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BACKGROUND: PaCO2
as measured during exercise in patients with COPD is poorly predicted

(predicted PaCO2
) from lung function testing and some noninvasive measurements, such as end-tidal

PCO2
(PETCO2

). OBJECTIVE: We performed a number of statistical techniques on PETCO2
and its

interaction with other physiologic variables during exercise testing, in order to improve our ability
to predict PaCO2

. The estimated PaCO2
as determined from these techniques may therefore be used

to contrast the PETCO2
readings that are measured during an incremental exercise test on a breath-

by-breath basis (ie, PaCO2
– PETCO2

), and to identify exercise-induced hypercapnia. METHODS:
Forty-seven men with COPD underwent both pulmonary function testing and incremental exercise
testing until limited by symptoms. Arterial blood gases and exercise physiological measurements
were performed during maximal exercise testing. The prediction equations for PaCO2

were gener-
ated using regression techniques with the leave-one-out cross-validation technique. RESULTS:
Forty-one patients were included in the final analysis after 6 patients were excluded due to inad-
equate data collection. The best prediction equation we found was: predicted PaCO2

� 23.71 �
PETCO2

� (0.9–0.01 � DLCO –0.04 � VT) – 2.61 � SVC – 0.04 � MEP, where DLCO is diffusing
capacity for carbon monoxide in mL/min/mm Hg, VT is tidal volume in L, SVC is slow vital capacity
in L, and MEP is maximum expiratory pressure in cm H2O. The difference between the measured
and predicted PaCO2

at each time point was not statistically significant (all P > .05). The standard
errors of the estimated PaCO2

at each time point were 0.91–1.12 mm Hg. CONCLUSIONS: A
validated mixed-model regression derived equation yields a predicted PaCO2

trend during exercise
that can be helpful when interpreting exercise testing to determine PaCO2

– PETCO2
and exercise-

induced hypercapnia. Key words: hypercapnia; capnography; bicycle ergometer; ventilatory limitation;
mixed model; leave-one-out technique. [Respir Care 2012;57(7):1106–1114. © 2012 Daedalus Enter-
prises]

Introduction

Arterial PCO2
(PaCO2

) is governed by integrated altera-
tions in minute ventilation (V̇E), physiologic dead-space to

tidal-volume ratio (VD/VT), and carbon dioxide output
(V̇CO2

) (ie, Bohr equation). Exercise-induced hypercapnia
(EIH) is a sign of inadequate ventilation that is due to a
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number of physiologic changes in a patient with COPD,
including hyperinflation, reduced gas exchange capabili-
ties (ventilation/perfusion mismatch), increased VD/VT, and
more rarely the opening of a right-to-left shunt.1,2 It is
important to detect the development of EIH in this patient
population so that we may appreciate its mechanisms and
consider additional management strategies.

PaCO2
is highly variable and is poorly predicted from

resting lung function testing.3,4 While there are noninva-
sive tools2,5,6 to measure this parameter, there are many
technical limitations6,7 or conditions, such as anesthesia,
mechanical ventilatory support,8-10 old age,11,12 or COPD,13

that impact its measurement. The diagnosis of EIH or
increased VD/VT is invasive and requires an arterial line.
The multiple arterial blood gas measurements that may be
drawn to determine the VD/VT are also costly.

The inaccuracies of estimating a predicted PaCO2
can be

improved by considering end-tidal PCO2
(PETCO2

) plus VT

in normal adults14 or FEV1 plus VT in patients with COPD.3

Other factors, such as exertional hyperinflation, weakened
inspiratory muscles, and deranged neuroregulatory con-
trol, may also have an impact on EIH.1 Therefore we as-
sumed that it would be too difficult to improve the accu-
rate predicting of PaCO2

by conducting any further
physiological studies. We then hypothesized that by re-
cruiting more physiological variables for statistical analy-
sis our ability to predict PaCO2

would be improved in adults
with COPD.

The study was designed to identify variables for deriv-
ing equations that would more accurately estimate PaCO2

trends in patients with COPD during maximum exercise
testing. The clinicians can compare the PETCO2

trend of the
popularly used 9-panel plot breath-by-breath15 with the
equation-derived estimated PaCO2

. A clinician’s ability to
detect reduced alveolar ventilation and gas exchange ca-
pabilities in patients with COPD could be enhanced by this
information.

Methods

Forty-seven patients, age 50–76 years, with COPD of
varying severity, based on the Global Initiative for Chronic
Obstructive Lung Disease (GOLD) criteria,16 were enrolled
to participate in this study. All subjects were clinically
stable out-patients receiving a regular schedule of orally
administrated or inhaled bronchodilators, with or without
oral prednisolone of � 10 mg per day. Patients with sub-
stantial underlying arrhythmias, a history of malignancy,
diabetes mellitus, cardiovascular or peripheral vascular dis-
ease, or locomotion problems were excluded from the study.
The patients did not participate in any physical training
protocol. However, regular activity was not limited. The
exercise protocol and procedure, as well as the risks of
maximal exercise testing, were explained. The institutional

review board approved this study, and all subjects gave
their consent to participate.

To derive equations for predicting PaCO2
trends, we pro-

spectively collected lung function and exercise data, uti-
lizing multiple arterial blood gas analyses from patients
with COPD, while they were at rest and while performing
a ramp-pattern exercise testing protocol. Several steps of
model screening were performed to select candidate equa-
tions. Both goodness-of-fit measures and cross-validation
techniques were used to assess the model’s validity. Be-
cause of the invasiveness of inserting an arterial line, the
cost of multiple arterial blood gas analyses, and limited
study subjects, a leave-one-out cross-validation was per-
formed, instead of recruiting another large sample to val-
idate the equation. (See the statistical analysis section.)

Pulmonary Function Testing

To select eligible subjects for this study we used spi-
rometry to evaluate the severity of air-flow obstruction.
For a detailed description of the lung function test per-
formed, please refer to the study by Chuang et al.17 The
lung function test was performed before exercise testing
and included maximally forced expired flow curves, lung
volumes, maximum voluntary ventilation, and diffusing
capacity for carbon monoxide (DLCO) (6200 Autobox DL,
SensorMedics, Yorba Linda, California). Maximum in-
spiratory pressure was measured at residual volume (RPM,
Micro Medical, Rochester, Kent, United Kingdom). Max-
imum expiratory pressure was measured at total lung ca-
pacity. Maximum inspiratory pressure and maximum ex-
piratory pressure were each performed 3 times with a one-
minute recovery period between efforts. The best result
was recorded for analysis.

QUICK LOOK

Current knowledge

PaCO2
is difficult to predict from noninvasive measures

in patients with chronic lung disease during exercise
testing. Alterations in ventilation/perfusion complicate
this prediction.

What this paper contributes to our knowledge

The best prediction equation for PaCO2
was a mixed

model regression technique that included PETCO2
slow

vital capacity, maximum expiratory pressure, diffusing
capacity for carbon monoxide, and tidal volume. The
best way to ascertain exercise induced hypercapnia, the
difference between PaCO2

and end-tidal CO2, or the ra-
tio of dead space to tidal volume remains analysis of
arterial blood.
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Maximal Cardiopulmonary Exercise Test

Stable exercise gas exchange was initially obtained while
the subject sat at rest on the cycle ergometer (CardiO2,
Medical Graphics, St Paul, Minnesota). Data were col-
lected during a 2-min period of rest, followed by a 2-min
period of unloaded cycling, followed by a ramp-pattern
cycle ergometer exercise test to exhaustion. The work rate
was increased at a rate of 5–20 watts per minute, according
to the subject’s individual fitness. The rate of increase was
selected so the subject was able to complete the test within
approximately 10 min.18,19 Oxygen uptake (V̇O2

) (mL/min),
CO2 production (V̇CO2

) (mL/min), and V̇E (L/min) were
computed breath by breath, and the data were displayed
every 15 seconds, using an on-line computer program. We
designated the V̇O2

max as the peak or maximum V̇O2
that

the patient achieved. Twelve-lead electrocardiography,
heart rate, and SpO2

using a pulse oximeter (Ohmeda 3740,
BOC Healthcare, Manchester, United Kingdom) were mea-
sured continuously.20

Blood Gas Measurement

A catheter was inserted into the brachial artery of the
non-dominant arm, under local anesthesia. The indwelling
catheter was then fixed in place and the forearm was
splinted. For each subject, blood was sampled using hep-
arinized syringes at rest, during unloaded cycling, during
loaded cycling at one-minute intervals, and at peak exer-
cise. The blood samples were drawn slowly over an ap-
proximately 15 second interval, at the end of each stage of
exercise, to include measurements from several breaths to
help rid the data of breath-by-breath variability.21 The sam-
ples were immediately placed on ice and then analyzed for
pH, PaO2

, and PaCO2
, using a gas analyzer (model 278,

Ciba-Corning, Medfield, Massachusetts). The measure-
ment bias (mean difference between measurement and the
known value) of the standard solutions with 21.5, 45, and
70 mm Hg of PCO2

, using the Ciba-Corning 278 in our
laboratory, were �0.9, �1, and �0.7 mm Hg (sample
n � 781), respectively. The measurement precisions (stan-
dard deviation of bias) of PCO2

for these solutions were
0.9, 1.3, and 1.4 mm Hg, respectively. All blood gas val-
ues were calculated at 37°C, since the body temperature
change is negligible during a short period of exercise.22

The carboxyhemoglobin level was measured at rest with a
spectrophotometric oximeter (CO-Oximeter 270, Ciba-
Corning, Medfield, Massachusetts). Whole blood lactate
concentrations were also analyzed (1500 Sport, YSI, Yel-
low Springs, Ohio).

Measurements

V̇O2
(mL/min), V̇CO2

(mL/min), V̇E (L/min), PETCO2
, other

respiratory variables, and cardiovascular variables were

measured. The anaerobic threshold is defined as the level
of work just below that at which metabolic acidosis and
the associated changes in gas exchange become manifest,23

and was measured using the V-slope method.24 The pH,
PaCO2

, PaO2
, and standard bicarbonate of arterial blood sam-

ples were measured and calculated with a blood gas ana-
lyzer.

Statistical Analysis

The mean � SD of each variable is shown unless oth-
erwise specified. Bivariate and multivariable analyses were
performed using the subject-specific linear mixed models,
which took into account the potential correlations in the
PaCO2

within the same individual.25 The predictive values
and the coefficients of the fixed effects of the linear mixed
models have the same interpretations as those in ordinary
linear regression models.

Model Selection

Under the circumstances, with many candidate variables
and their interactions, we began with a screening step.
First, we performed an all possible subsets ordinary least
squares regression procedure, including all demographic,
anthropological, and noninvasive clinical measurements as
the candidates, and the models provided approximate good-
ness-of-fit information. This step identified the best ten
3-variable, ten four-variable, and ten five-variable models,
according to their performance of adjusted R2 on the pre-
dictors.26 In a second step, we then fit a series of linear
mixed models, including the 3-, 4-, and 5-variable com-
binations identified in the first step. The Akaike informa-
tion criterion, a goodness-of-fit measure, was calculated
for each of the candidate models. A smaller Akaike infor-
mation criterion stands for a better fit to the data.

Internal Validation

To evaluate the predictive ability, a leave-one-out cross-
validation predictive error was calculated for each model.27

In brief, the cross-validation predictive error was the square
root of the sum of the square of the differences between
each case’s observed value (eg, the ith case’s PaCO2

) and
predicted value, in which the predicted value was calcu-
lated using the equation excluding the case in model build-
ing (ie, the ith case was excluded in fitting the equation).
One difference from an ordinary leave-one-out procedure
is that, since there are 41 independent sampling units (in-
dividuals) each with 5–8 measurements, here the leave-
one-out procedure left “an individual” out each time, in-
stead of leaving “one observation” out. A smaller cross-
validation predictive error stands for a better predictive
ability for PaCO2

. Thus the models with smaller Akaike

USING STATISTICAL TECHNIQUES TO PREDICT DYNAMIC ARTERIAL PCO2
IN PATIENTS WITH COPD

1108 RESPIRATORY CARE • JULY 2012 VOL 57 NO 7



information criterion and smaller cross-validation predic-
tive error have priority to be selected. P value � .05 was
considered statistically significant.

All the above procedures were carried out using statis-
tical software (SAS 9.2, SAS Institute, Cary, North Car-
olina, and Origin 4.0, Microcal Software, Northampton,
Massachusetts). A special SAS macro was generated for
calculating the cross-validation predictive error.

Data Processing

To illustrate the validity of the derived equation for
predicting PaCO2

, differences between the measured and
estimated PaCO2

values during the loaded exercise were
compared. Because of the variation among subjects in ex-
ercise duration and the number of arterial blood samples
that were drawn, we interpolated the multiple PaCO2

values
from the start of exercise to the peak of exercise into 100
points for each subject, and then time aligned and aver-
aged the PaCO2

values at each time point of 10% of exer-
cise duration for a group of patients, using Origin 4.0. To
test the mean difference between the predicted and mea-
sured PCO2

, averaging the mean differences over all sub-

jects was conducted. The standard error, 95% CI, and
P value to this mean difference were estimated by a linear
mixed model to take into account the correlation within
the subject.

Results

A total of 41 male patients were enrolled after excluding
6 patients with inadequate data collection for analysis.
Most of the patients had a moderate to severe stage of
COPD by the GOLD criteria, with moderate air-trapping
and mild impairment of DLCO and maximum expiratory
pressure (Table 1).

Table 2 provides physiological data regarding subjects
at rest and at peak exercise. Forty-six percent of the pa-

Table 1. Demographics and Lung Function of 41 Men With COPD*

Mean � SD % Predicted

Age, y 65.3 � 5.7
Height, cm 165.1 � 6.4
Weight, kg 60.8 � 11.4
BMI, kg/m2 22.2 � 3.6
Cigarette smoking, pack years 41.6 � 19.5
Oxygen cost diagram, absolute units 7.2 � 1.4
FVC, L 2.48 � 0.66 80.6 � 20.6
SVC, L 2.68 � 0.66 92.8 � 42.5
FEV1, L 1.2 � 0.47 50 � 19
COPD Stage

1 (n � 3) 2.24 � 0.67 91 � 8
2 (n � 17) 1.44 � 0.07 63 � 8
3 (n � 17) 1.0 � 0.2 41 � 6
4 (n � 4) 0.66 � 0.13 23 � 5

FEV1/FVC, % 49 � 13
TLC, L 6.49 � 1.03 134 � 21
RV/TLC, % 61 � 23
DLCO, mL/mm Hg/min 15.9 � 5.5 69 � 21
PImax, cm H2O 68 � 19 64 � 17
PEmax, cm H2O 103 � 23 51 � 11
Carboxyhemoglobin, % 1.3 � 0.9

* After excluding 6 patients due to inadequate data collection for analysis.
BMI � body mass index
SVC � slow vital capacity
TLC � total lung capacity
RV � residual volume
DLCO � diffusing capacity for carbon monoxide
PImax � maximum inspiratory pressure
PEmax � maximum expiratory pressure

Table 2. Exercise Data and Arterial Blood Gas Analysis at Rest and
at Peak Exercise in 41 Men With COPD*

At Rest,
mean � SD

At Peak,
mean � SD

Work, watts 0 � 0 89 � 42
V̇O2

, L/min 0.44 � 0.09 1.08 � 0.32
V̇CO2

, L/min 0.4 � 0.08 1.15 � 0.38
Respiratory exchange ratio 0.91 � 0.06 1.05 � 0.1
Heart rate, beats/min 80 � 13 133 � 19
Heart rate, % of predicted maximum† 49 � 7.4 83 � 11
Oxygen pulse, mL/beat 4.8 � 1.2 8.2 � 2.3
Systolic blood pressure, mm Hg 174 � 25 220 � 31
Diastolic blood pressure, mm Hg 86 � 12 100 � 12
V̇E, L/min at BTPS 17.2 � 3.2 38.8 � 10.7
V̇E/MVV, %‡ 55 � 21 119 � 38
VT, L at BTPS 0.83 � 0.2 1.21 � 0.32
f, breaths/min 21.4 � 4.6 32.5 � 6.5
Borg score 0.9 � 0.9 8.1 � 2.5
V̇E/V̇O2

39.8 � 7.3 36.8 � 8
V̇E/V̇CO2

43.5 � 7 35.1 � 7.1
PETCO2

, mm Hg 37.4 � 6.3 43.1 � 8.2
PaCO2

–PETCO2
, mm Hg 4 � 3.5 2.4 � 4.1

FECO2
, % 3 � 0.5 3.8 � 0.8

pH 7.38 � 0.03 7.32 � 0.04
PaCO2

, mm Hg 41.4 � 6.4 45.6 � 7.7
PaO2

, mm Hg 80.9 � 12.7 70.5 � 14.3
HCO3

–, mEq/L 24.6 � 2.7 23.5 � 3.4
Lactate, mmol/L in whole blood 0.4 � 0.2 3.3 � 1.6

* After excluding 6 patients due to inadequate data collection for analysis. All comparisons
between at rest and at peak exercise are very significant: all P � .001, except V̇E/V̇O2 (P �

.004).
† Predicted maximum heart rate � 220–age in years
‡ V̇E/MVV: 92.7% of patients reached � 70% of V̇E/MVV
V̇O2 � O2 uptake
V̇CO2 � CO2 output
Oxygen pulse � V̇O2/heart rate
BTPS � body temperature, ambient atmospheric pressure, and fully saturated
V̇E � minute ventilation
MVV � maximum voluntary ventilation
VT � tidal volume
f � respiratory frequency
PETCO2 � end-tidal PCO2
PaCO2–PETCO2 � difference between PaCO2 and PETCO2
FECO2 � fraction of mixed expired CO2
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tients enrolled in this study achieved � 85% of their
maximal heart rate predicted, and 92.7% of patients
achieved a ratio of V̇E to maximum voluntary ventila-
tion of � 70% at peak exercise. Three patterns of rela-
tionship between PaCO2

and PETCO2
in response to exer-

cise were observed: quasi-parallel pattern (n � 34, 83%),
reverse quasi-parallel pattern (n � 4), and cross-over
pattern (n � 3) (Fig. 1). The patients with the quasi-
parallel pattern were older (66 � 5 y) and had lower
SVC (2.6 � 0.6 L), FEV1 (1.0 � 0.4 L), peak expiratory
flow rate (2.7 � 1.0 L/s), and DLCO (15.2 � 4.4 mL/
min/mm Hg), by comparison across patients of the 3
patterns (all P � .05).

Univariate analysis revealed that there were 21 vari-
ables significantly correlating to PaCO2

(Table 3). After
applying multivariable linear mixed regression technique,
the 5 models with the smallest leave-one-out cross-vali-
dation predictive error were listed in Table 4. Model 1
demonstrated both the smallest Akaike information crite-
rion and leave-one-out cross-validation error. Compari-
sons between the different predictive models are also
shown. In light of the above mentioned criteria, the best
predicted equation is:

Predicted PaCO2 � 23.71 � PETCO2 � (0.9–0.01� DLCO

� 0.04 � VT) � 2.61 � SVC � 0.04 � MEP (Equation 1)

This fitted equation used 306 observations in 41 pa-
tients. The Akaike information criterion was 1,099, and
the leave-one-out cross-validation predictive error was 6.53.
The units of PETCO2

were mm Hg, SVC L, maximum

expiratory pressure cm H2O, DLCO mL/min/mm Hg, and
VT L.

Figure 2 shows the validity of the prediction equation
based on the insignificant differences that were observed
between the measured and estimated PaCO2

values dur-
ing the loaded exercise (P � .05). The mean for the
measured PaCO2

was 43.2 mm Hg, and the mean for the
predicted PaCO2

was 43.4 mm Hg. The mean difference
between predicted PaCO2

and measured PaCO2
and its

95% CI were 0.19 and �0.2 to 0.59, respectively
(P � .34). Figure 3 shows the validity of the prediction
equation, based on the insignificant differences that were
observed between the measured and estimated PaCO2

values at each time point of the loaded exercise (all

Fig. 1. CO2 partial pressure measured with arterial blood gas anal-
ysis and end-tidal CO2 analysis, in symptom-limited incremental
exercise in 3 representative subjects. In the quasi-parallel pattern,
both variables increased along with exercise and PaCO2

was higher.
In the reverse quasi-parallel pattern, both variables increased along
with exercise and PaCO2

was lower. In the cross-over pattern, both
variables increased to some extent and then crossed over near the
end of loaded exercise.

Table 3. Univariate Analysis of the Potential Predictors of PaCO2
in

Response to Incremental Exercise in COPD (n � 41)

Coefficient*
Akaike

Information
Criterion†

P

PETCO2
0.68 1,213 � .001

FECO2
4.65 1,237 � .001

V̇E/V̇CO2
–0.41 1,366 � .001

Blood Pressure
Systolic 0.08 1,376 � .001
Diastolic 0.18 1,420 � .001

Heart rate 0.08 1,420 � .001
V̇CO2

0.00 1,429 � .001
V̇O2

/heart rate 0.93 1,429 � .001
V̇E 0.13 1,468 � .001
VT 5.71 1,472 � .001
TI –7.30 1,478 � .001
f 12.85 1,488 � .001
V̇E/V̇O2

–0.31 1,490 � .001
FVC –4.41 1,538 .004
FEV1 –5.60 1,538 .006
SVC –4.35 1,539 .007
TI/Ttot 15.16 1,539 .03
BMI 0.69 1,544 .02
RV/TLC 0.34 1,544 .006
MVV –0.17 1,547 .03
Height –0.33 1,547 .044

* The coefficient is the slope of the separate linear mixed model.
† For details, please refer to the text. A smaller Akaike information criterion stands for a
better model fit for each model.
PETCO2 � end-tidal PCO2
FECO2 � fraction of mixed expired CO2

V̇E � minute ventilation
V̇CO2 � CO2 output
V̇O2 � O2 uptake
VT � tidal volume
TI � inspiratory time
f � respiratory frequency
SVC � slow vital capacity
TI/Ttot � inspiratory time/total respiratory cycle time
BMI � body mass index
RV/TLC � residual volume/total lung capacity
MVV � maximum voluntary ventilation
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P � .05). The standard errors of the estimated PaCO2

ranged from 0.91 to 1.12 mm Hg.

Discussion

End-capillary PCO2
is not equivalent to alveolar PCO2

.28,29

It might be anticipated that an individual patient’s PaCO2

may not be equal to a more readily measurable PETCO2

under certain physiologic conditions. Some studies in
adults,14 including elderly individuals, both at rest and
during exercise,11,12 as well as a single study of patients
with COPD,13 have shown that the PaCO2

correlates well
with PETCO2

. However, it has been difficult to predict PaCO2

from PETCO2
, due to the increase in CO2 loading to the

lung, the inherent inhomogeneous ventilation/perfusion
matching, the increased VD/VT, and the cyclic breathing
patterns seen particularly in the elderly and in patients

with COPD performing exercise. In this study we found
that PETCO2

remained the paramount predictor for PaCO2
,

while the diffusing capacity, the vital capacity, the VT, and
the expiratory muscle strength were inversely related to
PaCO2

(see Table 4).
Diffusing capacity includes alveolar-capillary membra-

nous diffusing capacity and pulmonary blood volume (ie,
pulmonary circulatory capacity). Diffusing capacity for
CO is little affected by alveolar-capillary membranous dif-
fusing capacity, except when carbonic anhydrase is inhib-
ited by drugs such as acetazolamide.30 The inverse rela-
tionship between DLCO and PaCO2

is believed to be due to
a poorer pulmonary circulatory capacity related to COPD.
The inverse relationship between vital capacity or VT and
PaCO2

is explicitly explained by the Bohr equation. Expi-
ratory muscle strength is negatively related to residual

Table 4. Multivariable Models for Predicting Dynamic PaCO2
During Maximum Exercise in 41 Patients With COPD (blood samples n � 306)*

Model Predictor B0* B1 B2 B3 B4 B5
Akaike

Information
Criterion

Akaike
Information

Criterion
Rank

Cross-
Validation
Predictive

Error

Cross-
Validation
Predictive
Error Rank

1 PETCO2

SVC
PEmax

PETCO2
� DLCO

PETCO2
� VT

23.71 0.90 –2.61 –0.04 –0.01 –0.04 1,099.0 1 6.53 1

2 PETCO2

PEmax

PETCO2
� SVC

PETCO2
� DLCO

PETCO2
� VT

16.66 1.05 –0.04 –0.07 –0.00 –0.03 1,105.2 7 6.55 2

3 PETCO2

V̇E/V̇CO2

PEmax

PETCO2
� SVC

PETCO2
� DLCO

10.95 1.10 0.09 –0.04 –0.07 –0.01 1,103.3 5 6.64 3

4 PETCO2

V̇E/V̇CO2

SVC
PEmax

PETCO2
� DLCO

18.54 0.92 0.09 –2.75 –0.04 –0.01 1,099.5 2 6.88 4

5 PETCO2

PEmax

PETCO2
� SVC

PETCO2
� DLCO

PETCO2
� age

18.45 0.77 –0.04 –0.08 –0.00 0.00 1,111.7 8 7.39 5

* B0 is the intercept and B1 through B5 are the slopes of the predictors of the linear mixed regression model (eg, for model 1, 0.90 is the coefficient for PETCO2, –2.61 is the coefficient for SVC,
and so on). A positive coefficient indicates a positive relationship between PaCO2 and the variable, whereas a negative coefficient indicates a negative relationship. A smaller Akaike information
criterion stands for a better fit, and a smaller cross-validation predictive error stands for less prediction error.
PETCO2 � end-tidal PCO2
SVC � slow vital capacity
PEmax � maximum expiratory pressure
DLCO � diffusing capacity for carbon monoxide
VT � tidal volume
V̇E � minute ventilation
V̇CO2 � CO2 output
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volume,31 and thereby positively related to vital capacity,
and therefore inversely related to PaCO2

.
By jointly considering these 5 variables and their inter-

actions, the prediction of PaCO2
becomes much better than

with any variable alone, because the model fits in terms of
lower Akaike information criterion values and has a better
predictive ability in terms of lower leave-one-out cross-
validation predictive errors.

The carboxyhemoglobin had little effect on the PaCO2

prediction in our study, although it has been reported that
carboxyhemoglobin levels increase the difference between
PaCO2

and PETCO2
or VD/VT.32 The discrepancies between

the 2 studies might be due to the differences in study
design. Hirsch et al studied the acute effect of smoking on
cardiovascular function of their participants, while we stud-
ied the chronic effects of smoking.

It is hard to predict dynamic PaCO2
with PETCO2

alone,
because the changes in PETCO2

or PaCO2
occur as a function

of exercise intensity and are nonlinear. During a ramp-

pattern incremental exercise test in normal subjects, both
PaCO2

and PETCO2
increase mildly from the start of loaded

exercise to the point of the anaerobic threshold, followed
by a leveling-off due to isocapnic buffering, followed by a
lower PaCO2

and PETCO2
due to respiratory compensa-

tion.33,34 The differences between PaCO2
and PETCO2

are
different at different levels of exercise intensity, such as
being positive at rest and negative at peak exercise. Based
on our findings, another reason that dynamic PaCO2

values
are hard to predict with PETCO2

alone is that there are 3
patterns of the relationship between change in PaCO2

and
PETCO2

(see Fig. 1).
One may argue that our predictive equation is not the

only noninvasive method to yield PaCO2
values. A nonin-

vasive diagnostic tool such as transcutaneous PCO2
moni-

toring attempted to measure PaCO2
during anesthesia or

exercise.2,5,6 The transcutaneous PCO2
measured with CO2

electrodes has been reported to be slow in response time
and cannot reflect transient changes noted during different
levels of work load exercise or during a 2-min or less
incremental exercise evaluation.6,7

The PETCO2
trend of the 9-panel plot is a very useful clue

in the diagnosis of right-to-left shunt in dyspneic patients.35

Incorporating the estimated PaCO2
values from our derived

predictive equation might make it simpler for a clinician or
investigator to detect high ventilation/perfusion mismatch,
a right-to-left shunt, or the presence of hyperventilation.
Hyperventilation may cause both PaCO2

and PETCO2
to be

low, while the high ventilation/perfusion mismatch or right-
to-left shunt may cause the PaCO2

to be high and the PETCO2

to be low, thereby augmenting PaCO2
– PETCO2

.

Fig. 2. Upper panel: Scattergram of measured PaCO2
and predicted

PaCO2
using Equation 1. The oblique solid line indicates the line of

identity.Theobliquedotted line indicates the regression line through
zero. Lower panel: Absolute deviations plotted against the mea-
sured PaCO2

. Each symbol shown represents one blood sample of
the 41 subjects. Multiple blood samples were drawn from each
subject. �PaCO2

is the difference between predicted PaCO2
and

measured PaCO2
. The differences between each pair of PaCO2

were
insignificant (P � .34).

Fig. 3. The PaCO2
measured during the symptom-limited cycling

exercise and the estimated PaCO2
, using Equation 1 of our study.

Data shown are averaged for 41 subjects. The bars show the
standard error at the start of loaded exercise, every 10% of loaded
exercise, and at the peak of exercise. The differences between
each pair of PCO2

were insignificant. None of the differences are
significant.
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The prediction performance of our derived equation and
the previously reported data by Liu et al have the same
P value (� .001), but our derived equation has a lower
standard error of the estimate (0.91–1.12 mm Hg vs
2.8 mm Hg).13 Unfortunately, we cannot compare the R2,
due to the different statistical methods, or the calculated
PaCO2

values, due to the equations not being provided by
Liu et al.13

One study reported that

FACO2
� FICO2

� 1.136 � V̇CO2
/V̇A

(where FACO2
is the fraction of alveolar CO2, FICO2

is
the fraction of inspired CO2, V̇CO2

is carbon dioxide pro-
duction, and V̇A is alveolar ventilation), assuming PaCO2

equal to alveolar PCO2
throughout the breathing cycle in

young healthy individuals during dynamic exercise.36 They
reported that the mean difference and the upper and lower
limits of agreement between measured and simulated PaCO2

were �0.004, �0.84, and �0.84 mm Hg, respectively.
The authors reported that the V̇A, which involves VD/VT,
can only be determined by inserting an arterial catheter
and drawing multiple arterial blood samples for calcula-
tion.

Study Limitations

A male-only study group diagnosed with COPD pre-
vents application of our findings to the general population.
Given the current available data, a multiple regression
with the leave-one-out method is a useful way to derive
and validate our equation. However, blood gas analysis
remains the best way to ascertain EIH, PaCO2

� PETCO2
, or

VD/VT. To best validate the usefulness of our derived
equation, further studies with another patient population
are needed.

Another concern is whether or not we increased the
sample size while using the interpolation technique to pro-
cess the data. We interpolated the multiple PaCO2

values
because the fitness of each subject might not be identical,
and the volitional symptom-limited exercise test was ap-
plied so that the exercise durations were different. For
comparison at each 10% of exercise time, there were 41
pairs of data: one for measurements and the other for
predictions. This technique did not increase the sample
size for each comparison. Although the Bland-Altman plot
(see Fig. 2) showed an insignificant difference between
predicted PaCO2

and measured PaCO2
during the loaded ex-

ercise (P � .34), there was a trend that PaCO2
is overesti-

mated if PaCO2
is � 40 mm Hg.

Conclusions

To our knowledge, this study is the first to report equa-
tions for dynamic estimation of PaCO2

noninvasively in

patients with COPD performing a ramp-pattern exercise
test. With a similar average and a small error of the esti-
mate between the measured and estimated PaCO2

, we con-
clude that our predictive equations forecast the PaCO2

ac-
curately and the multiple PaCO2

values estimated from our
derived equation can be used to contrast with the PETCO2

trend of a 9-panel plot. The estimated PaCO2
– PETCO2

and
EIH can then be readily appreciated.
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