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BACKGROUND: In patients with acute lung injury (ALI)/acute respiratory distress syndrome
(ARDS), the use of alveolar-recruitment maneuvers to improve oxygenation is controversial. There
is lack of standardization and lack of clinical studies to compare various recruitment maneuvers.
Recruitment maneuvers are closely linked to the selection of positive end-expiratory pressure
(PEEP), which is also a subject of debate. METHODS: With 12 intubated and mechanically ven-
tilated patients with early ALI/ARDS we conducted a recruitment maneuver (sustained inflation at
40 cm H2O for 30 s), then set PEEP at 24 cm H2O, and then we reduced PEEP stepwise, by
4 cm H2O every 10 min. We kept the fraction of inspired oxygen (FIO2

) at 0.8. After each PEEP
decrement step we measured PaO2

. We defined the “optimal” PEEP as the PEEP step above which
PaO2

decreased by > 20%. All the patients then underwent a period of ventilation on the same
settings: tidal volume 6 mL/kg, PEEP at the level set by the physician before the experiment, plateau
pressure < 30 cm H2O. Then each patient underwent 3 ventilation strategies, each applied for one
hour: optimal PEEP alone; optimal PEEP plus one sustained inflation (40 cm H2O for 30 s); and
optimal PEEP plus sigh breaths (ie, twice the baseline tidal volume, plateau pressure < 40 cm H2O)
every 25 breaths. After the application of each PEEP strategy we measured arterial blood gas values
and the static compliance of the respiratory system. RESULTS: The mean � SD optimal PEEP was
12 � 4 cm H2O. The measurements from the standardization periods were comparable between the
3 PEEP groups. In the optimal-PEEP-plus-sighs group the changes in PaO2

(85 � 96%) and static
compliance (14 � 20%) were significantly greater than in the 2 other groups. CONCLUSIONS:
Sighs superimposed on lung-protective mechanical ventilation with optimal PEEP improved oxy-
genation and static compliance in patients with early ALI/ARDS. Key words: acute respiratory
distress syndrome, ARDS, acute lung injury, ALI, alveolar recruitment, low tidal volume, lung-protective
mechanical ventilation, positive end-expiratory pressure, recruitment maneuvers. [Respir Care 2009;
54(7):847–854. © 2009 Daedalus Enterprises]

Introduction

In patients with acute lung injury (ALI)/acute respira-
tory distress syndrome (ARDS), lung-protective mechan-
ical ventilation is strongly recommended, since a large

SEE THE RELATED EDITORIAL ON PAGE 839

randomized controlled trial showed that tidal volume (VT)
of 6 mL/kg predicted body weight and plateau pressure
(Pplat) � 30 cm H2O improved patient survival, compared

to 12 mL/kg VT,1 and 2 other trials of low VT had similar
results.2,3 Three other trials4-6 found no clinical benefit
from limiting pressure and/or volume in patients with
ARDS, but a recent systematic review recommended lung-
protective ventilation for ALI/ARDS.7

Important questions remain. First, low-VT mechanical
ventilation does not definitively protect the lung from
overdistention during tidal breath. End-inspiratory over-
distention occurs in 30% of patients with ARDS receiv-
ing lung-protective mechanical ventilation, as a result of
the extensive consolidated dorsal lung regions that are
not recruited during the tidal breath.8 Second, low VT
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might cause alveolar derecruitment due to insufficient
end-expiratory lung volume. Maneuvers and/or strategies
that recruit alveoli might counteract those adverse effects
of low VT and improve oxygenation, but what should be
the target: to maximize recruitment, or to minimize dis-
tention? And what is the best lung-recruitment method,
given the various recruitment methods’ different effects on
the lungs?9 Third, there is no evidence that recruitment
maneuvers impact patient outcomes. For the ALI/ARDS
lung to be recruited during conventional mechanical ven-
tilation, the airway pressure must be greater than the crit-
ical opening pressure at the end of inspiration and must
be kept above the closing pressure at the end of expira-
tion.10,11 Given the large range of these critical pressures
across the injured lung,10-12 full lung recruitment can only
be obtained by increasing airway pressure to well above
30 cm H2O, at least transiently.13

Positive end-expiratory pressure (PEEP) and recruitment
maneuvers such as sustained inflation or sighs are com-
mon lung-recruitment strategies in ALI/ARDS. Some cli-
nicians have used pressure-controlled ventilation and PEEP
increases at a constant driving pressure.12 These methods
have not been adequately compared in patients with ALI/
ARDS. Furthermore, the efficacy of a recruitment maneu-
ver is closely linked to the selected PEEP, because PEEP
is a recruitment maneuver per se, as it increases the end-
inspiratory transalveolar pressure and prevents derecruit-
ment.14 However, the definition of the optimal PEEP is
still open to discussion, as 3 large randomized controlled
trials found no clinical benefit from a low or a high
PEEP.15-17 Moreover, oxygenation response depends on
the sequence of application of PEEP and the recruitment
maneuver; there is no significant effect on oxygenation if
the PEEP is selected before the recruitment maneuver,18

whereas oxygenation improves if the recruitment maneu-
ver is conducted before selecting the PEEP.19 Our main
objective was to understand the effect of recruitment ma-
neuvers on oxygenation in patients with ALI/ARDS. We
studied whether a decremental PEEP trial could identify

an optimal PEEP and whether a sustained inflation or re-
peated sighs were necessary to maintain lung recruitment.

Methods

The protocol was approved by our local ethics com-
mittee (Comité Consultatif des Personnes se Prêtant à la
Recherche Biomédicale Lyon B, Lyon, France).

Patients

Patients were enrolled if they were invasively mechan-
ically ventilated for ARDS or ALI (as defined by the Amer-
ican/European consensus conference20), and � 18 years
old, and had stable hemodynamics (mean systemic blood
pressure � 75 mm Hg with or without vasopressor), arte-
rial catheter in place, and the next of kin provided written
informed consent. The exclusion criteria were emphysema,
pneumothorax, recent (� 15 d) lung surgery, or air leaks
with persistent bronchopleural fistula.

Patients were orotracheally intubated with a cuffed en-
dotracheal tube (inner diameter 7.0–8.5 mm) (Mallinck-
rodt, Athlone, Ireland) and mechanically ventilated (Ho-
rus, Taema, Antony, France). During the study, patients
were sedated with midazolam (0.05–0.2 mg/kg/h) and
sufentanyl (0.1–0.5 �g/kg/h), and paralyzed with cisatra-
curium (0.2 mg/kg/h).

Protocol

Before the measurements were taken, the trachea was
gently suctioned if needed, without disconnecting the ven-
tilator circuit. The cuff was inflated to 40 cm H2O, and
checked every hour. Throughout the procedure, thorough
care was provided by a physician not involved in the study.
First we standardized the mechanical ventilation settings
in all patients: volumetric mode, constant-flow inflation,
VT 6 mL/kg of predicted body weight, Pplat � 30 cm H2O,
ratio of inspiratory time to total respiratory cycle time 0.33,
respiratory rate adjusted to keep pH � 7.30, and fraction
of inspired oxygen (FIO2

) 0.8, or higher if necessary to
obtain transcutaneously measured oxygen saturation �
88% or PaO2

� 55 mm Hg. PEEP was maintained at the
level set by the physician before the experiment.

The protocol had 2 parts. In the first part,21 PEEP was
titrated in each patient as follows. We applied an airway
pressure of 40 cm H2O for 30 s, then PEEP was set at
24 cm H2O for 10 min and VT was adjusted to keep Pplat

below 32 cm H2O. PEEP was then lowered stepwise, by
4 cm H2O each 10 min, down to zero PEEP. After each PEEP
decrement we measured the arterial blood gases and static
compliance of the respiratory system (Cstat). We defined the
“optimal” PEEP as the PEEP below which PaO2

/FIO2
fell by at
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mation Médicale et Assistance Respiratoire, Hôpital de la Croix Rousse,
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least 20%. If that 20% PaO2
/FIO2

decrement was not obtained,
we selected the PEEP that resulted in the highest PaO2

.
The second part of the protocol consisted of 3 periods of

one hour each, during which each patient underwent the fol-
lowing 3 PEEP strategies, in a random order: optimal PEEP
alone; optimal PEEP preceded by a 30-s sustained inflation at
40 cm H2O; and optimal PEEP with sighs delivered every 25
breaths. A sigh consisted of one VT with a Pplat of 40 cm H2O
and a maximum of twice the standardized VT. The sustained
inflations and the sighs were delivered without disconnecting
the patient from the ventilator. Before each of the 3 experi-
mental PEEP periods, the standardized mechanical ventila-
tion settings were resumed for 10 min. Arterial blood gas
values and Cstat were measured at the end of each period of
standard-settings ventilation and after each 60-min experi-
mental period.

Arterial blood gases was measured with a blood-gas ana-
lyzer (248, Ciba-Corning). Cstat was calculated by dividing
the VT by the difference between Pplat and total PEEP. Pplat

was measured 5 s after an end-inspiratory occlusion, and total
PEEP was measured 3 s after an end-expiratory occlusion.
The VT values and pressures were taken from the ventilator
display. Cstat during the optimal-PEEP-with-sighs period was
measured during a regular inflation, not a sigh inflation.

Statistical Analysis

Values are expressed as mean � SD. We used a linear
mixed-effects model to compare the absolute values and
the relative differences of PaO2

and Cstat at baseline and

60 min. The 3 PEEP strategies were used to define a
3-level group variable, which was taken as the unordered
experimental factor with fixed effects. The factor with
random effects was composed of the 12 patients. We used
analysis of variance to analyze the overall effect of the
PEEP strategy group. We used Helmert contrasts to com-
pare the effect of optimal PEEP with sustained inflation,
and of optimal PEEP with sighs was compared to optimal
PEEP. We conducted the statistical analyses with statistics
software (R, version 2.6.2, R Project for Statistical Com-
puting, http://www.r-project.org). Differences were con-
sidered significant when P � .05.

Results

We enrolled 12 patients with early ALI/ARDS (Table 1).
We started the decremental PEEP trial at PEEP of 24 cm H2O
in 6 patients. In the other 6 patients we started at PEEP of
20 cm H2O, because PEEP of 24 cm H2O caused Pplat

� 32 cm H2O, even after lowering VT to 4–5 mL/kg. The
protocol step from 24 cm H2O to 20 cm H2O was therefore
not done in the latter 6 patients. In patient 6, who was the
most severely hypoxemic, PEEP of 8 cm H2O caused severe
oxygen desaturation, so we brought PEEP back up to
12 cm H2O and kept it there. FIO2

was eventually kept con-
stant at 0.8 in each patient for the whole experiment (ie, the
reported PaO2

values were all obtained with the same FIO2
).

The optimal PEEP averaged 12 � 4 cm H2O. It was
20 cm H2O in 1 patient, 16 cm H2O in 4 patients, 12 cm H2O
in 2 patients, and 8 cm H2O in 5 patients (Fig. 1). In 2 patients

Table 1. Entry Data and Ventilator Settings

Patient No.
Age
(y)

Sex
Days on

Ventilator
Cause of ALI/ARDS PaO2

/FIO2

Lung-
Injury
Score

VT

(mL)
VT

(mL/kg)
PEEP

(cm H2O)
FIO2
(%)

1 55 M 1 Multiple-organ dysfunction, malaria 133 2.75 430 6 12 60
2 65 M 2 Pneumonia 113 2.75 370 6 14 70
3 51 M 2 Multiple-organ dysfunction, pneumonia 175 2.25 400 6 6 40
4 70 F 1 Alveolar hemorrhage 160 2.25 309 6 0 40
5 66 M 1 Pneumonia 150 2.25 360 6 4 80
6 58 M 1 Pneumonia 150 3.25 340 6 18 50
7 80 M 1 Pneumonia 115 2.50 309 6 8 60
8 73 F 2 Septic shock, peritonitis 250 2.00 260 6 8 45
9 75 M 1 Septic shock, aspiration 146 2.25 380 6 5 80

10 41 M 4 Septic shock, pneumonia 197 2.50 460 6 10 50
11 76 F 4 Aspiration, staphylococcal sepsis 125 3.00 299 6 10 80
12 78 F 1 Influenza 150 3.25 279 6 14 80

Mean � SD 66 � 12 2 � 1 155 � 38 2.6 � 0.4 350 � 61 6 � 0 9 � 5 61 � 16

ALI � acute lung injury
ARDS � acute respiratory distress syndrome
VT � tidal volume
PEEP � positive end-expiratory pressure
FIO2 � fraction of inspired oxygen

RECRUITMENT MANEUVERS AND PEEP IN ALI/ARDS

RESPIRATORY CARE • JULY 2009 VOL 54 NO 7 849



(8 and 9, in Fig. 2), Cstat progressively increased, unlike the
other patients, in whom Cstat first increased and then de-
creased. On average, Cstat initially increased along with the
early decrease in PEEP, then declined as PEEP decreased
(Fig. 3). We observed no important adverse effects during or
after the protocol, but 2 patients had a brief drop in blood
pressure that required increasing the vasopressor dose.

For the second part of the study, the ventilation settings
were kept constant: VT 0.35 � 0.06 L, respiratory rate
25 � 5 breaths/min, inspiratory time 0.83 � 0.18 s, in-
spiratory flow 0.43 � 0.05 L/s. With these settings, PEEP,
total PEEP, Pplat, oxygenation, and Cstat did not signifi-
cantly differ between the groups during the standardized
(baseline) ventilation period (Table 2). In the optimal-
PEEP-with-sighs group, the mean sigh VT was
666 � 164 mL, which corresponded to 1.9 � 0.21 times
the baseline VT, and the resulting Pplat was 34 � 6 cm H2O.
At the end of each experimental period, PaO2

and Cstat were
significantly different in each of the 3 groups (see Ta-
ble 2). The baseline and changes to the PaO2

and Cstat (see
Table 2) (Fig. 4) were significantly higher in the optimal-
PEEP-with-sighs group than in the optimal-PEEP group,
whereas optimal PEEP with sustained inflation had no

significant effect (see Table 2 and Fig. 4). The other vari-
ables did not differ between the groups (see Table 2).

Discussion

The main finding of the present study is that sighs su-
perimposed on lung-protective mechanical ventilation sig-
nificantly improve oxygenation and Cstat in patients with
ALI/ARDS.

Our results confirm that lung-protective ventilation with a
VT of 6 mL/kg of predicted body weight is associated with a
potential for alveolar recruitment. Some authors advocate fully
recruiting and opening the lung with a maximum-recruitment
strategy,12 which involves high airway pressure to achieve
and sustain the opening pressure that maintains recruit-
ment,10,11 but that strategy can cause overdistention. How-
ever, Borges et al demonstrated that with this strategy over-
distention did not occur and that maximum alveolar
recruitment reduced the lung heterogeneity.12 This potential
alveolar recruitment can be achieved at a minimal pressure
cost, as in our study, with repetitive sighs and optimal PEEP.

We defined the optimal PEEP as the PEEP that pre-
vented derecruitment, inferred from the oxygenation pro-

Fig. 1. A: Individual PaO2
values during stepwise decrease of positive end-expiratory pressure (PEEP), starting at 20 cm H2O cm H, at a 0.80

fraction of inspired oxygen (FIO2
), in 12 patients. B: Individual values of the change in the ratio of PaCO2

to FIO2
at each PEEP level.
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file after each PEEP decrement. A recent experimental
investigation that included decremental PEEP trials that
started at 24 cm H2O found that derecruitment (identified
via computed tomography as a � 5% increase in lung
tissue) correlated with a sudden drop in oxygenation.21

Furthermore, in patients with early ARDS, Borges et al
found a strong hyperbolic correlation between derecruit-
ment (assessed via computed tomography) and reduced
oxygenation.12 There are numerous ways to select PEEP at
the bedside, but the decremental PEEP test is attractive
because it allows PEEP titration according to the individ-

ual patient’s pathophysiology. Suter et al22 defined opti-
mal PEEP as the PEEP that maximized oxygen transport,
which was associated with maximum compliance of the
respiratory system. Theoretical analysis predicted that max-
imum compliance during a decremental PEEP trial would
coincide with the open-lung PEEP.23 In the present study
Cstat first increased as the PEEP stepped down, and then
declined. The maximum Cstat occurred at the derecruit-
ment level (ie, around optimal PEEP) except in patients 8
and 9, in whom Cstat continued to rise below the optimal
PEEP. This zone of maximum compliance could reflect

Fig. 2. Individual values of the static compliance of the respiratory system (Cstat) during stepwise decrease of positive end-expiratory
pressure (PEEP), starting at 20 cm H2O, in 12 patients.

RECRUITMENT MANEUVERS AND PEEP IN ALI/ARDS

RESPIRATORY CARE • JULY 2009 VOL 54 NO 7 851



the persistence of a maximum recruitment despite lower
PEEP (above the point of closure), with less overdisten-
tion. Half of our patients could not receive the maximum
protocol PEEP (24 cm H2O) because of concern about
their lung safety.

Superimposed sighs significantly improved oxygenation
and Cstat, compared to one sustained inflation, at the same
optimal PEEP. The improvement in oxygenation and Cstat

with sighs may be explained by the following mecha-
nisms, which might act concurrently.

First, the sighs recruited the lung above the optimal
PEEP, which suggests a potential for lung recruitment
above optimal PEEP. The ARDS lung has a low potential
for recruitment: an average 9% of the lung mass in the
airway pressure range 5–45 cm H2O.24 However, the po-

tential recruitment is probably greater in early ARDS,13

even though Gattinoni et al found no difference in recruit-
ment between early and late ARDS.24 It is likely that re-
petitive sighs exploited some of the lung’s recruitability.

Second, optimal PEEP may maintain the recruitment
elicited by sighs across the cycles, but the present data do
not support that hypothesis.

Third, the repeated sighs may oppose the tendency to-
ward lung derecruitment over time during the one-hour
experimental period, by keeping the tidal ventilation along
the expiratory limb of the respiratory system.25

It is interesting to note that, even though the sigh VT

was limited to twice the regular VT, only 3 patients reached
the Pplat limit of 40 cm H2O during sighs. Therefore, the
oxygenation benefit of sighs was obtained at a low pres-

Fig. 3. Mean values of the static compliance of the respiratory system (Cstat) and PaCO2
during stepwise decrease of positive end-expiratory

pressure (PEEP) in 12 patients. The standard deviations are omitted for clarity.

Table 2. Respiratory Mechanics, Hemodynamics, and Arterial Blood Gas Values With 3 PEEP Strategies

Optimal PEEP
Only

(mean � SD)

Optimal PEEP With a
Sustained Inflation

(mean � SD)

Optimal PEEP
With Sighs

(mean � SD)

Baseline 60 min Baseline 60 min Baseline 60 min

PEEP (cm H2O) 9 � 5 12 � 4 9 � 5 12 � 4 9 � 5 12 � 4
Total PEEP (cm H2O) 10 � 4 13 � 4 11 � 4 13 � 4 11 � 4 14 � 4
Pplat (cm H2O) 20 � 4 24 � 5 20 � 5 23 � 5 21 � 5 23 � 5
Cstat (mL/cm H2O) 37 � 11 36 � 10 38 � 12 39 � 13 37 � 12 41 � 13*
Mean systemic arterial pressure (mm Hg) 78 � 8 78 � 7 77 � 8 75 � 8 78 � 9 81 � 10
PaO2

(mm Hg) 111 � 55 140 � 53 114 � 49 160 � 63 110 � 46 182 � 66†
PaCO2

(mm Hg) 40 � 8 41 � 8 41 � 8 40 � 8 41 � 8 40 � 10
pH 7.39 � 0.05 7.39 � 0.05 7.39 � 0.04 7.39 � 0.04 7.39 � 0.04 7.40 � 0.04

* P values (via analysis of variance) for Cst differences: positive end-expiratory pressure (PEEP) strategy factor effect P � .002; optimal PEEP with sustained inflation P � .06; optimal PEEP with
sighs P � .001.
† P values (via analysis of variance) for PaO2 differences: PEEP strategy factor effect P � .001; optimal PEEP with sustained inflation P � .03; optimal PEEP with sighs P � .001.
Pplat � plateau pressure
Cstat � static compliance of the respiratory system
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sure cost. Furthermore, the risk/benefit balance for sighs in
the present study was much lower than in the study by
Pelosi et al, who used 3 sighs a minute, which resulted in
Pplat of 45 cm H2O.26 A recent comprehensive study in
mice suggested that deep inflations (sighs) superimposed
on low-VT ventilation prevented biotrauma by reducing
lung inflammation while maintaining an open lung.27 More-
over, there was a trend for an optimal frequency range of
deep inflations: 2 sighs per minute was superior to 2 sighs
after one hour of mechanical ventilation to reduce the lung
stress.27

We did not directly assess alveolar recruitment, so we
cannot establish that the effects with the sighs resulted
from alveolar recruitment. The fact that the oxygenation

improvement was associated with increased Cstat indirectly
supports that hypothesis, but recruitment should have also
decreased the PaCO2

, which was not the case (see Table 2).
In patients with ARDS, Constantin et al recently found

that both sustained inflation (at 40 cm H2O for 40 s) and
extended sighs (PEEP 10 cm H2O above the lower inflec-
tion point of the pressure-volume curve of the respiratory
system) improved oxygenation, but only the extended sighs
recruited the lung.28

In our study sighs were superior to sustained inflation,
in that sustained inflation did not result in better oxygen-
ation than optimal PEEP alone. Indeed, a single sustained
inflation may not be comparable to repeated sighs. Alter-
natively, perhaps higher PEEP should be used to maintain
alveolar recruitment after a single sustained inflation. In
line with that hypothesis, Girgis et al found that optimal
PEEP averaged 9 cm H2O in 20 patients with ARDS, after
several sustained inflations.19 However, that is the way
both interventions are applied in practice.

The use of recruitment maneuvers in patients with ARDS
is controversial because there is no standardization among
the various recruitment maneuvers, and randomized con-
trolled studies found that a single sustained inflation did
not significantly change oxygenation, compared to high
PEEP alone.18 Moreover, the response to sustained infla-
tion was highly variable in patients with ARDS who were
receiving high PEEP.29 Also, some animal studies raised
concerns about hemodynamic intolerance of recruitment
maneuvers.30-32 In the present study we found no serious
adverse hemodynamic effects, but that assessment was
based on arterial blood pressure measurement, which may
underestimate the effect on cardiac performance.33

Limitations

The present study included only 12 patients, and we did
not directly assess alveolar recruitment. Moreover, oxy-
genation may not be an important clinical outcome for
patients with ALI/ARDS, and a study of this size can’t
provide information on patient outcomes.

Conclusions

In patients with early ALI/ARDS and on lung-protective
low-VT ventilation, the decremental PEEP trial is an efficient
and safe way to determine the patient’s optimal PEEP, and
superimposed sighs sustain the alveolar recruitment. How-
ever, recruitment and oxygenation may not be determinants
of patient-important outcomes, such as survival.
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