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Abstract

Corona virus disease 2019 (COVID-19) represents the greatest medical crisis encountered in the young 

history of critical care and respiratory care. During the early months of the pandemic, when little was 

known about the virus, the acute hypoxemic respiratory failure it caused did not appear to fit conveniently 

or consistently into our classification of acute respiratory distress syndrome (ARDS). This not only re-

ignited a half-century’s long simmering debate over taxonomy, but also fueled similar debates over how 

PEEP and lung-protective ventilation should be titrated, as well as the appropriate role of non-invasive 

ventilation in ARDS. Furthermore, COVID-19 ignited other debates on emerging concepts such as ARDS 

phenotypes and patient self-inflicted lung injury from vigorous spontaneous breathing. Over a year later 

these early perplexities have receded into the background without having been reviewed or resolved. 

With a full year of evidence having been published this narrative review systematically analyzes whether 

or not COVID-19 associated respiratory failure is essentially ARDS, with perhaps a somewhat different 

course of presentation. This includes a review of the severity of hypoxemia and derangements in 

pulmonary mechanics, PEEP requirements, recruitment potential, the ability to achieve lung-protective 

ventilation goals, duration of mechanical ventilation, associated mortality, and response to non-invasive 

ventilation. It also reviews the concepts of ARDS phenotypes and patient self-inflicted lung injury as these 

are crucial to understanding the contentious debate over the nature and management of COVID-19. 
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Introduction

“Que sçais-je?" (“What do I know?”) 

Michel de Montaigne

With the exception of acquired immune deficiency syndrome (AIDS), corona virus disease 2019 

(COVID-19) represents the greatest medical crisis the world has confronted since the “Great Influenza” 

pandemic of 1918. And certainly it is the most profound crisis in the young history of critical care and 

respiratory care. Even the AIDS epidemic did not remotely resemble the enormous strain on critical care 

capacity, healthcare provider staffing and mechanical ventilators. However, this review of mechanical 

ventilation during the first year of the pandemic is not concerned with issues such as the lack of ventilators 

that captivated both mainstream and social media. Rather its focus is the more interesting and deeper 

issue that animated the first months of pandemic and has lingered afterwards, perhaps forgotten or 

dismissed by many, but nonetheless one without definitive resolution or consensus. 

At the pandemic’s onset there seemed to be a collective moment of self-doubt amidst the 

terrifying chaos of COVID-19. Its apparent unusual presentation questioned how we apply the term ARDS 

and its ramifications on our approach to treatment. This uncertainty vaguely resembled controversies 

from the 1970s when the very idea of ARDS was considered by some “a distinctive non-entity” that “serves 

no useful purposes”.1 This is not to insinuate that in 2020 the validity of ARDS as an entity was being 

challenged, but rather the validity of what is encompassed by the definition. The specific characteristics 

of ARDS presentation have always engendered debate. The pandemic simply brought these long 

simmering issues to the forefront yet again. The basis for this was established in 2003 when the term 

“severe acute respiratory syndrome” (SARS) was coined rather than an alternative name in which ARDS 

was a salient feature.2 Naming has consequences.
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Now with the perspective of time, the accruement of experience, data, and waning emotions, this 

narrative review is focused on our current understanding of COVID-19 associated respiratory failure and 

its response to mechanical ventilation. It also explores the controversies that arose in the early months of 

the pandemic as well. During this time frame interesting opinions regarding both ARDS and COVID-19 

were expressed, most based upon clinical impressions and interpretation of the scientific literature that 

deserve further exploration. These topics are consigned to supplementary materials for those interested. 

For the primary topics of interest the critique presented in this review focuses on how COVID-19 

resembles or differs from our current understanding of ARDS. The intention is that we might answer the 

question the great Renaissance philosopher posed to himself every day: what do I know?3

To Intubate or Not? 

Two inter-related clinical management controversies arose almost immediately after the 

pandemic reached Europe and the United States. The first was whether or not patients with respiratory 

insufficiency should be intubated before exhibiting signs of overt failure.4, 5 The second was whether an 

apparently unusual presentation of COVID-19 respiratory failure was indeed ARDS; thereby raising 

questions whether the approach to invasive ventilation should be modified in response.6-8 These 

controversies influenced how respiratory care was practiced over the first year of the pandemic.

The rationale for early invasive ventilation was based upon three factors. First, fear regarding 

potential aerosolization from managing patients either with non-invasive invasive ventilation (NIV) or high 

flow nasal oxygen.9-11 Clinicians involved with aerosol-generating procedures have approximately 3 times 

the infection risk compared to other healthcare professionals.12 Early on the infection rate among 

healthcare workers was ~4% in China (the majority in Wuhan) and 14% in Italy.13, 14 Second, was concern 

for potential development of patient self-inflicted lung injury (P-SILI) from spontaneous breathing at a 

supranormal VT generated by high trans-alveolar pressures (> -15 cmH2O) from a combination of high 
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respiratory drive, preserved respiratory muscle strength and near-normal lung volumes.7 Hypothetically, 

early intubation and control of the ventilatory pattern might mitigate the severity of respiratory failure.15, 

16 Third, early reports from China described sudden, acute respiratory destabilization in 46-65% of COVID-

19 patients in the ICU,17, 18 raising apprehension of delayed detection in overwhelmed hospitals.15, 19, 20 

Thus pre-emptive intubation appeared reasonable from a safety perspective. 

The counterargument, colloquially referred to as “avoid intubation at all costs”,21 was largely 

driven by the following rationale. Early on invasive ventilation was associated with extraordinarily high 

mortality (~70-100%).22-25 Also, severely hypoxemic patients initially appeared stable, with relatively intact 

pulmonary mechanics and respiratory muscle reserve, often without apparent respiratory distress (“silent 

hypoxemia”).5, 26 Again, in the context of overwhelmed clinicians and a looming (sometimes actual) 

shortage of ventilators, forestalling intubation with non-invasive respiratory therapies appeared and 

rational and pragmatic.8 And in terms of infection control the evidence, as it existed, strongly suggested 

that the primary risk for clinician infection was not NIV or high flow nasal oxygen, but rather intubation 

and associated periods of bag-mask ventilation.27 

Is This Really ARDS?

“Taxonomy is described sometimes as a science, sometimes as an art, but really it’s a battleground.”

Bill Bryson28

The second controversy was that COVID-19 induced respiratory failure differed substantially from 

ARDS. This raised questions whether invasive ventilation practices should deviate from current evidence-

based lung-protective ventilation (LPV) guidelines and protocols. The controversy ranged from 

circumspect, well-reasoned, tentative opinions (based upon decades of ARDS research),7, 8 to skewed 

interpretations regarding the Berlin Definition criteria for syndrome onset,29 to ill-informed conjecture 
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such as COVID-19 resembling high-altitude (ie, “hydrostatic”) pulmonary edema rather than altered 

permeability pulmonary edema (the quintessential feature of ARDS).30 

Whether COVID-19 respiratory failure differs from ARDS should, as a first step, refer back to the 

definitions of taxonomy and syndrome. Taxonomy refers to how phenomena are organized or classified 

according to common attributes. By its nature taxonomy is rule-based which to some degree is 

unavoidably arbitrary and thus prone to controversy. Syndrome, derived from the Greek word for 

“concurrence”, refers to a set of co-related signs and symptoms associated with a particular disease or 

disorder. ARDS represents an effect emanating from a multitude of potential initiating sources causing 

acute pulmonary tissue injury and an inflammatory response. These result in varying degrees of severity 

in both epithelial and endothelial injury, altered permeability pulmonary edema, altered lung mechanics 

and hypoxemia. 

As such, the definition of ARDS requires that it be based upon common attributes for making a 

classification when numerous pathogenic agents can initiate lung injury. These being: 1) a specific 

threshold of oxygenation dysfunction using the ratio arterial oxygen tension to inspired oxygen fraction 

(PaO2/FIO2) < 300 mmHg (ie, an approximation of the traditional hypoxemia threshold of PaO2 ~ 60 mmHg 

on room air), 2) radiographic presentation of bilateral lung opacities suggestive of disseminated alveolar 

injury, and 3) an inciting mechanism (etiology) known or suspected to cause acute lung injury. 

Although the definition of ARDS has evolved since 1967 (albeit with controversy), these defining 

characteristics fundamentally have not. Most relevant to COVID-19 is that viral pneumonia accounted for 

33% of subjects in the seminal 1967 paper first describing ARDS.31 And evidence suggests that ARDS was 

the primary cause of early mortality during the 1918 H1N1 pandemic.32 Since 1967 multiple viruses have 

been associated with the syndrome including influenza, adenovirus, varicella, hantavirus and 
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coronavirus.2 In early reports from China between 65-85% of COVID-19 patients admitted to the ICU met 

ARDS criteria.33, 34

Part of the controversy rests with the fact that radiographic evidence of ARDS has always been 

the most vulnerable criterion given the high degree of interobserver variability (even among experts).35 

In addition, a telling observation was that radiologically “COVID-19 lung involvement is unique having a 

pneumonia pattern rather than a typical ARDS pattern at least in the initial phase during the first days 

after intubation” [italics added].36 Implicit in this statement is that severe hypoxemia was associated with 

initial lobar pneumonia. In addition, the speed of acute lung injury progression in viral ARDS is dependent 

upon the speed of viral replication which differs between viruses (eg, H1N1 vs. SARS CoV-1),32 and perhaps 

between SARS CoV-2 variants as well. And an underlying contributing factor has been the tendency 

towards under-recognition of ARDS in clinical practice.37

Finally, a misreading of Berlin Definition criteria likely played a role. A review paper cited 3 early 

studies from China in which the median time from symptom onset to ARDS was 8-12 days.29 Although the 

time frame exceeds the criterion established by the Berlin Definition Taskforce,38 the authors did not use 

the full description which included “or new or worsening respiratory symptoms” (ie, underlying disease 

progression as alluded to above). Interestingly, the “7 day-from-onset” criterion was based on a single 

center study of 182 subjects with risk factors who subsequently developed ARDS, but excluded pneumonia 

as a risk factor.39 Between 35-56% of subjects enrolled into large prospective ARDS treatment trials had 

pneumonia as primary etiology; thus limiting the external validity upon which the 7-day criterion was 

initially based.40-44 

The Theory of ARDS Phenotypes

Phenotypes are the observable characteristics of an organism (eg, physical, morphologic, 

biochemical), whereas genotype refers to an organism’s entire catalogue of genes available for potential 
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expression. Phenotypes represent an interaction between the organism’s genotype and the environment 

it encounters. Specific to ARDS this would include infectious or other injurious agents and the therapies 

used to treat it (eg, invasive ventilation, hyperoxia, pharmacologic agents, etc.). In COVID-19 associated 

ARDS use of the term phenotypes created more controversy than clarity.45-50 Regardless of etiology 

individual responses to acute lung injury exist along a spectrum ranging from mild to severe that involves 

the interplay of several factors. 

In ARDS, phenotypic expression would encompass either the propensity or disinclination for 

developing a hyperimmune response to acute lung injury (“cytokine storm syndrome”).51, 52 An individual’s 

genetic susceptibility would also apply to the propensity for developing hyperoxic acute lung injury,53 and 

ventilator-induced lung injury.54 Prior to COVID-19, interest in ARDS phenotypes focused on apparent 

hypo- or hyper-inflammatory (“reactive”) responses to acute lung injury. Hyperinflammatory phenotypes 

are thought to occur in ~33% of ARDS cases, are associated with severe ARDS, and perhaps more 

responsive to PEEP, certain pharmacologic therapies, and conservative fluid management.55-57

However, it is difficult to disentangle an individual’s response to COVID-19 induced lung injury 

from numerous inter-related factors such as: 1) the magnitude of infectious insult (including the potential 

impact of SARS CoV-2 variants), 2) the usual stages of pneumonia progression,50 3) the presence of 

comorbidities, 4) abnormal body habitus (ie, the extent to which it exaggerates hydrostatic forces that 

worsen chest mechanics, gas exchange and radiographic findings), and 5) the intensity and duration of 

exposures to hyperoxia and injurious ventilation patterns. There also exists the inherent problems of 

conducting physiologic research in the critical care setting (eg, selection bias, small sample sizes) that are 

magnified under pandemic conditions. 

The most succinct criticism of phenotyping COVID-19 was that it was premature.46 First and 

foremost it preceded systematic, unbiased data collection that ultimately leads to “a phenotypic signature 
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specific to high gene expression”.46 Second, the attempt was based upon single center data and 

“anchored’ on only one or two clinically apparent variables”.46

COVID-19 Phenotypes

The COVID-19 phenotypes hypothesis was raised early on in editorials based upon observations 

made in an undisclosed number of subjects, and subsequently reported as being made in 150 subjects.7, 8 

The basis was severe hypoxemia dissociated from corresponding reductions in respiratory system 

compliance (CRS) usually observed in ARDS. Consequently it was proposed that COVID-19 associated 

respiratory failure be classified as non-ARDS (“Type 1”) and ARDS (“Type 2”).8 Of note, the term “non-

ARDS” was quickly modified to “atypical ARDS”.58 

In Type 1, computerized tomography (CT) imaging showed essentially normal gas volume and 

minimal (~8%) non-aerated lung tissue associated with normal CRS (80 mL/cmH2O), and disproportionately 

elevated venous admixture (56%). This was attributed to severe ventilation-perfusion mismatching 

caused by loss of compensatory hypoxemic vasoconstriction (from viral injury of the pulmonary vascular 

endothelium), rather than intrapulmonary shunt from large amounts of non-aerated tisssue.7 In contrast, 

Type 2 exhibited a classic ARDS profile with markedly reduced lung volume (~60% of normal) with 39% 

non-aerated lung tissue and both venous admixture and CRS typically found in ARDS (49% and 43 

mL/cmH2O respectively). 

The proposed phenotypes were later renamed from Type 1 to Type L (ie, low lung elastance or 

high, “preserved” lung compliance) and from Type 2 to Type H (ie, high lung elastance or low lung 

compliance) based on data culled from 150 subjects.7 In addition to describing these archetypal 

presentations of COVID-19 respiratory failure the authors (as well as others) suggested a modified 

approach to ventilator management (Table 1).7, 20, 59 

COVID-19 Phenotypes and Lung Protective Ventilation
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The ensuing controversy over modifying LPV for COVID-19 focused primarily on liberalizing VT in 

steps from 6 mL/kg to 7, 8 and perhaps 9 mL/kg when hypercapnia or severe dyspnea were present, and 

only in those patients presenting as Type L.7, 8 In other words, those in whom lung volume is well preserved 

so that the risk of developing ventilator-induced lung injury (VILI) would be relatively minor and a 

reasonable trade-off to balance other risk factors (see below). 

Liberalized VT within accepted LPV parameters has been a consistent feature of European studies 

for decades.60-68 In addition, the 2016 LUNG SAFE international survey also used 8 mL/kg as the upper 

threshold for LPV.64 Moreover, the Surviving Sepsis Campaign Guidelines for COVID-19 recommended a 

VT between 4-8 mL/kg.69 Hence, the insinuation that these circumscribed guidelines deviated from 

accepted LPV norms was highly misleading.46, 70 Furthermore, these recommendations are in stark 

contrast to others who suggested COVID-19 can be managed safely with a VT < 11 mL/kg (assuming that 

plateau pressure was < 32 cmH2O).6, 71

Reasonable liberalizing of VT from 6 to 7-8 mL/kg was based upon observations that it “often 

attenuates dyspnea”8 and is supported indirectly by studies on VT demand during LPV (see Supplementary 

Materials: Part 1).72 A peculiar aspect of arguments against liberalizing VT,73, 74 is that it conveniently 

ignored discussing the reliance upon sedation to control dyspnea and asynchrony which also carries 

substantial risk of harm.75-77 A decade ago evidence suggested patient-ventilator asynchrony was 

associated with worse outcomes,78 and more recent evidence suggests that persistent, severe patient-

ventilator asynchrony may be particularly harmful.79 In this context the issue of whether P-SILI is a factor 

in COVID-19 progression (and its potential exacerbation by dyspnea frequently associated with VT -

mismatching during LPV), raises legitimate cause for concern (see below).

The second controversy focused on how PEEP should be applied. The Surviving Sepsis Guidelines 

for COVID-19 “suggesting a higher PEEP strategy over a lower PEEP strategy” (ie, PEEP > 10 cmH2O) drew 
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particular criticism.69 In response, an editorial80 pointing out the vague nature of the criticism replied that 

“higher PEEP does not necessarily imply very high levels of PEEP”. That statement was made in the context 

of remarking upon a small PEEP study for which it was written.81 In that study borderline super-PEEP (18 

cmH2O) applied in Type L subjects with relatively preserved CRS (58 mL/cmH2O) markedly improved 

oxygenation and end-expiratory lung volume (EELV), but predictably came at the expense of 

overdistension and hemodynamic impairment.81 Similarly, investigators in Greece also observed relatively 

preserved CRS (50-65 mL/cmH2O) with median “best PEEP” levels of only 8 cmH2O. This led them and 

others to criticize use of “pre-defined” PEEP such as the ARDSNet PEEP/FIO2 tables and recommended their 

“abandonment” in “most” COVID cases.6, 36, 82 

Phenotypes vs. Disease Evolution in COVID-19 

Early reports regarding COVID-19 phenotypes were limited by the lack of specific data despite 

claims it was based upon “detailed observation of several patients and discussions with colleagues” and 

“more than 50% of the 150 patients measured by the authors and confirmed by several colleagues in 

Northern Italy”.7 This initial description was quickly followed by specific data from 16 subjects showing 

that mean CRS of 50±14 coincided with mean QS/QT of 0.50±0.11.58 Yet he first detailed mechanical 

ventilation study from Italy on COVID-19 phenotypes did not appear until October 2020 and included data 

from only 32 subjects.68  

A striking comment was that COVID-19 associated ARDS “as the same disease presents itself with 

“impressive non-uniformity” and that “such a wide discrepancy [between magnitude of hypoxemia and 

corresponding severity in reduced CRS] “is almost never seen in severe ARDS”.7, 58 These observations were 

accompanied by proforma statements listing potential confounding factors such as: 1) the combined 

effects of infection severity and host response, 2) variability in individual responses to hypoxemia, and 
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(particularly crucial to their hypothesis), 3) that the duration between disease onset and observation 

would lead to a time-related disease spectrum with two primary “phenotypes.”7 

In other words COVID-19 ARDS likely evolves over time and “transitions” from a mild to severe 

phenotype which, based on the “timing of presentation” (scientific observation) may present 

“insurmountable methodological challenges” to study.7, 83 But liberalizing the definition of ARDS 

phenotypes from hypo- vs. hyperimmune response, to one suggesting that apparent variations in COVID-

19 expression somehow fundamentally differs from the non-uniformity observed in ARDS (irrespective of 

etiology) is highly suspect in its reasoning (see Supplementary Materials Part 2).

Conflicting Evidence Regarding COVID-19 Phenotypes 

Last September data published from 38 COVID-19 subjects with ARDS contradicted the idea of 

phenotypes.84 In these subjects chest CT imaging (using “non-quantitative analysis”) was done directly 

after intubation revealing that only ~35% met either Type L or Type H criteria. The majority represented 

discordant results regarding the lack of association between CRS and the amount of poorly or non-aerated 

tissue suggesting wide overlap in presentations. 

The following month COVID-19 phenotype proponents published an in-depth study on the gas 

exchange, pulmonary mechanics and CT findings alluded to in their early editorials.68 In this case-

controlled comparison subjects with confirmed COVID-19 ARDS were matched 1:1 with two separate non-

COVID ARDS cohorts by PaO2/FIO2 and by CRS. CT quantitative analysis of lung tissue was performed at a 

standardized of PEEP of 5 cmH2O (ie. removing the confounding effects of therapeutic lung recruitment 

from assessing baseline pathophysiology). COVID-19 ARDS subjects shared similar amounts of poorly 

aerated lung tissue with the PaO2/FIO2 -matched ARDS cohort, but in almost every other aspect they more 

closely resembled the CRS-matched ARDS cohort (”(see Supplementary Materials Part 3).
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The discrepancies between these studies reflects the inevitable limitations imposed by small 

sample sizes. Possible differences between the studies likely included timing of measurements relatively 

to disease onset. This is particularly relevant given radiographic reports that rapid progression of lesions 

was sometimes observed.85, 86 Also the lack of standardization of ventilator settings in one trial,84 and 

differences between non-quantitative vs. quantitative analysis of CT scans between the studies may have 

influenced their interpretation. 

Pathologic and Radiologic Features of COVID-19 

Finally, the existence of proposed COVID-19 phenotypes is inextricably tied to the declaration that 

they represent a “time related disease spectrum”.7 Such statement requires reviewing both the pathologic 

and radiologic evidence on COVID-19 associated respiratory failure. A brief letter describing 6 post-

mortem exams observed that COVID-19 associated lung injury progressed over time.87 Findings in subjects 

who died 5 days following symptom onset revealed lymphocytic pneumonia with both interstitial and 

alveolar infiltration consistent with a Type-L presentation. The 5 other subjects who died at ~20 days all 

presented with acute fibrinous organizing pneumonia and extensive intra-alveolar and bronchiolar 

involvement, as well as endothelial injury consistent with Type H presentation. 

A subsequent study of 41 subjects compared histopathologic findings between subjects who died 

at varying time points.88 Similar findings were observed among subjects who died within the first 8 days 

in contrast to those who died afterwards. The first cohort exhibited a predominantly exudative pattern 

with interstitial and intra-alveolar edema and varying degrees of alveolar hemorrhage, fibroblastic 

proliferation, and hyaline membrane formation. Subjects who died between 17-40 days largely presented 

with fibroblastic proliferation with densely fibrotic areas. And across study time frames pulmonary 

microthrombosis was frequently found. The histopathologic pattern and time-dependent evolution of 

diffuse alveolar damage found in subjects with COVID-19 associated ARDS was “stereotypical” of that 
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observed in non-COVID ARDS.88 Another study observed an early stage characterized by “neutrophilic, 

exudative capillaritis with microthrombosis” in contrast to a later stage with a classic ARDS presentation 

of “diffuse alveolar damage and ongoing intravascular thrombosis in small to medium sized vessels”.89

Radiologic findings regarding COVID-19 progression were consistent with those found at autopsy. 

CT imaging in 63 subjects was compared between initial examination and reexamination between Days 3-

14.86 Initial examination found 30% of subjects had only single lobe involvement, whereas ~55% had 4-5 

lobes with patchy/punctate ground glass opacities as the primary characteristic. Re-examination found 

variable (sometimes rapid) disease progression with diffuse lesions of increasingly dense ground glass 

opacities as well tissue consolidation (“white lung”). The general impression of investigators was that CT 

imaging of COVID-19 were “similar to common viral pneumonia.”86 

The Renin-Angiotensin-System and Hypoxemia in COVID-19 

Dysregulation of compensatory hypoxemic pulmonary vasoconstriction in Type L phenotype 

aligns with the fact that SARS CoV-2 pulmonary infection primarily targets angiotensin converting enzyme 

(ACE II) receptors of the pulmonary endothelium.90 In brief, ACE II receptors are part of the renin-

angiotensin-system in which the hormone angiotensin produces vasoconstriction. ACE is abundantly 

produced by the capillary endothelium and plays a major role in maintaining ventilation-perfusion balance 

in response to hypoxemia.91 ACE-II receptors also are found in both airway and alveolar epithelial cells, 

with emerging evidence that angiotensin plays a prominent (albeit complicated) role in the inflammatory 

response to both ARDS and ventilator-induced lung injury.91 

An alternative explanation is that infected alveolar epithelial cells downregulate ACE-2 activity 

causing unopposed ACE-1 activity in neighboring endothelial cells. Although this would effect a 

disproportionate release of endothelin-1 (a potent pulmonary vasoconstrictor) causing recruitment of 
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pulmonary capillary beds,50 the end result would be similar: severe hypoxemia from ventilation-perfusion 

mismatching. 

Observation and Interpretation during a Global Medical Crisis

Thus, both pathologic and radiographic findings suggest that what initially was interpreted as 

COVID-19 phenotypes appears to be disease progression. This is likely attributable to a confluence of 

factors including the relative timing of study to a variable disease progression. More importantly, scientific 

inquiry normally affords the luxury of open-ended contemplation prior to publication. The COVID-19 

pandemic afforded no such luxury. Enormous pressure likely was felt by preeminent ARDS researchers to 

quickly make some sense of their preliminary observations and convey them to a global audience 

struggling to understand (let alone) manage a novel viral pandemic. These observations appear 

concordant with those penned by Dr. Gattinoni and colleagues towards the end of 2020.92 

The Theory of Patient Self-Inflicted Lung Injury (P-SILI)

The earliest description of COVID-19 ARDS pathogenesis posited that a minority (20-30%) of 

patients who either initially presented as (or later transitioned to) Type H phenotypes may have had their 

disease course exacerbated by P-SILI from spontaneous breathing at a supranormal VT and high trans-

alveolar pressures.7 Prolonged inspiratory efforts resulting in both excessive pleural pressure swings > 15 

cmH2O and VT (> 15 mL/kg) was proposed to cause or perpetuate acute lung injury.7 And as severe SARS 

CoV-2 infection involves the vascular endothelium, it was further suggested that the carotid bodies may 

become hypersensitive to hypoxemia, causing abnormally heightened respiratory drive (disproportionate 

to the severity of hypoxemia) and thus contributing to P-SILI.93

First, strenuous diaphragmatic contractions would normally cause high negative pleural pressures 

to be transmitted homogenously across healthy lungs (“fluid behavior”) thus minimizing abnormal strain-

stress development. But heterogeneously injured lungs dissipate pressure unevenly, so that stress 
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becomes amplified at the interfaces between collapsed/consolidated tissue and surrounding normally 

aerated tissue (“solid behavior”); thus resulting in greater inflammation and edema formation 

(particularly in dependent lung regions).94 

Pre-clinical evidence has demonstrated that high VT ventilation generated by negative 

transpulmonary pressure induces acute lung injury in normal lungs.95, 96 In acutely injured lungs 

undergoing assisted ventilation, doxapram-induced inspiratory efforts resulting in only a moderate VT (~ 

8mL/kg) but transpulmonary pressures > 30 cmH2O produced the greatest degree of lung collapse, 

hyperinflation and histologic injury with a matter of only 4h.97 

Clinical evidence supporting P-SILI remains speculative. First, in both COVID-19 and non-COVID-

19 ARDS alike, P-SILI would likely follow the “2-hit” theory of lung injury, whereby the initial insult would 

prime the immune system, with subsequent high stress-strain ventilation further intensifying 

inflammation.98, 99 Second, a “relatively safe” plateau pressure (Pplat) of < 30 cmH2O traditionally 

advocated for LPV assumed normal chest wall compliance, so that the projected peak trans-alveolar stress 

would not exceed 20 cmH2O.100 In addition, tidal stress change (ie, Pplat-PEEP > 15 cmH2O has been shown 

to increase mortality risk.101 But when examining figure 2 from that study it is apparent that the inflection 

point for mortality risk becomes pronounced only at ~ 20 cmH2O (which was associated with a median VT 

of 8 mL/kg).101 

Finally, the plausibility of P-SILI has been documented in acute lung injury. Spontaneous breathing 

efforts during assisted ventilation in pneumonia or non-pulmonary sepsis produced median (IQR) 

transpulmonary pressures of 18 (14-23) cmH2O.102 Likewise, median (IQR) negative esophageal pressure 

swings of 17 (12-22) cmH2O have been reported during unassisted breathing in ARDS, with individual 

measurements as high as 31 cmH2O.103 Also subjects recovering from COVID-19 ARDS were observed 

generating large negative intrathoracic pressures during weaning. Of particular interest, subjects who 
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developed relapse respiratory failure 24h after a weaning trial generated greater negative pressure 

swings than those who did not: 18 (15-26) vs. 15 (7-18) cmH2O; several of whom generated pressure 

swings > 30 cmH2O.104 And in subjects with acute hypoxemic respiratory failure (78% with ARDS) 

generating a spontaneous VT > 9.5 mL/kg was independently associated with NIV failure.105 Moreover, it 

was observed that maintaining a VT of 6-8 mL/kg was possible in only 23% of subjects despite pressure 

support levels used in spontaneous breathing trials (ie, 7 cmH2O). This underscores the general difficulty 

in maintaining LPV goals in critically ill patients with heightened respiratory drive. 

Invasive Ventilation Usage and Associated Mortality

Concern during the first months of the pandemic focused on extraordinarily high mortality 

associated with invasive ventilation. This was based largely upon 4 studies totally less than 500 cases.22-25 

That Chen and colleagues25 reported all 17 invasively ventilated subjects died may have garnered 

disproportionate attention. 

By the end of 2020 a large number of studies that included data on invasive ventilation had been 

published (Supplementary Table 1).22-25, 34, 106-128 Regarding the need for invasive ventilation 32 

observational studies with over 15,000 subjects reported median (IQR) usage of 23% (13-54%) with a 

corresponding mortality of 49% (31-70%). Some of the highest mortality rates (> 80%) were reported early 

on from countries and regions ravaged by the pandemic.24, 25, 34, 106, 127 These represented the least 

prepared and also prior to discovering effective pharmacologic therapies.129 

Because it was imperative to disseminate even preliminary information during the crisis, over half 

of these studies ceased data collection prior to hospital discharge and before establishing definitive 

outcome data. An international meta-analysis attempted to compensate for this by estimating both the 

lowest and highest possible mortality rates (ie, assuming all outstanding cases either survived or 

succumbed to COVID-19).130 These estimates ranged from lowest 43% (95% CI, 36-51%) to highest 64% 
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(95%CI, 56-72%) mortality. When restricted to completed outcome data, the mortality was 49.5%. 

Another international study focused on hospital mortality differences based upon “organ support”.131 

Among hospitalized subjects not requiring either invasive ventilation, renal replacement therapy or 

vasopressor therapy the mortality was only 8%. In contrast, mortality was 40.8% in those requiring only 

mechanical ventilation and increased to71.6% in those requiring dialysis and vasopressor support (ie, 

multi-organ dysfunction syndrome or MODS). 

For perspective, observational studies of ARDS in the LPV era have reported 95% confidence 

intervals for mortality of 31-39% (mild), 37-43% (moderate). and 42-50% (severe).64 And similar to COVID-

19, when ARDS was associated with renal failure mortality risk increased to 80% in some studies.132 COVID-

19 mortality associated with invasive ventilation is similar to that observed during the SARS CoV-1 

pandemic (45-48%),133, 134 and lower than that observed with the Middle East Respiratory Syndrome 

corona virus (MERS CoV) epidemic (60-74%).135-137

Invasive Ventilation Duration

Prolonged invasive ventilation also has been observed with COVID-19.111 In the aforementioned 

studies 16 reported duration as it pertained to survivors, time to first successful extubation trial, or based 

upon the presence of MODS. With one exception central tendency exceeded a week.118 Another study 

reported duration was not appreciably different between survivors and non-survivors; moreover in those 

intubated following NIV failure mean duration increased by 2 days (15 to 17).126 

Acute kidney injury and the need for renal replacement therapy had a variable impact on invasive 

ventilation duration depending upon outcome.138 Acute kidney injury alone increased median duration 

for all subjects versus survivors by 2.5 and 3.5 days, respectively. Among those also requiring dialysis 

overall median duration was unaltered (14 days), but increased substantially between survivors who 
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required dialysis therapy compared to survivors not requiring dialysis: 28.6 (21.1-37.2) vs. 15.0 (9.1-19.6) 

days. 

This exemplifies the problem with collecting data during a pandemic. The urgent need for 

information virtually compels reporting incomplete outcome data distinct from established norms (eg. 

status at hospital discharge or Day 90). In consequence the interpretation of invasive ventilation duration 

(or associated mortality) can be misleading. In one study 35% of subjects successfully extubated had a 

median duration of 10 (6-15) days, whereas 65% remained ventilator dependent with median duration of 

18 (14-24) days when data collection stopped. 111

For perspective, randomized controlled trials of lung protective ventilation in ARDS (wherein 

comorbidities are largely removed as a factor) the mean or median duration of invasive ventilation for 

lower versus higher PEEP strategies was similar to those reported for COVID-19, respectively: 13.5 and 

14.2 days,40 21 and 25 days,44 10 days each,43 and 22 and 17 days.139 In addition, a large observational 

study of weaning ARDS subjects either by spontaneous breathing trials/daily sedation interruptions or 

usual care practices produced findings within the range reported in COVID-19: median (IQR) of 9 (4-17) 

and 14 (6-29) days respectively.140

PEEP and Tidal Volume Parameters 

Twenty-four reviewed studies provided initial ventilator data (Table 3).84, 107, 108, 111, 114, 116, 117, 121, 

128, 141-154 In 22 of these mean/median PEEP requirements were 10-16 cmH2O (Table 3, Fig 1). A crude 

approach for determining the need for particularly high PEEP levels (ie, approaching the “super-PEEP” 

threshold of 20 cmH2O) are values demarcating 1 standard deviation (SD) above the mean, or the 75th 

percentile. In only 4 (18%) studies did these demarcation thresholds exceed 16 cmH2O and only one 

reached 20 cmH2O.128, 144, 148, 150 By comparison, lower range PEEP requirements (ie. demarcated by 1 SD 

below the mean or 25th percentile) were twice as frequent with 36% of studies reported values < 10 
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cmH2O. For perspective, general PEEP requirements in ARDS during LPV are 10-18 cmH2O for the vast 

majority of patients.155 These findings suggest that PEEP requirements in COVID-19 associated ARDS are 

not different from the general ARDS population. 

Among 18 reviewed studies reporting VT in mL/Kg, 94% found mean/median values < 8 mL/kg and 

78% at < 7 mL/kg (Table 3, Fig 2). Again, using the demarcation points described above violation of LPV VT 

parameters (> 8 mL/kg) was reported in only 17% of studies;68, 111 suggesting that COVID-19 VT 

management was largely achieved within accepted LPV guidelines and liberalization was not widely 

practiced.

Respiratory System Compliance 

Type L COVID-19 (“atypical ARDS”) was observed in ~70-80% of ventilated subjects in Italy during 

the first months of the pandemic. The salient characteristic being relatively preserved CRS (ie. > 50 

mL/cmH2O) versus Type H (“typical ARDS”) demarcated by CRS < 40 cmH2O observed in only ~20-30% of 

subjects.8, 58 Given that context, studies with timeline data accompanying invasive ventilation 

characteristics reported intubation occurred from 0-7 days after hospital admission with baseline 

observations proceeding soon afterwards (ie, mostly subjects with early ARDS).108, 116, 121, 142, 147, 153, 154, 156 

In 68% of reviewed studies the central tendency for CRS was <40 mL/cmH2O and in only 9% did it 

reach 50 cmH2O.68, 70, 107, 108, 111, 114, 116, 121, 128, 142, 144-153, 157, 158 This was similar to non-COVID ARDS managed 

with LPV (32-38 mL/cmH2O),40, 44, 159-161 but higher than ARDS studies preceding LPV (30-34 mL/cmH2O).162 

CRS values at 1 SD above the mean or the 75th percentile > 50 mL/cmH2O were reported in 43% of studies 

(Fig 3).68, 70, 107, 145, 147, 148, 153 However, with one exception,68 the corresponding PEEP levels were 12-20 

cmH2O; thus the relevance of higher CRS in assessing Type-L prevalance remains uncertain. In the largest 

study focused on COVID-19 lung mechanics CRS decreased over 14 days from 38±11 to 31±14 

mL/cmH2O.151 This was consistent with COVID-19 pathologic patterns wherein early on (hospitalization 
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Days 0-8) diffuse exudative patterns were prominent; replaced by pronounced fibroproliferative patterns 

afterwards.88 

Thus, contrary to initial reports from Italy, CRS was not well preserved. Even the higher dispersion 

of CRS values mostly corresponded to higher PEEP (14-20 cmH2O); that likely improved CRS relative to what 

was measured preceding PEEP titration (eg, conventional initial PEEP of 5 cmH2O).68 Nonetheless, the 

puzzling observations of preserved CRS reported in Italy also were reported anecdotally in nearby 

Greece.36, 82 This raises an interesting question that perhaps a since-displaced CoV-2 variant circulating 

early on in Southern Europe might have had relatively slower replication, and thus slower progression of 

lung injury. 

Lung and Chest Wall Compliance 

Prior to the advent of LPV pathologic alterations in lung and chest wall compliance were measured 

in numerous studies. In studies reporting mean CRS of 30-34 mL/cmH2O, corresponding mean lung and 

chest wall compliances were 32-72 mL/cmH2O and 59-147 mL/cmH2O respectively: reductions of ~40-60% 

and 50-80% from normal respectively.162 

Only 2 studies have reported lung and chest wall compliance in COVID-19. One study in which 

median (IQR) PEEP was 14 (12-15) cmH2O, corresponding median values for CRS, lung and chest wall 

compliance on the first day of invasive ventilation were 32, 41 and 154 mL/cmH2O respectively, and were 

consistent with historical values reported in ARDS.153 The other study collected data within 48hr of 

intubation at a median (IQR) PEEP of 10 (8-12) cmH2O.147 Although the median CRS (44 mL/cmH2O) was 

higher than historical values, both median lung and chest wall compliances (59 and 144 mL/cmH2O 

respectively) were consistent with corresponding historical values. Although based upon limited data 

pathologic alterations in both lung and chest wall compliance in COVID-19 were similar to that reported 

in non-COVID ARDS.
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The Interplay of Oxygenation, PEEP, and Compliance 

In the early phase of COVID-19 ARDS oxygenation fell within the Berlin Definition boundaries of 

moderate ARDS with PaO2/FIO2 central tendencies across most studies of 101-198 mmHg.68, 70, 107, 108, 111, 114, 

116, 117, 121, 128, 141, 142, 145, 149-151, 153, 154, 158 Using the previously described lower and upper demarcation criteria 

40% of studies had PaO2/FIO2 of < 100 mmHg whereas 55% had PaO2/FIO2 > 200 mmHg (Fig 4). 

The relevance of this data obviously is limited by the corresponding PEEP at these demarcated 

boundaries. For 16 studies that also reported PEEP data, 6 in which lower PaO2/FIO2 boundaries represented 

severe ARDS the corresponding PEEP boundaries were 7-11 cmH2O; 5 of which were < 10 cmH2O.70, 108, 111, 

147, 149, 151 In 9 studies reporting upper PaO2/FIO2 boundaries representing mild ARDS the corresponding PEEP 

boundaries were 12-18 cmH2O, and in 8 studies was > 14 cmH2O.107, 114, 116, 117, 123, 128, 142, 145, 150 The 

relationship between central tendencies of PaO2/FIO2 and PEEP across these studies showed a moderately 

high correlation (R = 0.77 [95% CI:0.56-0.88] P < 0.001). This suggests initial oxygenation defects reported 

in COVID-19 mostly reflected how PEEP was being used rather than providing an accurate assessment of 

the underlying oxygenation defect. Moreover, it appears that PEEP levels required to stabilize oxygenation 

in COVID-19 ARDS are not different from that used in non-COVID ARDS.

Lung Recruitment Potential 

Lung recruitment potential in ARDS is multifactorial with both limited application and variable 

efficacy. Efficacy depends more upon both the timing of recruitment relative to ARDS evolution (ie, early 

exudative vs. later fibroproliferative phase) and the severity and distribution of lung injury (ie, diffuse vs. 

lobar patterns), than it does to lung injury etiology.163 Five studies assessed recruitment potential in 

COVID-19 associated ARDS using a 10 cmH2O increment or decrement in PEEP (Supplementary Table 2).81, 

147, 154, 164, 165 
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Four studies used the recruitment-to-inflation ratio (R/I) to assess recruitment potential. Briefly, 

immediately following the sudden application or withdrawal of PEEP expired VT will decrease or increase 

respectively compared to prior breaths. This is because gas is either “trapped” by increased PEEP or 

“released” by decreased PEEP. The trapped or released volume represents changes in EELV, so that 

“recruitment compliance” is calculated as expired ∆V ÷ ∆PEEP. This value is compared to CRS measured at 

a PEEP of 5 cmH2O (ie, compliance of the “baby lung”); based on the assumption of linear CRS without 

changes in aerated lung units.166 The R/I validation study determined that values > 0.5 were indicative of 

high recruitment potential whereas values below 0.5 indicated poor recruitment potential.166

Four studies assessing R/I in COVID-19 presented evenly divided results, each reporting either 

poor or good recruitment potential. Yet most studies noted a wide range of individual R/I values.147, 154, 165 

Those with the lowest recruitment potential were studied in the fibroproliferative stage of ARDS and had 

extremely low mean CRS (20 cmH2O).164 Similarly, Beloncle et al.154 found that when R/I was repeated 5 

days later, 30% of those initially classified as having high recruitment potential had transitioned to low 

recruitment potential with a corresponding decline in CRS. 

Two of 5 studies that recorded CRS at each PEEP level observed that oxygenation and EELV 

increased markedly at higher PEEP levels despite exhibiting both declining CRS and elevated stress index.81, 

165 This suggested recruitment occurred simultaneously with regional overdistension. Overall, the findings 

of recruitment potential in COVID-19 associated ARDS are consistent with those in non-COVID ARDS; 

specifically the timing of recruitment relative to ARDS onset.163

The Role of NIV in ARDS and Viral-Induced ARDS

Managing ARDS with NIV is controversial as the syndrome itself independently predicts 

therapeutic failure,167 with overall intubation rates of 30-61% in some studies.105, 167-173 In other studies, 

NIV failure rises with increasing ARDS severity from 19-22% (mild), 42-73% (moderate) and 47-84% 
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(severe).167, 170, 171 In addition, specific PaO2/FIO2 nodal points of < 150 mmHg,105, 167, 168, 171, 173 < 175 mmHg,169 

and < 179 mmHg)170 are associated with NIV failure. NIV failure is strongly associated with MODS reflected 

in elevated illness severity scores and septic shock.167-174 ARDS associated with viral pneumonia has 

produced mixed results. NIV failure in SARS CoV-1 was markedly lower (30-33%)175-177 compared to 

Influenza A/B (44%),174 H1N1 (59-85%),178-181 and MERS (92%).182 During COVID-19 a national database 

study reported NIV failure of 49%.126 

The Role of NIV in COVID-19

In China where the initial treatment approach to COVID-19 favored NIV,11 an early nationwide 

study reported that NIV accounted for 87% of all mechanical ventilation with a substantially lower failure 

rate of 25%, and associated mortality of 17% (compared to 50% in those requiring invasive ventilation).122 

A similar study from Wuhan also reported higher initial NIV usage (57%) with associated mortality of 41% 

versus 92% in those requiring invasive ventilation.24 

Specific NIV studies in COVID-19 largely focused on the use of CPAP in the non-ICU setting (Table 

3). 183-196 Unfortunately 46% of these were research letters often lacking pertinent data.183-188 Nonetheless, 

71% of all studies reported relatively low failure rates of 11-28%; and relatively low associated mortality 

among those without care limitations (< 30%).154, 183-185, 187, 191, 193 This was accomplished mostly with 

moderate CPAP (< 12 cmH2O). However, these results often were accompanied either by low, vague 

thresholds for escalating care from low-level oxygen therapy (eg, supplemental O2 > 6L/min to maintain 

SpO2 > 92%),183, 186 or provided no documentation whatsoever.185, 188, 196 

In 8 traditional observational studies, failure rates were 17-57% with associated mortality of 22-

97%.189-196 In some studies substantially higher mortality was reported in subjects in which the pre-NIV 

PaO2/FIO2 was < 150 mmHg (53%),189 or had care limitations in place (55-72%).187, 190, 195 
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NIV duration was reported in 50% of studies with median values of 5-6 days.183, 190 In some studies 

median duration was 3-8 days when therapy was successful compared to 0.7-8 days in those requiring 

intubation, and 1.8 days in those with care limitations in place.185 

Risk factors associated with NIV failure included increased age,186, 189, 190, 195, 196 admission 

Sequential Organ Failure Assessment (SOFA) score,185, 193, 196 Severe Acute Physiology Score (SAPS-III),196 

vasopressor use,196 renal replacement therapy,196 and number of comorbidities.190, 193 Likewise, increased 

levels of C-reactive protein,187, 189, 195 Interleukin-6,187 lactate dehydrogenase,190 d-dimers,186 and 

decreased platelet levels,189 also were associated with NIV failure. Together these signify marked 

inflammation often observed in MODS, endothelial dysfunction, pulmonary hypertension and a 

procoagulant state. 

Pulmonary related variables associated with NIV failure included severity of pneumonia at hospital 

admission,187 decreased time to oxygen therapy failure (particularly when it resulted in PaO2/FIO2 < 150 

mmHg),190 and hyperpnea (ie, median minute ventilation of 15.8 L/min corresponding with median PaCO2 

of 41.5 mmHg).186 Despite the general association between low PaO2/FIO2 and NIV failure, some studies 

found that neither baseline PaO2/FIO2 values,186 nor a cut-off of < 150 mmHg were predictive.184 

Nonetheless, larger studies affirmed the predictive value when PaO2/FIO2 was < 150 mmHg.189, 190 Successful 

NIV therapy was characterized by marked improvement in PaO2/FIO2 and decreased respiratory f after 

initiation (particularly a f < 30) along with sustained PaO2/FIO2 > 150 mmHg over the course of therapy.190

The characteristics of NIV use and outcomes in COVID-19 associated ARDS appear similar to those 

in non-COVID ARDS in terms of the main drivers of therapeutic failure: 1) poor baseline oxygenation (and 

absence of sustained improvement with therapy), 2) co-morbidities and 3) illness severity and the 

presence of MODS. That several of these factors also drive mortality during invasive ventilation should be 

considered when judging the relative efficacy of either therapy.
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The Risk of Healthcare Provider Cross Infection during NIV

Only a few studies reported healthcare provider infection data.183, 184, 186, 194 Two studies reported 

no infections when healthcare providers had access to the full range of personal protective equipment 

and when environmental controls were in place.184, 186 Another study reported only that COVID-19 

infection rates among healthcare providers increased from 6 to 10% after implementing NIV (the only 

detail  provided was that bacterial filters were placed on the expiratory limb of the circuit).183 The most 

detailed information was provided by a study from Lombardy Italy during the initial wave when hospital 

resources were extremely limited. Despite the availability of personal protective equipment, healthcare 

provider infection rate was high (11.5%) and corresponded to a lack of negative pressure rooms for 

conducting NIV therapy.194 

During the 2003 SARS Co-V-1 pandemic healthcare provider infection primarily occurred prior to 

identification of the highly contagious virus as the source and therefore, prior to instituting protective 

measures.27, 133, 197, 198 When healthcare providers were given access to the full range of personal 

protective equipment (along with stringent environmental controls) there was no further incidence of 

cross infection.175, 199

Summary Observations

It was perhaps inevitable that COVID-19 would rekindle the long, contentious debate over what 

constitutes ARDS and its management. This issue dates back to the mid-1970s with Dr. Petty’s 

“confessions of a lumper”,1 and has continued throughout the history of ARDS reflected in the need to 

develop a lung injury score,200 the American European Consensus Conference definition,201 and the Berlin 

Definition.38 It is quite possible that in the aftermath of COVID-19, the definition of ARDS will be re-

examined, and perhaps modified to adjust for how specific viral pathogens might alter the progression of 

acute lung injury. The unanticipated pathophysiologic effects from SARS Co-V utilization of the ACE-2 
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receptor to infect pulmonary tissue stands as an important lesson to be incorporated into our 

understanding of ARDS. 

And in answer to the controversies that animated the early months of the pandemic, the vast 

majority of patients with COVID-19 requiring invasive ventilation ultimately presented with ARDS. This is 

supported by its viral etiology, its histopathologic pattern and evolution, radiographic presentation and 

evolution, PEEP requirements, severity of hypoxemia, compliance, recruitment potential, duration of 

invasive ventilation, and responsiveness to NIV. All of these characteristics are uniformly consistent with 

non-COVID ARDS. As regards mortality associated with invasive ventilation in COVID-19, the majority of 

studies found it to be within or below that reported in the general ARDS population. 
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Figure Legends

Fig 1. Distribution of baseline PEEP requirements during invasive ventilation ordered from lowest to 

highest mean or median values (S denotes only the study order) Dispersion of values as either 1 standard 

deviation above/below the mean or the 25th/75th percentile.

Fig 2. Distribution of baseline tidal volume (VT) during invasive ventilation ordered from lowest to highest 

mean or median values (S denotes only the study order) Dispersion of values as either 1 standard deviation 

above/below the mean or the 25th/75th percentile.

Fig 3. Distribution of baseline respiratory system compliance (CRS) during invasive ventilation ordered from 

lowest to highest mean or median values (S denotes only the study order) Dispersion of values as either 

1 standard deviation above/below the mean or the 25th/75th percentile.

Fig 4. Distribution of baseline PaO2/FIO2 (arterial oxygen tension-to inspired oxygen fraction) during invasive 

ventilation ordered from lowest to highest mean or median values (S denotes only the study order) 

Dispersion of values as either 1 standard deviation above/below the mean or the 25th/75th percentile.
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Table 1. Proposed COVID-19 phenotypes of respiratory failure and early management 
recommendations*

Type L Type H

Original designation Type 1 Type 2

Time course Early Late

Defining characteristic ~preserved lung compliance (low 
lung elastance)

decreased lung compliance (high 
lung elastance)

CRS demarcation > 50 mL/cmH2O < 40 mL/cmH2O

Chest CT findings • preserved lung volume

• ↓% non-aerated lung tissue

• ↑lung weight

• ↓ lung volume

• ↑% non-aerated lung tissue

• ↑↑ lung weight

Most salient gas exchange 
characteristic

Severe hypoxemia 
disproportionate to % non-
aerated lung tissue

Severe hypoxemia proportionate 
to % non-aerated lung tissue

Primary source of severe 
hypoxemia

↓V/Q ↑QS/QT

LPV settings

VT (mL/kg)

f

PEEP (cmH2O)

6-9†

15-20

8-10

< 6

 — ‡

> 14

Prone Positioning “Rescue therapy”: ↑ V/Q

Prolonged duration not advised: 
marginal benefit at best (ie. 
minimal lung recruitment 
potential)

Prolonged course (16-20h/d) to 
facilitate lung recruitment. 
Substantial benefit likely as in 
non-COVID-19 ARDS

Inhaled Vasodilators Questionable benefit due to loss 
of apparent “vasoplegia” (ie. loss 
of vasomotor tone). 

Potential benefit as pulmonary 
hypertension is associated with 
severe non-COVID-19 ARDS. 
Suggests speculation that partial 
resolution of vasoplegia might 
occur over disease course.

Key: ARDS = acute respiratory distress syndrome, COVID-19 = corona virus disease 2019, CRS = 
respiratory system compliance, CT = computer tomography, f = respiratory frequency, LPV = lung 
protective ventilation, PEEP = positive end-expiratory pressure, QS/QT = intrapulmonary shunt 
fraction, V/Q = ventilation-to-perfusion ratio, VT =- tidal volume. *based on references 7 and 8. 
†increases > 6 only for hypercapnia or attempting to reduce dyspnea (rather than increasing f) ‡not 
specified.  

Page 42 of 55Respiratory Care



2

Table 2 Mechanical ventilation characteristics

Study Setting/N PaO2/FIO2 

(mmHg)

CRS 

(mL/cmH2O)

PEEP 

(cmH2O)

VT (mL/kg) or 

mL

Chiumello68* SC, N = 32 107±60 50±15 NR 7.7±0.9

Chiumello68† SC, N = 32 160±62 50±16 NR 8.4±1.9

Bos70 SC, N = 38 132±48 49±24 10 (9-12) 424±73

Grasselli123 MC, N = 1,150 160 (114-220) NR 14 (12-16) NR

Liu153 SC, N=8 230±49 34±8 10±1 7.5±0.6

Botta116 MC, N = 553 159 (129-201) 32 (26-40) 14 (11-15) 6.3 (5.7-7.1)

COVID Crit Care 

Group117

MC, N = 4,643 154 (103-222) 33 (26-42) 12 (10-14) 6.1 (5.8-6.7)

Ziehr142 SC, N = 66 182 (135-245) 35 (30-43) 10 (8-12) NR

Hernandez-

Romieu121

SC, N = 231 148 (111-205) 34 (27-47) NR NR

Haudebourg147 SC, N = 30 111 (96-128) 44 (35-51) 10 (8-12) 6.0 (5.9-6.7)

Zangrillo143 SC, N = 73 NR NR 12 (10-14) 6.7 (6.0-7.5)

Bhatraju144 MC, N =24 NR 29 (25-36) 13 (11-17) NR

Mitra114 SC, N = 117 180 (148-216) 35 (31-44) 12 (10-14) 400 (350-

450)

Schenck111 SC, N = 267 103 (82-134) 28 (23-38) 10 (8-12) 7.0 (6.1-8.1)

Rojatta145 SC, N = 41 183±69 42±19 13±2 NR

Barbeta107 SC, N = 50 174 (128-232) 40 (33-52) 13 (11-14) 6.8 (6.3-7.3)

Ferrando108 MC, N = 742 120 (83-177) 35 (27-45) 12 (11-14) 6.9 (6.3-7.8)

Sjoding146 SC, N = 130 NR 35 (27-43) 12 (8-14) 5.9 (5.2-6.9)

Zangrillo143 SC, N =73 NR NR 12 (10-14) 6.7 (6.0-7.5)

Lenka148 SC, N = 32 NR 44 (31-59) 16 (14-20) NR

Brault149 SC, N = 24 101 (81-126) 33 (26-41) 12 (7-15) 6.1 (5.4-6.8

Cummings128 MC, N = 203 129 (80-203) 27 (26-36) 15 (12-18) 6.2 (5.9-7.2)

Diehl150 SC, N = 13 198 (167-298) 40 (33-45) 16 (15-17) 6.0 (5.2-6.2)

Vanderbunder151 IMC, N = 372 132 ± 53‡ 38 ± 11 12 ± 3‡ 6.3 ± 0.8‡
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Kassis153 SC, N =40 150 (123-182) 41 (34-50) 14 (12-15) 6.2 (5.8-6.7)

Beloncle154 SC, N = 25 135 (119-195) NR 12 (10-15) 6.0 (5.9-6.1)

Auld158 SC, N = 165 132 (100-178) 34 (28-46) NR NR

Key: CRS = respiratory system compliance, IMC = international multicenter study, MC = multicenter 

study, NR = not reported, PaO2/FIO2 = ratio of arterial oxygen tension to inspired oxygen fraction, PEEP 

= positive end-expiratory pressure, SC = single medical center, VT = tidal volume, *matched cases to 

non-COVID ARDS by PaO2/FIO2, †matched cases to non-COVID ARDS by CRS, ‡Study reported mean CRS 

for the entire sample and then subdivided into cohorts by a cut-off of 35.4 mL/cmH2O. As there was 

little distinction between cohorts in terms of PaO2/FIO2, PEEP and VT, values of the higher compliance 

cohort are reported. 
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Table 3 Non-invasive ventilation usage and outcomes

Study,

Setting

N 

NIV Evaluation

• Initial O2 Rx 

• Hypoxemia Criteria

• Baseline PaO2/FIO2

NIV Failure

ETI

Associated 

Mortality 

NIPPV/CPAP: 

Parameters 

Treatment Duration

Time to NIV Failure

Brusasco184

SC, GW/SCU

N=64 

• VM (FIO2 0.50)

• PaO2/FIO2 < 200

• PaO2/FIO2: 119 (99-

153)

ETI: 11% 

Mortality: 6% 

CPAP: 10 cmH2O

Treatment Duration: NR

Di Domenico195

SC, GW/SCU

N=90

• O2 Mask 12L/min

• SpO2 < 90%

• 248±17

• 186±20(DNR/DNI)

Unrestricted Care: 

ETI: 57% 

Mortality:47% 

DNR/DNI Care: 

Mortality 89%

Parameters:NR 

Treatment Duration: NR

Time to NIV Failure: < 1d

Gaulton188*† 

MC, ICU

N=59

• NR

• NR

• NR

ETI: 18%

Mortality: NR

CPAP: 11±2 cmH2O

Treatment Duration: NR

Oranger183

SC, GW/SCU

N=38

• NR

• O2 > 6L/m to keep 

SpO2 > 92%

• NR

ETI: 24% 

Mortality: 0%

CPAP: 10(8-12) cmH2O

Treatment Duration: 

5 (2-8)d; 8(4-11)h/d

Sivaloganathan185

SC, ICU, GW/SCU

N=58

• NR

• NR

• NR

ICU

ETI: 47% 

Mortality:14% 

DNR/DNI Care: 

Mortality 83%

CPAP: NR

Treatment Duration

No ETI:72 (41-132) h

Time to ETI: 17 (4-31) h

55% failure < 24h

DNI: 44 (8-103) h
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Avdeev186

MC, GW/SCU

N=61

• NR

• O2> 6L/min O2 to 

keep SpO2 > 92%

• PaO2/FIO2: 164 (131-

200)

ETI: 28%

Mortality: 88%

CPAP (74%): 10(10-12) cmH2O

∆PS/PEEP (26%): 10 (8-12) 

/10(10-13) cmH2O

Treatment Duration

No ETI: 8(6-11) d

Time to ETI: 3(3-8) d

Aliberti187*

MC, GW/SCU

N=157

• VM FIO2 > 0.50 or 

NRM

• PaO2/FIO2 < 300

• PaO2/FIO2: 143 (97-

203)

ETI:22% 

Mortality: 26%

DNI/DNR Care

Mortality: 55%

CPAP: 11±2 cmH2O

FIO2: 0.6(0.5-0.6)

Treatment Duration

Success: 7(4-12) d 

Failure: 7 (1-8) d 

Time to ETI: 3(2-5) d

Bellani189*

MC, GW/SCU and 

ICU

N=798

• NR

• NR

• PaO2/FIO2: 168±98

ETI: 17% 

Mortality without 

ETI: 22%

Mortality when 

initial PaO2/FIO2 < 

150: 53%

85%CPAP: 11±3 cmH2O

10% NIPPV (data NR)

Treatment Duration NR

Admit to NIV: 1 (0-4) d

Time to ETI: 8 (5-13) d

Coppadoro190*

MC, GW/SCU 

N=303

• NRM

• NR

• PaO2/FIO2: 103 (79-

176)

Unrestricted Care: 

ETI: 31%

Mortality: 41%

DNI/DNR Care

Mortality:72% 

CPAP: 10 (7-10) 

Treatment Duration

6 (3-9) d; 21h/d

Admit to NIV: 1 (0-2) d

Menzella193

SC, GW/SCU

N=79

• VM

• PaO2/FIO2: 100-199 

on VM FIO2 0.60

• PaO2/FIO2: 120±42

ETI: 27%

Mortality: 25%

BiPAP: 18±2/9±2 cmH2O

Treatment Duration

All: 7±5 d

Success: 9±4 d
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Death: 6±4 d

Time to ETI: 3±3 d

Franco194‡

SC, GW/SCU

N= 507

• NRM 10-15 L/m

• SaO2 < 94%

• PaO2/FIO2: 150±90 

(CPAP) and 138±66 

(PS)

ETI: 25% (CPAP), 

28% (PS)

Mortality: 

30%,30%

CPAP: 10±2 cmH2O

PS ∆17±3 / PEEP 10±2 cmH2O

Treatment Duration: NR

Baqi192

SC, ICU

N=100

• Basic O2 Rx to keep 

SpO2 > 92%

• PaO2/FIO2: < 300

• Baseline: NR

ETI: 40%

Mortality: 97%

Parameters: NR

Treatment Duration:

4 (2-6) d

Grieco191*

MC-RCT, ICU

N=109

• VM FIO2 0.24-0.60

• PaO2/FIO2: < 200

• PaO2/FIO2: 102 (82-

125)

ETI: 28% ETI

Mortality: 24% 

∆PS/PEEP: 10(10-12)/12(10-12) 

Treatment Duration: NR

Initial Rx: 48h continuous NIPPV 

Kurtz196

MC

N=4188

• NR

• NR

• PaO2/FIO2: 216 (89-

329)

ETI: 52% NR

NR

NR

Key: BiPAP = bi-level positive airway pressure, DNI/DNR = do not intubate/do not resuscitate, ETI 

= endotracheal intubation, GW/SCU: general ward or COVID-19special care unit, MC = multicenter 

study, NA= not applicable, ND = national database, NIPPV = non-invasive positive pressure 

ventilation, NIV = noninvasive ventilation, NR = not reported, NRM = non-rebreather mask, 

PaO2/FIO2 = arterial oxygen tension-to-inspired oxygen fraction ratio, PS = pressure support, RCT = 

randomized controlled trial, Rx = therapy, SaO2 = arterial oxygen saturation, SpO2 =oxygen 

saturation by pulse oximetry, SC = single medical center, VM = venti mask, *helmet interface only, 
†Enrolled subjects with body mass index > 25kg/M2. ‡mixed helmet and facemask use (helmet: 

99% during CPAP and facemask 79% during NIPPV))

Page 47 of 55 Respiratory Care



7

Supplementary Table 1. Invasive mechanical ventilation usage and outcomes in hospitalized subjects

Study 

Period

Data Source %MV Duration (d) MV-Mortality

Karagiannidis126 2-4/2020 NDR. N = 

10,021

14.6%* 15.1±12.1 53%

Almazeedi125 2-4/2020 NDR

N = 1,096

2.8% NR 62%†

Haase124 3-5/2020 NDR, N 323 82% 13 (7-21) 41%†

Grasselli141 2-3/2020 MC, N = 

1,1,50

88% NR 26%†‡

Botta116 3/2020 MC, N = 553 NR 13.5 (7.5-22.5) 42%

Zhou23 12/2019-

1/2020

MC, N = 191 17% NR 97%

Wang122 12/2019-

1/2020

MC, N = 1,590 3.1% NR 50%†

Yang34 12/2019-

1/2020

SC, N = 710 3.1% NR 86%

Yang110 3-5/2020 SC, N = 106 61.3% 12 (8-18) 18.5%

Hua24 2-3/2020 MC, N = 469 24% NR 92%

Auld158 3-5/2020 MC, N = 231 75% 9 (5-14) 36%†

Khamis120 2-4/2020 MC, N = 63 25% NR 31%

Richardson106 3-4/2020 MC, N = 1,500 12.2% NR 88.1%

Israelsen119 3-4/2020 SC, N=175 15.4% NR 59.3%†

Regina118 3/2020 SC, N = 145 24.8% 6.0 (5.0-11.0) 9.7%†

COVID Crit Care 

Group117

2-5/2020 MC, N = 4,643 80% 13 (8-18) 31%

Ferguson115 3-4/2020 MC, N = 72 18.1% 17 (13-29) __§

Mitra114 2-4/2020 SC, N = 117 63.2% 13.5 (8-22) 15.4%†

Salacup113 3-4/2020 SC, N = 242 22% NR 70%

Suleyman112 3/2020 MC, N = 355 32% NR 50%

Bahl22 3/2020 MC, N = 1461 21.1% NR 71%
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Chen25 1-2/2020 SC, N = 799 2.1% NR 100%

Schenck111 3-4/2020 SC, N = 267 NR 10 (6-15) II 34.8%†

Barbeta107 3/2020 SC, N = 50 NR NR 34%

Ferrando108 3-6/2020 MC, N=742 NR 14 (7-24) 32%†

Sjoding146 3-6/2020 SC, N =130 NR NR 30%†

Fominskiy138 2-4/2020 SC, N= 112 13 (10-16)

17 (11-28)

16.7%¶

38.9%**

Argenziano109 3-4/2020 SC, N = 850 26% 9 (7-32) 49%†

Giacomelli127 2-3/2020 SC, N = 233 3.4% NR 88%†

Cummings128 3/2020 MC, N = 1150 17.6% 18 (9-28) †† 41%†

Key: MV = mechanical ventilation, MC = multicenter study, NA = not applicable (data not collected 
based on study design), NDR = national data registry, NR = not reported, MN = multinational study, 
*includes those failing trial of non-invasive ventilation †mortality at study closure, ‡intensive care unit 
mortality as approximate invasive MV mortality, §Mortality associated with MV not reported. IIMV 
duration in 77 subjects successfully extubated and 18 (14-24) days in 141 under MV at time data 
collected ceased. ¶without acute kidney injury, **acute kidney injury, ††27(15-32) days among 
survivors. 
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Supplementary Table 2. Recruitment potential in COVID-19 associated ARDS.

Study /N Timing from 
ARDS Onset/ETI

Characteristics R/I
PEEP 

increment and 
directional ∆

Results

Pan164 

N=12

9±6 days

42%: < 5 days

42%: 10-21 
days

PaO2/FIO2: 128±53 
mmHg

CRS: 20±8 
mL/cmH2O

10

15 to 5

R/I: 0.21±0.14 

83%poor recruit

6% daily R/I > 0.5

Mauri165

N=10
5 (1-11) days
60%:< 5 days
30% > 10 days

PEEP: 12(12-15) 
cmH2O
PaO2/FIO2: 99 (69-
145) mmHg 

10

5 to 15
or

15 to 5

R/I: 0.79 (0.53-1.08)*

Range: 0.16 to 1.40*

EELV: 0.80 (0.62-0.99) L*

EELV rec: 0.31(0.26-0.49)L*

∆Pplat/∆PEEP: 1.2/1 
CRS: ↓10% 
PaCO2 : ↑5 mmHg
% ∆ Dorsal V:↑30%* 
% ∆ global inhomogeneity 
index:↓16%*
PaO2/FIO2: ↑58%

Grasso81

N=8
2 days CRS 58±8 

mL/cmH2O
PaO2/FIO2:131±22 
mmHg

10

9 to 19

EELV: ↑0.45±0.1L
CRS: ↓19%
PaO2/FIO2: ↑58%
SI: ↑0.97 to 1.22
CI: ↓19%

Haudebourg147

N=30

2 days CRS: 44 (35-51) 
mL/cmH2O

PaO2/FIO2:119 (97-
163) mmHg

10

15 to 5

0.40 (0.23-0.50)

Beloncle154

N=26

1.5 days

Repeated on 
day 5

PEEP: 12cmH2O

PaO2/FIO2: 135 
(119-195) mmHg

10

15 to 5

R/I: 0.55 (0.47-0.77)

Day1 recruitment potential:

64% median R/I 0.70 (high)

36% median R/I 0.41 (poor)

Day 5: (10 highly 
recruitable subjects still 
intubated): 30% 
transitioned to poor 
recruitment potential.

EELV: ↑0.28 (0.22-0.42)L

CRS: ↓10%
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Key: CI = cardiac index, CRS = respiratory system compliance, EELV = end-expiratory lung volume, 
EELVrec = change in end-expiratory lung volume attributed to lung recruitment, ETI = endotracheal 
intubation, PaO2/FIO2 = arterial oxygen tension to inspired oxygen fraction ratio, PaCO2 = arterial carbon 
dioxide partial pressure, PEEP = positive end-expiratory pressure, Pplat = plateau pressure, R/I = 
recruitment to inflation ratio, *measurements made by electrical impedance tomography. 
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