    1. Sulzer CF,
    2. Chioléro R,
    3. Chassot P-G,
    4. Mueller XM,
    5. Revelly J-P
    . Adaptive support ventilation for fast tracheal extubation after cardiac surgery: a randomized controlled study. Anesthesiology 2001;95(6):1339-1345.
    OpenUrlCrossRefPubMedWeb of Science
  48. 48.
    1. Fot EV,
    2. Izotova NN,
    3. Yudina AS,
    4. Smetkin AA,
    5. Kuzkov VV,
    6. Kirov MY
    . Automated weaning from mechanical ventilation after off-pump coronary artery bypass grafting. Front Med (Lausanne) 2017;4:31.
    OpenUrl
  49. 49.
    1. Kirakli C,
    2. Naz I,
    3. Ediboglu O,
    4. Tatar D,
    5. Budak A,
    6. Tellioglu E
    . A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest 2015;147(6):1503-1509.
    OpenUrlPubMed
  50. 50.↵
    1. Neuschwander A,
    2. Chhor V,
    3. Yavchitz A,
    4. Resche-Rigon M,
    5. Pirracchio R
    . Automated weaning from mechanical ventilation: results of a Bayesian network meta-analysis. J Crit Care 2021;61:191-198.
    OpenUrl
  51. 51.↵
    1. Gruber PC,
    2. Gomersall CD,
    3. Leung P,
    4. Joynt GM,
    5. Ng SK,
    6. Ho K-M,
    7. et al
    . Randomized controlled trial comparing adaptive-support ventilation with pressure-regulated volume-controlled ventilation with automode in weaning patients after cardiac surgery. Anesthesiology 2008;109(1):81-87.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Chatburn RL,
    2. Mireles-Cabodevila E
    . 2019 year in review: patient-ventilator synchrony. Respir Care 2020;65(4):558-572.
    OpenUrlAbstract/FREE Full Text
  53. 53.↵
    1. Buiteman-Kruizinga LA,
    2. Mkadmi HE,
    3. Serpa Neto A,
    4. Kruizinga MD,
    5. Botta M,
    6. Schultz MJ,
    7. et al
    . Effect of INTELLiVENT-ASV versus conventional ventilation on ventilation intensity in patients with COVID-19 ARDS-an observational study. JCM 2021;10(22):5409.
    OpenUrl
  54. 54.
    1. Botta M,
    2. Wenstedt EFE,
    3. Tsonas AM,
    4. Buiteman-Kruizinga LA,
    5. van Meenen DMP,
    6. Korsten HHM,
    7. et al
    . Effectiveness, safety, and efficacy of INTELLiVENT-adaptive support ventilation, a closed-loop ventilation mode for use in ICU patients - a systematic review. Expert Rev Respir Med 2021;15(11):1403-1413.
    OpenUrl
  55. 55.
    1. Arnal J-M,
    2. Saoli M,
    3. Garnero A
    . Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung J Lung 2020;49(4):427-434.
    OpenUrl
  56. 56.↵
    1. Katayama S,
    2. Tonai K,
    3. Shima J,
    4. Koyama K,
    5. Nunomiya S
    . Predictive factors for successful INTELLiVENT-ASV use: a retrospective observational study. BMC Anesthesiol 2020;20(1):94.
    OpenUrl
  57. 57.↵
    1. Tawfik PN,
    2. Evans MD,
    3. Dries DJ,
    4. Marini JJ
    . Reliable estimates of power delivery during mechanical ventilation utilizing easily obtained bedside parameters. Respir Care 2022;67(2):177-183.
    OpenUrlAbstract/FREE Full Text
  58. 58.↵
    1. Rose L,
    2. Presneill JJ,
    3. Cade JF
    . Update in computer-driven weaning from mechanical ventilation. Anaesth Intensive Care 2007;35(2):213-221.
    OpenUrlPubMedWeb of Science
  59. 59.↵
    1. Tzavaras A,
    2. Weller PR,
    3. Spyropoulos B
    . A neuro-fuzzy controller for the estimation of tidal volume and respiration frequency ventilator settings for COPD patients ventilated in control mode. Conf Proc IEEE Eng Med Biol Soc 2007:3765-3768.
  60. 60.↵
    1. Goertzel B
    . AGI revolution: an inside view of the rise of artificial general intelligence. Humanity+ Press; 2016.
  61. 61.↵
    1. Tobin MJ
    1. Chatburn RL
    . Classification of mechanical ventilators and modes of ventilation. In: Tobin MJ, editor. Principles and practice of mechanical ventilation, 3rd edition. Mc Graw Hill Medical; 2013:45-64.
PreviousNext
Back to top

In this issue

Respiratory Care: 68 (3)
Respiratory Care
Vol. 68, Issue 3
1 Mar 2023
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author

 

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Evolution of Intermittent Mandatory Ventilation
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Evolution of Intermittent Mandatory Ventilation
Robert L Chatburn, Ping-Hui Liu
Respiratory Care Mar 2023, 68 (3) 417-428; DOI: 10.4187/respcare.10184

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
The Evolution of Intermittent Mandatory Ventilation
Robert L Chatburn, Ping-Hui Liu
Respiratory Care Mar 2023, 68 (3) 417-428; DOI: 10.4187/respcare.10184
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • History of IMV
    • Evidence Supporting Different Types of IMV
    • Four Types of IMV
    • Description of IMV(1)
    • Rationale for IMV(1)
    • Description of IMV(2)
    • Rationale for IMV(2)
    • Description of IMV(3)
    • Rationale for IMV(3)
    • Description of IMV(4)
    • Rationale for IMV(4)
    • The Future of IMV
    • Summary
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • mechanical ventilation
  • modes of ventilation
  • taxonomy
  • goals of ventilation

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About the Journal
  • Editorial Board

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire